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Bayesian inference
Parameter estimation

Bayes’ theorem

P(θ |y,M) =
P(y | θ,M) P(θ |M)

P(y |M)
,

for parameters θ, model M and observed data y.

Shorthand notation:

P(θ |y)

posterior

=

L(θ)

likelihood

π(θ)

prior

z

constant

,

For parameter estimation, typically draw samples from the posterior by Markov chain Monte
Carlo (MCMC) sampling.
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Bayesian inference
Model selection

For model selection, consider the posterior model probabilities:

P(M1 |y)

P(M2 |y)
=

P(M1)

P(M2)
×

P(y |M1)

P(y |M2)
.

Must compute the Bayesian evidence or marginal likelihood given by the normalising constant

z = P(y |M) =

∫
dθ L(θ)π(θ) .

→ Challenging computational problem in high-dimensions.

Variety of powerful methods exist:

Nested sampling (Skilling 2004), e.g. MultiNest (Feroz, Hobson, Bridges 2008), PolyCord (Handley,
Hobson, Lasenby 2015)

Heavens et al. (2017)
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Desirable properties for Bayesian evidence estimators

Seek estimator that is:

Agnostic to sampling method and uses posterior samples.

Scales to high-dimensions.

Harmonic mean estimator has potential to meet these criteria but has serious shortcomings as
originally posed.

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Evidence Estimators Numerical Examples Code

Desirable properties for Bayesian evidence estimators

Seek estimator that is:

Agnostic to sampling method and uses posterior samples.

Scales to high-dimensions.

Harmonic mean estimator has potential to meet these criteria but has serious shortcomings as
originally posed.

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Evidence Estimators Numerical Examples Code

Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

ρ = EP(θ |y)

[
1

L(θ)

]

=

∫
dθ

1

L(θ)
P(θ |y)

=

∫
dθ

1

L(θ)

L(θ)π(θ)

z

=
1

z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1

N

N∑
i=1

1

L(θi)
, θi ∼ P(θ |y)

Very simple approach but can fail catastrophically (Neal 1994).
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Original harmonic mean estimator
Importance sampling interpretation

Alternative derivation of harmonic mean relationship:

ρ =
1

z
=

∫
dθ

π(θ)

P(θ |y)
P(θ |y)

z
=

∫
dθ

1

L(θ)
P(θ |y) .

Importance sampling interpretation:

Importance sampling target distribution is prior π(θ).

Importance sampling density is posterior P(θ |y).

For importance sampling, typically want sampling density to have fatter tails than target.

Not the case when importance sampling density is the posterior and the target is the prior.
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Original harmonic mean estimator
Simulation pseudo bias

Simulation pseudo bias (Lenk 2009)

In practice posterior simulation support Ω is a subset of the prior support Θ,
hence do not fully capture prior (target distribution).

Corrected harmonic mean estimator (Lenk 2009)

ρ̂ = P(Ω)
1

N

N∑
i=1

1

L(θi)
, θi ∼ P(θ |y) ,

where P(Ω) is the prior probability of the posterior simulation support Ω ⊂ Θ.

Mitigates simulation pseudo bias but does not eliminate.
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target ϕ(θ) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ = EP(θ |y)

[
ϕ(θ)

L(θ)π(θ)

]

=

∫
dθ

ϕ(θ)

L(θ)π(θ)
P(θ |y)

=

∫
dθ

ϕ(θ)

L(θ)π(θ)

L(θ)π(θ)

z

=
1

z

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1

N

N∑
i=1

ϕ(θi)

L(θi)π(θi)
, θi ∼ P(θ |y)
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Re-targeted harmonic mean estimator
Importance sampling interpretation

Importance sampling derivation:

ρ =
1

z
=

∫
dθ

ϕ(θ)
P(θ |y)

P(θ |y)

z
=

∫
dθ

ϕ(θ)

L(θ)π(θ)
P(θ |y) .

Ensure importance sampling target ϕ(θ) does not have fatter tails than posterior P(θ |y)
(importance sampling density).

→ How set importance sampling target distribution ϕ(θ)?

Jason McEwen High-dimensional uncertainty quantification (Extra)
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Re-targeted harmonic mean estimator
How set importance sampling target distribution ϕ(θ)?

Variety of cases been considered:

Multi-variate Gaussian (e.g. Chib 1995)

Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

ϕoptimal(θ) =
L(θ)π(θ)

z

(resulting estimator has zero variance).

Recall:

ρ̂ =
1

N

N∑
i=1

ϕ(θi)

L(θi)π(θi)
, θi ∼ P(θ |y)

But clearly not feasible since requires knowledge of the evidence z (recall the target must be
normalised) → requires problem to have been solved already!
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Re-targeted harmonic mean estimator
How set importance sampling target distribution ϕ(θ)?

Variety of cases been considered:

Multi-variate Gaussian (e.g. Chib 1995)

Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

ϕoptimal(θ) =
L(θ)π(θ)

z

(resulting estimator has zero variance).

