

Spherical signal processing for cosmology

Jason McEwen

<http://www.jasonmcewen.org/>

Department of Physics and Astronomy University College London (UCL)

17 October 2011 :: UCL, London

KOD KARD KED KED BE YOUR

1 [Harmonic analysis on the sphere](#page-2-0)

2 [Wavelets on the sphere](#page-7-0)

³ [Compressive sensing on the sphere](#page-16-0)

⁴ [Gaussianity of the CMB](#page-21-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $\Delta_{\mathbf{S}^2} Y_{\ell m} = -\ell(\ell + 1)Y_{\ell m}.$

Any square integrable scalar function on the sphere $f \in L^2(S^2)$ may be represented by its

$$
f(\theta,\varphi)=\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}f_{\ell m}Y_{\ell m}(\theta,\varphi).
$$

The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$
f_{\ell m} = \langle f, Y_{\ell m} \rangle = \int_{S^2} d\Omega(\theta, \varphi) f(\theta, \varphi) Y_{\ell m}^*(\theta, \varphi).
$$

O We consider s[ign](#page-1-0)als on [t](#page-3-0)[h](#page-4-0)e sphere band-limited [at](#page-1-0) *[L](#page-29-0)*, that i[s s](#page-3-0)ignals s[u](#page-1-0)[ch](#page-2-0) that $f_{\ell m} = 0$ $f_{\ell m} = 0$, [∀](#page-6-0)^{*[≥](#page-0-0)*} ∠ *L*.

• The spherical harmonics are the eigenfunctions of the Laplacian on the sphere: $\Delta_{\mathbf{S}^2} Y_{\ell m} = -\ell(\ell + 1)Y_{\ell m}.$

Figure: Spherical harmonic functions (real and imaginary parts).

Any square integrable scalar function on the sphere $f \in L^2(S^2)$ may be represented by its spherical harmonic expansion:

$$
f(\theta,\varphi)=\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}f_{\ell m}Y_{\ell m}(\theta,\varphi).
$$

 \bullet The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$
\left|f_{\ell m}=\langle f,\ Y_{\ell m}\rangle=\int_{S^2}d\Omega(\theta,\varphi)f(\theta,\varphi)Y_{\ell m}^*(\theta,\varphi)\right.
$$

We consider s[ign](#page-2-0)als on [t](#page-3-0)[h](#page-4-0)e sphere band-limited [at](#page-1-0) *[L](#page-29-0)***, that i[s s](#page-4-0)ignals s[u](#page-1-0)[ch](#page-2-0) that** $f_{\ell m} = 0$ $f_{\ell m} = 0$ **, [∀](#page-6-0)** $\ell \geq L$ **.
** $\ell \geq \ell$ **.** $\ell \geq \ell$

- Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for example:
	- HEALpix (Gorski *et al.* 2005)
	- **·** IGLOO (Crittenden & Turok 1998)
	- \rightarrow Do **not** lead to sampling theorems on the sphere!
- Sampling theorems state how to represent all information content of a band-limited signal \rightarrow theoretically exact spherical harmonic transforms.
- **O** Driscoll & Healy (1994) sampling theorem:
	- **Equiangular pixelisation of the sphere**
	- Require $\sim 4L^2$ samples on the sphere
	- Semi-naive algorithm with complexity $\mathcal{O}(L^3)$ (algorithms with lower scaling exist but they are not generally stable)
	- Require a precomputation or otherwise restricted use of Wigner recursions

KORKARA KERKER DAGA

- \bullet Have developed a new sampling theorem and corresponding fast algorithms by performing a factoring of rotations and then by associating the sphere with the torus through a periodic extension (JDM & Wiaux 2011).
- \bullet Similar (in flavour but not detail!) to making a periodic extension in θ of a function *sf* on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

KORKARYKERKE PORCH

Figure: Associating functions on the sphere and torus.