Recall:

ρ̂ =
1

N

N∑
i=1

ϕ(θi)

L(θi)π(θi)
, θi ∼ P(θ |y)

But clearly not feasible since requires knowledge of the evidence z (recall the target must be
normalised) → requires problem to have been solved already!
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

ϕ(θ)
ML
' ϕoptimal(θ) =

L(θ)π(θ)

z
.

Approximation not required to be highly accurate.

Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other sanity
checks.
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Learn an approximation of the optimal target distribution:

ϕ(θ)
ML
' ϕoptimal(θ) =

L(θ)π(θ)

z
.
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Learnt harmonic mean estimator
Learning the target distribution

Consider a variety of machine learning approaches:

Uniform hyper-ellipsoid

Kernel Density Estimation (KDE)

Modified Gaussian mixture model (MGMM)

Modify learning objective function to include variance penalty and regularisation.

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning approach and hyperparameters.
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Rosenbrock example
Posterior

Rosenbrock function is the classical example of a pronounced thin curving degeneracy, with
likelihood defined by

f(θ) =

n−1∑
i=1

[
(a− θi)2 + b(θi+1 − θ2

i )2
]
, log(L(θ)) = −f(θ) .
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Figure: Rosenbrock posterior evaluated on grid.
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Rosenbrock example
MCMC sampling and learning the target distribution ϕ

0.0 2.5 5.0 7.5 10.0

θ1

−1.5 0.0 1.5 3.0

θ0

0.0

2.5

5.0

7.5

10.0

θ 1

Figure: Posterior recovered by MCMC sampling.
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Figure: Learnt target distribution ϕ (by KDE).
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Rosenbrock example
MCMC sampling and learning the target distribution ϕ
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Rosenbrock example
Accuracy of learnt harmonic mean estimator

Compare to Monte Carlo simulations, repeating entire analysis.

Also estimate the variance of the estimator and its variance.
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Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Rosenbrock example
Accuracy of learnt harmonic mean estimator

Compare to Monte Carlo simulations, repeating entire analysis.

Also estimate the variance of the estimator and its variance.
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Figure: Accuracy of learnt harmonic mean estimator for Rosenbrock example.
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Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Data model:

yi ∼ N(µ, τ−1)

Prior model:

Mean: µ ∼ N
(
µ0, (τ0τ)−1

)
Precision: τ ∼ Ga(a0, b0)

yi

N Normal

τ

a0 b0

G Gamma

µ

µ0 τ0

NNormal

i ∈ {1, ..., n}

Figure: Graph of hierarchical Bayesian model of Normal-Gamma example.
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Normal-Gamma example
Model

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Data model:

yi ∼ N(µ, τ−1)

Prior model:

Mean: µ ∼ N
(
µ0, (τ0τ)−1

)
Precision: τ ∼ Ga(a0, b0)

yi

N Normal

τ

a0 b0

G Gamma
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NNormal

i ∈ {1, ..., n}

Figure: Graph of hierarchical Bayesian model of Normal-Gamma example.

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Evidence Estimators Numerical Examples Code

Normal-Gamma example
Analytic evidence

Analytic evidence:

z = (2π)−n/2
Γ(an)

Γ(a0)

ba00

bann

(
τ0

τn

)1/2

where

τn = τ0 + n , an = a0 + n/2 , bn = b0 +
1

2

n∑
i=1

(yi − ȳ)2 +
τ0n(ȳ − µ0)2

2(τ0 + n)
.
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior

Table: Analytic and estimated evidence for various prior sizes τ0.

Prior size τ0 10−4 10−3 10−2 10−1 100

Analytic log(z) -160.3888 -159.2375 -158.0863 -156.9359 -155.7935
Estimated log(ẑ) -160.3883 -159.2370 -158.0851 -156.9359 -155.7921
Error (learnt harmonic mean) -0.0005 -0.0005 -0.0012 0.0000 -0.0014

Error (original harmonic mean)∗ -12.2100 – -9.7900 -8.5000 -7.1000

∗Friel & Wyse (2012)
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Figure: Accuracy for various prior sizes τ0.
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior
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Normal-Gamma example
Accuracy of learnt harmonic mean estimator and sensitivity to prior
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Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:

maximum compression strength parallel to grain yi,

density xi,

density adjust for resin content zi,

for i ∈ {1, . . . , n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?
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Non-nested linear regression: Radiata pine example
Data

Radiata pine data-set has become classical benchmark for evaluating evidence estimators:

maximum compression strength parallel to grain yi,

density xi,

density adjust for resin content zi,

for i ∈ {1, . . . , n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?
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Non-nested linear regression: Radiata pine example
Models

Gaussian linear models:

M1 : yi = α+ β(xi − x̄)

Density

+ εi , εi ∼ N(0, τ−1) .

M2 : yi = γ + δ(zi − z̄)

Resin-adjusted density

+ ηi , ηi ∼ N(0, λ−1) .

Priors for model 1 (similar for model 2):

α ∼ N
(
µα, (r0τ)−1

)
,

β ∼ N
(
µβ , (s0τ)−1

)
,

τ ∼ Ga(a0, b0) ,

(µα = 3000, µβ = 185, r0 = 0.06, s0 = 6, a0 = 3, b0 = 2× 3002).
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Non-nested linear regression: Radiata pine example
Models
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Non-nested linear regression: Radiata pine example
Models

yi

xi εi

τ

G Gamma

a0 b0

α

N Normal

µα r0

β

N Normal

µβ s0

N Normal

i ∈ {1, ..., n}

Figure: Graph of hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).
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Non-nested linear regression: Radiata pine example
Analytic evidence

Analytic evidence:

z = π−n/2ba00

Γ(a0 + n/2)

Γ(a0)

|Q0|1/2

|M |1/2
(
yTy + µT0Q0µ0 − νT0Mν0 + 2b0

)−a0−n/2
where µ0 = (µα, µβ)T, Q0 = diag(r0, s0), and M = XTX +Q0.
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M1 Model M2 logBF21
log(z1) log(z2) = log(z2)− log(z1)

Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018

Error (original harmonic mean)∗ – – 0.17372

∗Friel & Wyse (2012)
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.
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Non-nested linear regression: Radiata pine example
Accuracy of learnt harmonic mean estimator

Table: Analytic and estimated evidence.

Model M1 Model M2 logBF21
log(z1) log(z2) = log(z2)− log(z1)

Analytic -310.12833 -301.70460 8.42368
Estimated -310.12839 -301.70489 8.42350
Error (learnt harmonic mean) 0.00006 0.00029 0.00018

Error (original harmonic mean)∗ – – 0.17372

∗Friel & Wyse (2012)
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Code
Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.

User-facing features:

Ease of use (modular python package).

Follow software engineering best-practice (e.g. well documented, extensive test suite, CI).

Cython for speed.

Flexible choice of sampler (we use emcee).

Bespoke integrated cross-validation to select machine learning algorithm and
hyperparameters.

Under the hood:

Bespoke objective functions with variance penalty and regularisation.

Solve by bespoke mini-batch stochastic gradient descent.
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Code
Python package: harmonic

Harmonic python package implementing learnt harmonic mean estimator.

User-facing features:

Ease of use (modular python package).

Follow software engineering best-practice (e.g. well documented, extensive test suite, CI).

Cython for speed.

Flexible choice of sampler (we use emcee).
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Code
Pseudo code example

# Import packages
impor t numpy as np
impor t emcee
impor t harmonic
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Code
Pseudo code example

# Import packages
impor t numpy as np
impor t emcee
impor t harmonic

# Run MCMC samp le r
samp le r = emcee . EnsembleSampler ( ncha in s , ndim , l n_po s t e r i o r , a r g s =[ a r g s ] )
samp le r . run_mcmc( pos , samples_per_chain )
samp les = np . a s c o n t i g u o u s a r r a y ( samp le r . cha i n [ : , nburn : , : ] )
l n p r ob = np . a s c o n t i g u o u s a r r a y ( samp le r . l n p r o b a b i l i t y [ : , nburn : ] )
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Pseudo code example

# Import packages
impor t numpy as np
impor t emcee
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# Set up ch a i n s
c h a i n s = harmonic . Cha ins ( ndim )
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Pseudo code example
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impor t emcee
impor t harmonic

# Run MCMC samp le r
samp le r = emcee . EnsembleSampler ( ncha in s , ndim , l n_po s t e r i o r , a r g s =[ a r g s ] )
samp le r . run_mcmc( pos , samples_per_chain )
samp les = np . a s c o n t i g u o u s a r r a y ( samp le r . cha i n [ : , nburn : , : ] )
l n p r ob = np . a s c o n t i g u o u s a r r a y ( samp le r . l n p r o b a b i l i t y [ : , nburn : ] )
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ch a i n s . add_chains_3d ( samples , l n p r ob )

# F i t model
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Pseudo code example
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model = harmonic . model . Ke r n e lDen s i t yE s t ima t e ( ndim , domain , hyper_parameters )
model . f i t ( c h a i n s_ t r a i n . samples , c h a i n s_ t r a i n . l n_po s t e r i o r )

# Compute e v i d e n c e
e v i d e n c e = harmonic . Ev idence ( cha i n s_t e s t . ncha in s , model )
e v i d e n c e . add_chains ( c ha i n s_t e s t )
ln_ev idence , ln_ev idence_std = ev i d en c e . compute_ln_evidence ( )
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Summary and future work

Problems of harmonic mean estimator can be fixed by re-targeting.

Apply machine learning to approximate optimal importance sampling target.

⇒ Learnt harmonic mean estimator

Future work:

Finalising paper.

Numerical optimisations.

Apply to more examples and push to higher dimensions.

Make code public.

Extend general approach to other statistical problems (e.g. learnt importance sampling
distributions, learnt proposal distributions).
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Outline

1 Learnt harmonic mean estimator

2 Radio interferometric imaging

3 Proximal MCMC sampling and uncertainty quantification

4 MAP estimation and uncertainty quantification

5 Mass-mapping via weak gravitational lensing
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Astrostatistics

/ Astroinformatics

Statistics

e.g. Bayesian Inference

Applied Math

e.g. Wavelets, Sparsity,

Compressed Sensing

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Sparse regularisation Algorithms Results

Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Sparse regularisation Algorithms Results

The SKA poses a considerable big-data challenge

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Sparse regularisation Algorithms Results

Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

xsynthesis = Ψ× arg min
α

[∥∥y −ΦΨα
∥∥2

2
+ λ

∥∥α∥∥
1

]
Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: x = Ψα .