• Properties of our new sampling theorem:

- **Equiangular pixelisation of the sphere**
- Require $\sim 2L^2$ samples on the sphere (and still fewer than Gauss-Legendre sampling)
- Exploit fast Fourier transforms to yield a fast algorithm with complexity $\mathcal{O}(L^3)$
- No precomputation and very flexible regarding use of Wigner recursions
- Extends to spin function on the sphere with no change in complexity or computation time

Figure: Performance of our sampling theorem (MW=red; DH=green; GL=blue)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Morlet and Grossman (1981)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Figure: Fourier vs wavelet transform (image from <http://www.wavelet.org/tutorial/>)

Morlet and Grossman (1981)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Figure: Fourier vs wavelet transform (image from <http://www.wavelet.org/tutorial/>)

- Follow construction derived by Antoine and Vandergheynst (1998) (reintroduced by Wiaux *et al.* (2005)).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Characterised by the elements of the rotation group $SO(3)$, which parameterise in terms of the three Euler angles $\rho = (\alpha, \beta, \gamma)$. Rotation of a function *f* on the sphere is defined by

 $[\mathcal{R}(\rho)f](\hat{\mathbf{s}}) = f(\rho^{-1}\hat{\mathbf{s}}), \quad \rho \in SO(3)$.

KORKARA KERKER DAGA

How define dilation and admissible wavelets on the sphere?

- Apply stereographic projection to build an association with the plane.
- Stereographic projection operator is defined by $\Pi : \hat{s} \to x = \Pi \hat{s} = (r(\theta), \varphi)$ where $r = 2 \tan(\theta/2)$, $\hat{s} \equiv (\theta, \varphi) \in S^2$ and $x \in \mathbb{R}^2$ is a point in the plane, denoted here by the polar coordinates (r, φ) . The inverse operator is $\Pi^{-1}: \pmb{x} \rightarrow \pmb{\widehat{s}} = \Pi^{-1} \pmb{x} = (\theta(r), \varphi),$ where $\theta(r) = 2 \tan^{-1}(r/2)$.

- \bullet Define the action of the stereographic projection operator on functions on the plane and sphere. Consider the space of square integrable functions in $\text{L}^2(\mathbb{R}^2,\,\mathrm{d}^2\pmb{x})$ on the plane and $\text{L}^2(\text{S}^2, \text{ d}\Omega(\widehat{\text{s}}))$ on the sphere.
	- The action of the stereographic projection operator
Π : *f* ∈ L²(S², dΩ(ŝ)) → *p* = Π*f* ∈ L²(ℝ², d²x) on functions is defined as

 $p(r, \varphi) = (\Pi f)(r, \varphi) = (1 + r^2/4)^{-1} f(\theta(r), \varphi)$.

The inverse stereographic projection operator
 $\Pi^{-1}: p \in L^2(\mathbb{R}^2, d^2x) \to f = \Pi^{-1}p \in L^2(S^2, d\Omega(\hat{s}))$ on functions is then $f(\theta, \varphi) = (\Pi^{-1}p)(\theta, \varphi) = [1 + \tan^2(\theta/2)]p(r(\theta), \varphi)$ $f(\theta, \varphi) = (\Pi^{-1}p)(\theta, \varphi) = [1 + \tan^2(\theta/2)]p(r(\theta), \varphi)$ $f(\theta, \varphi) = (\Pi^{-1}p)(\theta, \varphi) = [1 + \tan^2(\theta/2)]p(r(\theta), \varphi)$ $f(\theta, \varphi) = (\Pi^{-1}p)(\theta, \varphi) = [1 + \tan^2(\theta/2)]p(r(\theta), \varphi)$ $f(\theta, \varphi) = (\Pi^{-1}p)(\theta, \varphi) = [1 + \tan^2(\theta/2)]p(r(\theta), \varphi)$ [.](#page-10-0)

The spherical dilation operator $\mathcal{D}(a): f(\hat{s}) \to [\mathcal{D}(a)f](\hat{s})$ in $L^2(S^2, d\Omega(\hat{s}))$ is defined as the conjugation by Π of the Euclidean dilation $d(a)$ in $\text{L}^2(\mathbb{R}^2, d^2\textbf{x})$ on tangent plane at north pole:

 $\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi$.

• Spherical dilation given by

$$
[\mathcal{D}(a)f](\hat{\mathbf{s}}) = [\lambda(a,\theta,\varphi)]^{1/2} f(\hat{\mathbf{s}}_{1/a}),
$$

where $\hat{s}_a = (\theta_a, \varphi)$ and $\tan(\theta_a/2) = a \tan(\theta/2)$.