Typically sparsity assumption justified by analysing example signals in transformed domain.

Different to synthesising signals.

Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = arg min
x

[∥∥y −Φx
∥∥2

2
+ λ

∥∥Ψ†x
∥∥

1

]
Analysis framework

(For orthogonal bases the two approaches are identical but otherwise very different.)
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Sparse regularisation
SARA algorithm

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

Promote average sparsity by solving the constrained reweighted `1 analysis problem:

min
x∈RN

‖WΨ†x‖1 subject to ‖y −Φx‖2 ≤ ε and x ≥ 0

SA
R
A
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Distributed and parallelised convex optimisation

Solve resulting convex optimisation problems by proximal splitting.

Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet, & Wiaux 2016)

y =

 y1

...
ynd

 , Φ =

 Φ1

...
Φnd

 =

 G1M1

...
GndMnd

FZ .
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Distributed and parallelised convex optimisationScalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j

1
Gjb

(t)
j + r

(t)
j ≠ s

(t)
j

2

11: end and gather q
(t)
j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
jq

(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel

20: d
(k)
i = 1

÷

3
I ≠SŸÎ�ÎS

41
÷d

(k≠1)
i + �†

i z̄
(k≠1)

2

21: d̃
(k)
i = �id

(k)
i

22: end
23: z̄(k) = PC

1
z ≠

nbÿ

i=1

d̃
(k)
i

2

24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
range of minimisation tasks. The inherent parallelisation on
the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x

f(x) + “

nbÿ

i=1

li(�†
ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
minimisation problem does not change, regardless of the
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Standard algorithms
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Highly distributed and parallelised algorithms
Reconstruction

Hybrid w-stacking and w-projection distributed and parallelised reconstruction
(Pratley, Johnston-Hollitt & McEwen 2018)

100 millions visibilities (measurements)

4096×4096 pixel image (∼17 million pixels)

17◦ field of view

w-terms of ±300 wavelengths (to account for wide fields)

Imaging with exact wide-field corrections for 100 million visibilities in 30 minutes.

0

0.05

0.1

0.15

Figure: Hybrid w-stacking w-projection distributed and parallelised reconstruction (Pratley,
Johnston-Hollitt & McEwen 2018)
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Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d’Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux, Kartik, d’Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Outline

1 Learnt harmonic mean estimator

2 Radio interferometric imaging

3 Proximal MCMC sampling and uncertainty quantification

4 MAP estimation and uncertainty quantification

5 Mass-mapping via weak gravitational lensing
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MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing
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MCMC sampling the full posterior distribution

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity priors, which shown to be highly effective.
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MCMC sampling with gradients
Langevin dynamics

Consider posteriors of the following form:

P(x |y) = π(x)

Posterior

∝ exp
(
− g(x)

Smooth

)

If g(x) differentiable can adopt MALA (Langevin dynamics).

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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MCMC sampling with gradients
Langevin dynamics
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Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
Gradient

dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MCMC methods

Exploit proximal calculus.

“Replace gradients with sub-gradients”.

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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Proximal MALA
Moreau approximation

Moreau approximation of f(x) ∝ exp(−g(x)):

fMA
λ (x) = sup

u∈RN
f(u) exp

(
−
‖u− x‖2

2λ

)

Important properties of fMA
λ (x):

1 As λ→ 0, fMA
λ (x)→ f(x)

2 ∇ log fMA
λ (x) = (proxλg (x)− x)/λ

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
Moreau approximation

Moreau approximation of f(x) ∝ exp(−g(x)):

fMA
λ (x) = sup

u∈RN
f(u) exp

(
−
‖u− x‖2

2λ

)

Important properties of fMA
λ (x):

1 As λ→ 0, fMA
λ (x)→ f(x)

2 ∇ log fMA
λ (x) = (proxλg (x)− x)/λ

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
− g(x)

C
on

ve
x )

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau approximation to π:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.
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Proximal MALA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ḡ (x) = argmin

u∈RN

{
µ‖Ψ†u‖1 +

‖y −Φu‖22
2σ2

+
‖u− x‖22

δ

}
.

Taylor expansion at point x: ‖y −Φu‖22 ≈ ‖y −Φx‖22 + 2(u− x)>Φ†(Φx− y).

Then proximity operator approximated by

prox
δ/2
ḡ (x) ≈ prox

δ/2

f̄1

(
x− δΦ†(Φx− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ḡ (x) ≈ v̄ + Ψ

(
softµδ/2(Ψ†v̄)−Ψ†v̄)

)
, where v̄ = x− δΦ†(Φx− y)/2σ2.
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Proximal MALA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ĝ (a) = argmin

u∈RL

{
µ‖u‖1 +

‖y −ΦΨu‖22
2σ2

+
‖u− a‖22

δ

}
.