 \bullet Cocycle of a spherical dilation is defined by

$$
\lambda(a,\theta,\varphi) \equiv \frac{4a^2}{\left[(a^2 - 1)\cos\theta + (a^2 + 1) \right]^2}.
$$

KORKARA KERKER DAGA

- Correspondence principle between spherical and Euclidean wavelets states that the inverse stereographic projection of an *admissible* wavelet on the plane yields an *admissible* wavelet on the sphere (proved by Wiaux *et al.* 2005)
- Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$
\Phi = \Pi^{-1} \Phi_{\mathbb{R}^2} ,
$$

where $\Phi_{\mathbb{R}^2} \in L^2(\mathbb{R}^2, d^2\pmb{x})$ is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply the projection of directional Euclidean planar wavelets on to the sphere.

Figure: Spherical wavelets at scale $a, b = 0.2$.

KORKARA KERKER DAGA

- Wavelets on the sphere may now be constructed from rotations and dilations of a mother spherical wavelet $\Phi \in \mathrm{L}^2(\mathrm{S}^2,\,\mathrm{d}\Omega(\widehat{s}))$. The corresponding wavelet family $\{\Phi_{a,\rho} \equiv \mathcal{R}(\rho)\mathcal{D}(a)\Phi : \rho \in SO(3), a \in \mathbb{R}_*^+\}$ provides an over-complete set of functions in $L^2(S^2, d\Omega(\hat{s}))$.
- The CSWT of $f \in L^2(S^2, d\Omega(\hat{s}))$ is given by the projection on to each wavelet atom in the usual manner:

$$
\boxed{\widehat{\mathcal{W}}^f_{\Phi}(a,\rho) = \langle f, \Phi_{a,\rho} \rangle = \int_{\mathbb{S}^2} d\Omega(\hat{\mathbf{s}}) f(\hat{\mathbf{s}}) \ \Phi^*_{a,\rho}(\hat{\mathbf{s}}),}
$$

KORK ERKER ADAM ADA

where $d\Omega(\hat{s}) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

- \bullet Transform general in the sense that all orientations in the rotation group SO(3) are considered, thus directional structure is naturally incorporated.
- Fast algorithms essential (for a review see Wiaux, JDM *et al.* 2007)
	- Factoring of rotations: JDM *et al.* 2007
	- Separation of variables: Wiaux *et al.* 2005

• The synthesis of a signal on the sphere from its wavelet coefficients is given by

$$
f(\hat{\mathbf{s}}) = \int_0^\infty \frac{\mathrm{d}a}{a^3} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) \widehat{\mathcal{W}}^f_\Phi(a,\rho) \, [\mathcal{R}(\rho) \widehat{L}_\Phi \Phi_a](\hat{\mathbf{s}}) \;,
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

The \widehat{L}_Φ operator in $L^2(S^2, d\Omega(\widehat{s}))$ is defined by the action

 $(\widehat{L}_{\Phi}g)_{\ell m}\equiv g_{\ell m}/\widehat{C}_{\Phi}^{\ell}$

on the spherical harmonic coefficients of functions $g \in L^2(S^2, d\Omega(\hat{s}))$.

 \bullet In order to ensure the perfect reconstruction of a signal synthesised from its wavelet coefficients, the admissibility condition

$$
0 < \widehat{C}_{\Phi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{da}{a^3} \mid (\Phi_a)_{\ell m} \mid^2 < \infty
$$

must be satisfied for all $\ell \in \mathbb{N}$, where $(\Phi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Phi_a(\hat{\mathfrak{s}})$.

KOD KOD KED KED E VOOR

- Exact reconstruction in practice:
	- Multiresolution analysis on the sphere (*e.g.* JDM & Scaife (2008))
	- Steerable scale discretised wavelets (S2DW) (Wiaux, JDM, *et al.* (2008))
	- Spin S2DW for the analysis of polarised signals (JDM, Wiaux, *et al.* (in prep))

• The synthesis of a signal on the sphere from its wavelet coefficients is given by

$$
f(\hat{\mathbf{s}}) = \int_0^\infty \frac{\mathrm{d}a}{a^3} \int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) \widehat{\mathcal{W}}^f_\Phi(a,\rho) \, [\mathcal{R}(\rho) \widehat{L}_\Phi \Phi_a](\hat{\mathbf{s}}) \;,
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

The \widehat{L}_Φ operator in $L^2(S^2, d\Omega(\widehat{s}))$ is defined by the action

 $(\widehat{L}_{\Phi}g)_{\ell m}\equiv g_{\ell m}/\widehat{C}_{\Phi}^{\ell}$

on the spherical harmonic coefficients of functions $g \in L^2(S^2, d\Omega(\hat{s}))$.

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet coefficients, the admissibility condition

$$
0 < \widehat{C}_{\Phi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{da}{a^3} \mid (\Phi_a)_{\ell m} \mid^2 < \infty
$$

must be satisfied for all $\ell \in \mathbb{N}$, where $(\Phi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Phi_a(\hat{\mathfrak{s}})$.

KORK ERKER ADAM ADA

- Exact reconstruction in practice:
	- Multiresolution analysis on the sphere (*e.g.* JDM & Scaife (2008))
	- Steerable scale discretised wavelets (S2DW) (Wiaux, JDM, *et al.* (2008))
	- Spin S2DW for the analysis of polarised signals (JDM, Wiaux, *et al.* (in prep))

Compressive sensing on the sphere

• Consider the inverse problem

$$
y=\Phi x+n,
$$

where:

- the samples of f are denoted by the concatenated vector $\pmb{x} \in \mathbb{R}^N;$
- *N* is the (possibly incomplete) number of samples on the sphere;
- M noisy measurements $y \in \mathbb{R}^M$ are acquired;
- the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ may represent any linear operator (*e.g.* Fourier measurements, convolution, masking);
- the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- **•** For example, in radio interferometry the measurement operator $\Phi = M F A$ incorporates:
	- primary beam A of the telescope:
	- Fourier transform F:
	- masking M which encodes the incomplete measurements taken by the interferometer.

KOD KARD KED KED BE YOUR

- *Many signals in Nature are sparse*.
- Solve inverse problem by applying a prior on sparsity of the signal in a sparsifying basis Ψ or in the magnitude of its gradient.
- **Image is recovered by solving:**
	- Basis Pursuit denoising problem

 $\alpha^* = \underset{\alpha}{\arg \min} ||\alpha||_1$ such that $||y - \Phi \Psi \alpha||_2 \leq \epsilon$,

where the image is synthesising by $x^\star = \Psi \boldsymbol{\alpha}^\star;$

• Total Variation (TV) denoising problem

 $x^* = \underset{x}{\arg \min} \|x\|_{TV}$ such that $\|y - \Phi x\|_2 \leq \epsilon$.

- \bullet ℓ_1 -norm $\|\cdot\|_1$ is given by the sum of the absolute values of the signal.
- \bullet TV norm $\|\cdot\|_{\text{TV}}$ is given by the ℓ_1 -norm of the gradient of the signal.
- Define discrete TV norm on the sphere:

$$
\int_{\mathbb{S}^2} d\Omega |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\phi-1} |\nabla f| q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\phi-1} \sqrt{q^2(\theta_t)(\delta_\theta x)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} (\delta_\varphi x)^2} \equiv ||x||_{\text{TV}}.
$$

KORKARA KERKER DAGA

- *Many signals in Nature are sparse*.
- \bullet Solve inverse problem by applying a prior on sparsity of the signal in a sparsifying basis Ψ or in the magnitude of its gradient.
- **Image is recovered by solving:**
	- Basis Pursuit denoising problem

 $\alpha^* = \underset{\alpha}{\arg \min} ||\alpha||_1$ such that $||y - \Phi \Psi \alpha||_2 \leq \epsilon$,

where the image is synthesising by $x^\star = \Psi \boldsymbol{\alpha}^\star;$

• Total Variation (TV) denoising problem

```
x^* = \underset{x}{\arg \min} \|x\|_{TV} such that \|y - \Phi x\|_2 \leq \epsilon.
```
- \bullet ℓ_1 -norm $\|\cdot\|_1$ is given by the sum of the absolute values of the signal.
- \bullet TV norm $\|\cdot\|_{TV}$ is given by the ℓ_1 -norm of the gradient of the signal.
- Define discrete TV norm on the sphere:

$$
\int_{S^2} d\Omega |\nabla f| \simeq \sum_{t=0}^{N_{\theta}-1} \sum_{p=0}^{N_{\phi}-1} |\nabla f| q(\theta_t) \simeq \sum_{t=0}^{N_{\theta}-1} \sum_{p=0}^{N_{\phi}-1} \sqrt{q^2(\theta_t)(\delta_{\theta} x)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} (\delta_{\varphi} x)^2} \equiv ||x||_{TV}.
$$

KEL KALEYKEN E YAN

O Tolerance ϵ is related to an estimate of the noise variance.