Taylor expansion at point a: ‖y −ΦΨu‖22 ≈ ‖y −ΦΨa‖22 + 2(u− a)>Ψ†Φ†(ΦΨa− y).

Then proximity operator approximated by

prox
δ/2
ĝ (a) ≈ prox

δ/2

f̂1

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ĝ (a) ≈ softµδ/2

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.
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MYULA
Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f :

fMY
λ (x) = inf

u∈RN
f(u) +

‖u− x‖2

2λ

Important properties of fMY
λ (x):

1 As λ→ 0, fMY
λ (x)→ f(x)

2 ∇fMY
λ (x) = (x− proxλf (x))/λ

Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):
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MYULA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̄1
(x) = x+ Ψ

(
softµδ/2(Ψ†x)−Ψ†x)

)
.
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MYULA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̂1
(a) = softµδ/2(a) .
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Numerical experiments
MYULA with analysis model

(a) Ground truth

(b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: HII region of M31
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling

Image Method CPU time (min)
Analysis Synthesis

Cygnus A P-MALA 2274 1762
MYULA 1056 942

M31 P-MALA 1307 944
MYULA 618 581

W28 P-MALA 1122 879
MYULA 646 598

3C288 P-MALA 1144 881
MYULA 607 538
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Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:

If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen High-dimensional uncertainty quantification (Extra)
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: Cygnus A

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Numerical experiments

1

(a) Recovered image (b) Surrogate with region removed

1. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: Cygnus A

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Numerical experiments

1

(a) Recovered image (b) Surrogate with region removed

1. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: Cygnus A

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping P-MALA MYULA Experiments Hypothesis testing

Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: Supernova remnant W28
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Outline

1 Learnt harmonic mean estimator

2 Radio interferometric imaging

3 Proximal MCMC sampling and uncertainty quantification

4 MAP estimation and uncertainty quantification

5 Mass-mapping via weak gravitational lensing
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Proximal MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y)

HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing
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MAP estimation and uncertainty quantification

Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C̃α

Approximate local credible
intervals: (ξ̃−, ξ̃+)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b).

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b, 2018; arXiv:1711.04819; arXiv:1811.02514)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x
′

= x
?
(I − ζ) + ξζ .

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.
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Figure: Length of local credible intervals for M31 for the analysis model.
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Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image Method CPU time
Analysis Synthesis

Cygnus A
P-MALA 2274 1762
MYULA 1056 942
MAP .07 .04

M31
P-MALA 1307 944
MYULA 618 581
MAP .03 .02

W28
P-MALA 1122 879
MYULA 646 598
MAP .06 .04

3C288
P-MALA 1144 881
MYULA 607 538
MAP .03 .02

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping Local credible intervals Experiments Hypothesis testing

Hypothesis testing
Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image Test Ground Method Hypothesis
area truth test

M31 1 3
P-MALA 3
MYULA 3
MAP 3

Cygnus A 1 3
P-MALA 7
MYULA∗ 7
MAP 7

W28 1 3
P-MALA 3
MYULA 3
MAP 3

3C288

1 3
P-MALA 3
MYULA 3
MAP 3

2 7
P-MALA 7
MYULA 7
MAP 7

(∗ Can correctly detect physical structure if use median point estimator.)
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Outline

1 Learnt harmonic mean estimator

2 Radio interferometric imaging

3 Proximal MCMC sampling and uncertainty quantification

4 MAP estimation and uncertainty quantification

5 Mass-mapping via weak gravitational lensing
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Mass-mapping via weak gravitational lensing
Model

Let γ ∈ CM be the discretized complex shear field extracted from an underlying discretized
convergence field κ ∈ CN by a measurement operator

Φ ∈ CM×N : κ 7→ γ .

In the planar setting Φ can be modelled by

Φ = F−1DF .

The planar forward model in Fourier space:

γ̂(kx, ky) = Dkx,ky κ̂(kx, ky) ,

with the mapping operator

Dkx,ky =
k2
x − k2

y + 2ikxky

k2
x + k2

y

.
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Mass-mapping via weak gravitational lensing
Bayesian MAP estimation by sparse regularisation

Spare Bayesian mass-mapping framework
(Price, McEwen, Cai, Kitching, Wallis 2018a: arXiv:1812.04014).

Consider posterior P(κ | γ) ∝ P(γ |κ) P(κ) .

Likelihood:

P(γ |κ) ∝ exp

[
−

(Φκ− γ)†Σ−1(Φκ− γ)

2

]
.

General (non-Gaussian) wavelet Laplacian prior:

P(κ) ∝ exp
(
− µ‖Ψ†κ‖1

)
.

Maximum a posterior (MAP) solution given by solving (convex) optimisation problem
(cf. GLIMPSE of Lanusse et al. 2016):

κmap = argmin
κ

[
µ‖Ψ†κ‖1 +

‖Φκ− γ‖22
2σ2
n

]
,
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Mass-mapping via weak gravitational lensing
Selection of the regularisation parameter

How set regularisation parameter µ?

Set up gamma-type hyper-prior (typical hyper-prior for scale-parameters) following
Pereyra et al. (2015):

P(µ) =
βα

Γ(α)
µα−1e−βµIR+

(µ) ,

where without loss of generality α = β = 1 (results highly insensitive to choice of α and β).

Compute the joint MAP estimator (κmap, µmap), which maximizes P(κ, µ | γ) such that

0N+1 ∈ ∂κ,µ log p(κmap, µmap | γ) .

Yields textbfanalytic update for µ estimator (Pereyra et al. 2015):

µt+1 =
Nk−1 + α− 1

f(κt) + β
,

where f(·) is the log-prior.
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Bayesian sparse mass-mapping
Recovering mass-maps from simulations

SN
R
:
15

SN
R
:
10

SN
R
:
5

KS KS Smooth Sparse
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Bayesian sparse mass-mapping
Recovering mass-maps from simulations

SNR (dB)

Input KS KS Sparse DifferenceSNR Smooth

20.0 3.986 3.988 9.298 + 5.310
15.0 3.844 3.912 9.906 + 5.993
10.0 3.480 3.831 9.230 + 5.399
5.0 2.670 3.0305 7.296 + 4.265
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Hypothesis testing of structure
Single object structure

MAP Test 1 Test 2 Test 3

Figure: Hypothesis testing of three selected structures in the Bolshoi-1 cluster convergence field. The
SNR of added Gaussian noise was 20 dB. The SNR of the sparse recovery was ∼ 6 dB (an increase in
SNR of ∼ 3.5 dB over the KS reconstruction). We correctly determine that region 1 (red) is physical
with 99% confidence. Regions 2 (blue) and 3 (green) remain within the HPD region and are therefore
inconclusive, given the data and noise level.
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Hypothesis testing of structure
Multiple object structure

MAP Test 1 Test 2 Test 3

Figure: Hypothesis testing of three selected structures in the Bolshoi-2 cluster convergence field. The
SNR of added Gaussian noise was 20 dB. The SNR of the sparse recovery was ∼ 12 dB (an increase in
SNR of ∼ 7 dB over the KS reconstruction). We correctly determine that all three null hypothesis’ (red,
blue and green) are rejected at 99% confidence. In test 1 the conclusion is that the left hand peak was
statistically significant. In tests 2 and 3 the conclusions is that an image with the two peaks merged it
unacceptable, and therefore the peaks are distinct at 99% confidence.
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Hypothesis testing of structure
Complex structure

MAP Test 1 Test 2 Test 3

Figure: Hypothesis testing of structure in an ∼ 1.2 deg2 planar Buzzard extract. Both over-densities 1
and 3 are deemed to be physical, whereas the void structure 2 is inconclusive.
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Analysis of A520 cluster
Evidence for self-interacting dark matter?

Some controversy over peaks recovered from observations of A520 cluster (Jee et al. 2012,
2014, Clowe et al. 2012).

A small, central convergence peak detected (J12, J14), with a notably large mass-to-light
ratio, which could indicate the possibility of self-interacting dark matter.

Peel et al. (2017) concluded that peak existed in the J14 dataset but not in the C12 dataset
(using GLIMPSE; Lanusse et al. 2016) but cannot confirm its existence or otherwise.
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Analysis of A520 cluster
Evidence for self-interacting dark matter?

Recovered mass-maps and perform local and global hypothesis tests.

Data-sets are globally consistent at 99% credible level.

Peak in question is detected in J14 but determined not statistically significant.

Also discover some new peaks but they are also not statistically significant.

(a) J14 (b) C12

Figure: Recovered mass maps
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Local Bayesian credible intervals
Bolshoi simulation

Recover local credible intervals from MAP solution and compare to MCMC reconstructions
(Price, Cai, McEwen, Pereyra, Kitching 2018b: arXiv:1812.04017).

Figure: Length of local credible intervals at 99% credible level for Bolshoi simulation.
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Local Bayesian credible intervals
Buzzard simulation

Recover local credible intervals from MAP solution and compare to MCMC reconstructions
(Price, Cai, McEwen, Pereyra, Kitching 2018b: arXiv:1812.04017).

Figure: Length of local credible intervals at 99% credible level for Buzzard simulation.
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Feature locations and peak statistics

Quantify uncertainties associated with peak locations and counts
(Price, McEwen, Cai, Kitching 2018c: arXiv:1812.04018).

Figure: Input 2048× 2048 convergence map extracted from the Buzzard N-body simulation.
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Feature locations
Procedure

Mass-mapping: peak statistics and feature locations 5

Calculate MAP so-
lution: map (20)

Remove feature Z
by equation (27).

Extract feature Z = mapI⌦Z

Insert: feature Z at

xt , get surrogate sgt

Is: sgt 2 C0↵ ?

Reject pixel: xtAccept pixel: xt

t ! t + 1 t ! t + 1

Yes

Select next nearest pixel. Select next nearest pixel.