• Solve toy TV inpainting problem on the sphere to recover full map from incomplete measurements (JDM *et al.* 2011)

Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

• Solve toy TV inpainting problem on the sphere to recover full map from incomplete measurements (JDM *et al.* 2011)

Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

- Statistics of primordial fluctuations provide a useful mechanism for distinguishing between various scenarios of the early Universe, such as various models of inflation.
- In the simplest inflationary scenarios, primordial perturbations seed Gaussian temperature fluctuations in the CMB.
- However, this is not the case for alternative inflationary models.
- **Exidence of non-Gaussianity in the CMB anisotropies would therefore have profound** implications for our understanding of the early Universe.
- • Probe WMAP observations of the CMB for evidence of non-Gaussianity.

KOD KORKADD ADD DO YOUR

- Various physical processes manifest at different scales and locations \rightarrow wavelets ideal tool to probe CMB for deviations from Gaussianity.
- Wavelet coefficients of Gaussian signal remain Gaussian distributed.
- Examine the skewness and kurtosis of wavelet coefficients.
- Compare to Monte Carlo simulations of Gaussian CMB realisations.
- **C** Significant non-Gaussian signal detected in the skewness of wavelet coefficients (JDM *et al.* 2005, 2006, 2008).

KOD KORKADD ADD DO YOUR

- Various physical processes manifest at different scales and locations \rightarrow wavelets ideal tool to probe CMB for deviations from Gaussianity.
- Wavelet coefficients of Gaussian signal remain Gaussian distributed.
- **C** Examine the skewness and kurtosis of wavelet coefficients.
- Compare to Monte Carlo simulations of Gaussian CMB realisations.
- Significant non-Gaussian signal detected in the skewness of wavelet coefficients (JDM *et al.* 2005, 2006, 2008).

Figure: χ^2 of skewness of wavelet coefficients

KORKARYKERKE PORCH

- Localise regions that contribute most significantly to the non-Gaussian signal.
- Detection of the "cold spot" anomaly in the CMB.

Figure: Spherical wavelet coefficient maps (left) and thresholded maps (right)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space. Modelled by a cosmological fluid with negative pressure acting as a repulsive force.
- Evidence for dark energy provided by observations of CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

KOD KORKADD ADD DO YOUR

- \bullet However, a consistent model in the framework of particle physics lacking. Indeed, attempts to predict a cosmological constant obtain a value that is too large by a factor of $\sim 10^{120}$.
- Dark energy dominates our Universe but yet we know very little about its nature and origin.
- Verification of dark energy by independent physical methods of considerable interest.
- Independent methods may also prove more sensitive probes of properties of dark energy.

(ball sim constant movie) (ball sim evolving movie)

Figure: ISW effect analogy

- CMB photons blue (red) shifted when fall into (out of) potential wells.
- \bullet Evolution of potential during photon propagation \rightarrow net change in photon energy.
- Gravitation potentials constant w.r.t. conformal time in matter dominated universe.
- **•** Deviation from matter domination due to curvature or dark energy causes potentials to evolve with time \rightarrow secondary anisotropy induced in CMB.

- WMAP shown universe is (nearly) flat.
- Detection of ISW effect ⇒ direct evidence for dark energy.
- Cannot isolate the ISW signal from CMB anisotropies easily.
- Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure. (Crittenden & Turok 1996)
- Wavelets ideal analysis tool to search for correlation induced by ISW effect since signal manifest at different scales and locations. (Pioneered by Vielva *et al.* 2005, followed by JDM *et al.* 2006, JDM *et al.* 2007 and others.)
- Compute correlation of WMAP and NVSS radio galaxy survey and compare to Monte Carlo simulations to determine significance of any candidate detections.

Figure: WMAP and NVSS maps after application of the joint mask

KORKARYKERKE PORCH

- Significant correlation detected between the WMAP and NVSS data.
- Foreground contamination and instrumental systematics ruled out as source of the correlation ⇒ correlation due to ISW effect.
- \bullet Direct observational evidence for dark energy.

Figure: Wavelet correlation

- **•** Possible to use positive detection of the ISW effect to constrain parameters of cosmological models that describe dark energy:
	- **•** Proportional energy density Ω_{Λ} .
	- Equation of state parameter *w* relating pressure and density of cosmological fluid that models dark energy, *i.e.* $p = w\rho$.
- Parameter estimates of $\Omega_{\Lambda} = 0.63_{-0.17}^{+0.18}$ and $w = -0.77_{-0.36}^{+0.35}$ computed from the mean of the marginalised distributions (consistent with other analysis techniques and data sets).

KOD KOD KED KED E VAN