No

Figure 1. Schematic representation of the inverse nested iterations to determine the Bayesian location (see section 4). The Bayesian

location is a positional uncertainty on a feature of interest Z within a recovered convergence field. Once a complete ring of pixels have
been rejected the algorithm returns a binary map of accepted pixels which we call the Bayesian location. Any pixel outside of this

location is rejected at 100(1�↵)% confidence. Alternately the probability isocontour bounding the set of acceptable pixels can be located

by N-splitting circular bisection as described in section 4.2 and Appendix A.

in mind, we propose a novel Bayesian approach to quantify-
ing uncertainty in the peak location which we will refer to
as the ‘Bayesian location’.

In essence the Bayesian location is computed as follows:
A feature of interest is removed from the recovered conver-
gence map, this feature is then inserted back into the con-
vergence map at a new position to create a surrogate con-
vergence map, if this surrogate map is within the approxi-
mate credible set then the position at which the feature was
inserted cannot be rejected, if the surrogate is not in the
approximate credible set then the position can be rejected.
This process is computed for a sample of the total posi-
ble insertion positions, eventually providing an isocontour
of ‘acceptable’ positions. This isocontour, at a well-defined
confidence level, is the Bayesian location.

4.1 Bayesian Location

Suppose we recover a (MAP) convergence field map via
optimization of the objective function defined in equation
(20) which contains a feature of interest (e.g. a large peak).
Let us define the sub-set of pixels which contain this feature
to be ⌦Z ⇢ ⌦, where ⌦ is the entire image domain.

To begin with, extract the feature Z = mapI⌦Z , i.e. a
convergence field which contains only the feature of interest.
Now we adopt the process of segmentation inpainting (Cai
et al. 2017b,a; Price et al. 2018a) to create a convergence
field realization without the feature of interest Z but with
background signal replaced.

Mathematically segmentation inpainting is represented
by the iterations

(t+1),sgt = mapI⌦\⌦Z + ⇤soft�(⇤†(t),sgt)I⌦Z , (27)

MNRAS 000, 1–16 (2018)
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Peak statistics
Procedure Mass-mapping: peak statistics and feature locations 9

Initial surrogate: sgt = map

Calculate excursion peak set: ⇧(sgt)

Find lowest peak: (x)

Define aperture
around peak: ⌦A

Remove peak from excursion
peak set: sgt = SK,⌦A

�
sgt�

In credible set?:
sgt 2 C0↵ ?

Repeat steps.

Min number of peaks:
⌘min
↵ = |⇧(sgt) |

Yes

No

Figure 4. Schematic representation of the iteration steps in find-
ing the Bayesian lower bound ⌘min

↵ at confidence 100(1 � ↵)% of
the peak count |⇧ | for a given MAP reconstruction map.

about the halo profile around a peak. Removing a peak by
application of SK,⌦A creates a surrogate solution sgt which
is likely to minimize the increase in the objective function.

As such SK,⌦A is a good strategy for excluding peaks
from ⇧(map) as it will likely maximize the number of
peaks which can be removed from ⇧(map) before the level-
set threshold ✏ 0↵ is saturated. Thus, it will likely be near
decision-theoretically optimal at minimizing equation (39),
which is precisely what we want.

A schematic of the iterative process proposed to find
the Bayesian lower bound on the peak statistic can be seen
in Figure 4. In words, the process is as follows. Within each
iteration, the lowest intensity peak within the peak set is
removed forming a new surrogate convergence field sgt, the
objective function is recalculated and if the objective func-
tion is below the approximate level-set threshold ✏ 0↵ then
the lowest peak within sgt is now removed, so on and so
forth until the objective function rises above ✏ 0↵, at which
the iterations are terminated and the minimum number of
peaks is recovered.

6.2 Approximate Bayesian Upper Bound on Peak
Counts

Now we invert our perspective in order to approximate the
maximum number of peaks which could be observed at a
given threshold K at 100(1 � ↵)% confidence. Here we will
be considering the non-linear maximization problem con-
structed in equation (38).

First, we introduce the notion of the inclusion set ⌦�,
conjugate to ⌦+ such that ⌦� [⌦+ ⌘ ⌦ and ⌦� \⌦+ = ?,

⌦� =
(
x | map(x)  K

)
, (41)

With this in mind, we can now cast the maximization prob-
lem into a minimization problem analogous to that used
before.

We now wish to minimize the number of peaks that
belong to the inclusion set ⌦� which is by definition equiv-
alent to maximizing the number of peaks which belong to
the excursion set ⌦+ – which is precisely what we want.

Analogously to section 6.1 to construct our approximate
bound we calculate the further sub-set ⇧� ⇢ ⌦� which is
defined similarly to the relation in equation (36) such that,

⇧�(map) =
(
x | map(x) > map(x0), 8 x0 2 N (x)

)
, (42)

i.e. the sub-set of peaks below a threshold K .
In contrast to section 6.1 we now locate the largest peak

in ⇧�. Suppose that this peak is found at ⇧�(x), we now
construct a circular aperture about x with radius rmin as
defined before. Let this circular aperture set of pixels be
⌦A ⇢ ⌦.

Now we define an up-scaling kernel S†
K,⌦A

2 CN⇥N
which has action,

S†
K,⌦A

�
map�

= mapI⌦\⌦A +
K + �

max
�
mapI⌦A

� (mapI⌦A )

(43)

which is very slightly di↵erent to the down-scaling operator
in the numerator of the second term. Here � is an infinitesi-
mal quantity added such that the re-scaled peak within ⌦A
falls infinitesimally above the threshold K and is therefore
counted as a peak. In practice we set � to be ⇠ 10�5 and find
that adjusting this quantity by O(102) has negligible e↵ect
on the recovered uncertainties.

With these conceptual adjustments we then follow the
same iterations discussed in section 6.1 to find the ap-
proximate Bayesian upper bound on the peak count ⌘max

↵ .
Schematically this is given in Figure 5.

Finally we return the tuple
�
⌘min
↵ , ⌘, ⌘max

↵
�

which is in
the form

�
minimum, most likely, maximum

�
at 100(1 � ↵)%

confidence.

6.3 Limitations of Re-scaling

Suppose the SNR threshold K is large enough such that
during iterations in schematic of Figure 4 the cardinality
of the excursion peak set |⇧(sgt) | ! 0. In this situation
even though the approximate level-set threshold ✏ 0↵ is not
saturated, the algorithm is forced to stop as there are sim-
ply no more peaks to exclude (push down). At this point
the strategy for removing peaks becomes locally ill-defined.
E↵ectively this is a clipping artifact. To avoid this e↵ect en-
tirely, if |⇧(sgt) | = 0 at any point within the iterations at a
given threshold, the lower bound ⌘min

↵ at threshold K is set
to 0, i.e. we are infinitely uncertain by construction.

Analogously, consider the case when K is small enough
that during the iterations in schematic 5 the cardinality of
the inclusion peak set |⇧�(sgt) | ! 0. In this situation there
are simply no more peaks to include (pull up). Again we

MNRAS 000, 1–16 (2018)
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inference of large, complex data-sets.

Multidisciplinary techniques to quantify uncertainties in high-dimensional settings.

Machine learning assisted Bayesian evidence computation

Proximal MCMC sampling can support sparse priors in full Bayesian framework.

Sparse regularisation by MAP estimation with approximate uncertainty quantification.

Numerous uses in astronomy and beyond.

Radio interferometric imaging.

Mass-mapping via weak gravitational lensing.
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x

‖Ωx‖1 subject to ‖y − Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 subject to ‖y − ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.
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Analysis vs synthesis
Comparison

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

Synthesis-based approach is more general, while analysis-based approach more restrictive.

More restrictive analysis-based approach may make it more robust to noise.

The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα+ n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y −ΦΨα‖22/(2σ2)

)
.

Consider the Laplacian prior:

P(α) ∝ exp
(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-synthesis = Ψ · arg max
α

P(α |y) = Ψ · arg min
α

‖y − ΦΨα‖22 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

x?MAP-analysis = Ω† · arg min
γ∈column space Ω

‖y − ΦΩ†γ‖22 + λ‖γ‖1 .

analysis

Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Highly distributed and parallelised algorithms
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PURIFY reconstruction
VLA observation of 3C129

Figure: VLA visibility coverage for 3C129
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

Figure: VLA visibility coverage for Cygnus A
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)

m
Jy

/B
ea

m

0

0.5

1

1.5

Jason McEwen High-dimensional uncertainty quantification (Extra)



Evidence RI Prox MCMC MAP Mass-Mapping

PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

Figure: VLA visibility coverage for PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473

Figure: ATCA visibility coverage for Cygnus A
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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(a) CLEAN (natural)
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(b) CLEAN (uniform)
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(c) PURIFY

Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)
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Jason McEwen High-dimensional uncertainty quantification (Extra)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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(a) CLEAN (natural)

m
Jy

/B
ea

m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
Jy

/B
ea

m

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

mJy/Beam
-1 -0.5 0 0.5 1

P
ix

el
s

0

2000

4000

6000

8000

10000

12000

14000

(b) CLEAN (uniform)

m
Jy

/P
ix

el

0

2

4

6

8

10

12

14

16

18

20

m
Jy

/B
ea

m

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

mJy/Beam
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ix

el
s

0

1000

2000

3000

4000

5000

6000

(c) PURIFY

Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36

PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24

Jason McEwen High-dimensional uncertainty quantification (Extra)


	Learnt harmonic mean estimator
	Evidence estimators
	Numerical examples
	Code

	Radio interferometric imaging
	Sparse regularisation
	Algorithms
	Results

	Proximal MCMC sampling and uncertainty quantification
	Proximal Metropolis-adjusted Langevin algorithm (P-MALA)
	Moreau-Yosida unadjusted Langevin algorithm (MYULA)
	Numerical experiments
	Hypothesis testing

	MAP estimation and uncertainty quantification
	Approximate local Bayesian credible intervals
	Numerical experiments
	Hypothesis testing

	Mass-mapping via weak gravitational lensing
	Hypothesis testing
	Local Bayesian credible intervals
	Feature locations and peak statistics


