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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

(a) ` = 4, m = 2 (b) ` = 4, m = 3

Figure: Spherical harmonic functions (real and imaginary parts).

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L.
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Sampling theorems on the sphere

Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for
example:

HEALpix (Gorski et al. 2005)
IGLOO (Crittenden & Turok 1998)

→ Do not lead to sampling theorems on the sphere!

Sampling theorems state how to represent all information content of a band-limited signal
→ theoretically exact spherical harmonic transforms.

Driscoll & Healy (1994) sampling theorem:
Equiangular pixelisation of the sphere
Require ∼ 4L2 samples on the sphere
Semi-naive algorithm with complexity O(L3)
(algorithms with lower scaling exist but they are not generally stable)

Require a precomputation or otherwise restricted use of Wigner recursions
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A novel sampling theorem on the sphere

Have developed a new sampling theorem and corresponding fast algorithms by performing a
factoring of rotations and then by associating the sphere with the torus through a periodic
extension (JDM & Wiaux 2011).

Similar (in flavour but not detail!) to making a periodic extension in θ of a function sf on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus.
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A novel sampling theorem on the sphere

Properties of our new sampling theorem:
Equiangular pixelisation of the sphere
Require ∼ 2L2 samples on the sphere (and still fewer than Gauss-Legendre sampling)
Exploit fast Fourier transforms to yield a fast algorithm with complexity O(L3)

No precomputation and very flexible regarding use of Wigner recursions
Extends to spin function on the sphere with no change in complexity or computation time
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Figure: Performance of our sampling theorem (MW=red; DH=green; GL=blue)
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Continuous wavelets on the sphere

Follow construction derived by Antoine and Vandergheynst (1998)
(reintroduced by Wiaux et al. (2005)).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Characterised by the
elements of the rotation group SO(3), which parameterise in terms of the three Euler angles
ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](̂s) = f (ρ−1 ŝ), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?
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Stereographic projection

Apply stereographic projection to build an association with
the plane.

Stereographic projection operator is defined by
Π : ŝ→ x = Π̂s = (r(θ), ϕ) where r = 2 tan(θ/2),
ŝ ≡ (θ, ϕ) ∈ S2 and x ∈ R2 is a point in the plane,
denoted here by the polar coordinates (r, ϕ). The inverse
operator is Π−1 : x→ ŝ = Π−1x = (θ(r), ϕ), where
θ(r) = 2 tan−1(r/2).

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Define the action of the stereographic projection operator on functions on the plane
and sphere. Consider the space of square integrable functions in L2(R2, d2x) on the
plane and L2(S2, dΩ(̂s)) on the sphere.

The action of the stereographic projection operator
Π : f ∈ L2(S2, dΩ(̂s))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, ϕ) = (Πf )(r, ϕ) = (1 + r2
/4)
−1f (θ(r), ϕ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(̂s)) on functions is then

f (θ, ϕ) = (Π
−1p)(θ, ϕ) = [1 + tan2

(θ/2)]p(r(θ), ϕ) .
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Dilation on the sphere

The spherical dilation operator D(a) : f (̂s)→ [D(a)f ](̂s) in L2(S2, dΩ(̂s)) is defined as the
conjugation by Π of the Euclidean dilation d(a) in L2(R2, d2x) on tangent plane at north pole:

D(a) ≡ Π
−1 d(a) Π .

Spherical dilation given by

[D(a)f ](̂s) = [λ(a, θ, ϕ)]
1/2 f (̂s1/a) ,

where ŝa = (θa, ϕ) and tan(θa/2) = a tan(θ/2).

Cocycle of a spherical dilation is defined by

λ(a, θ, ϕ) ≡
4a2

[(a2 − 1) cos θ + (a2 + 1)]2 .
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Correspondence principle

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Continuous wavelet analysis formula

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet Φ ∈ L2(S2, dΩ(̂s)). The corresponding wavelet family
{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(̂s)).

The CSWT of f ∈ L2(S2, dΩ(̂s)) is given by the projection on to each wavelet atom in the
usual manner:

Ŵ f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(̂s) f (̂s) Φ
∗
a,ρ (̂s) ,

where dΩ(̂s) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, JDM et al. 2007)
Factoring of rotations: JDM et al. 2007
Separation of variables: Wiaux et al. 2005
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Continuous wavelet synthesis formula

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (̂s) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)Ŵ f
Φ(a, ρ) [R(ρ)L̂ΦΦa](̂s) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The L̂Φ operator in L2(S2, dΩ(̂s)) is defined by the action

(L̂Φg)`m ≡ g`m/Ĉ`Φ

on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(̂s)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, the admissibility condition

0 < Ĉ`Φ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Φa)`m |

2
<∞

must be satisfied for all ` ∈ N, where (Φa)`m are the spherical harmonic coefficients of Φa (̂s).

Exact reconstruction in practice:
Multiresolution analysis on the sphere (e.g. JDM & Scaife (2008))
Steerable scale discretised wavelets (S2DW) (Wiaux, JDM, et al. (2008))
Spin S2DW for the analysis of polarised signals (JDM, Wiaux, et al. (in prep))
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Compressive sensing on the sphere

Consider the inverse problem

y = Φx + n ,

where:
the samples of f are denoted by the concatenated vector x ∈ RN ;
N is the (possibly incomplete) number of samples on the sphere;
M noisy measurements y ∈ RM are acquired;
the measurement operator Φ ∈ RM×N may represent any linear operator
(e.g. Fourier measurements, convolution, masking);
the noise n ∈ RM is assumed to be iid Gaussian with zero mean.

For example, in radio interferometry the measurement operator Φ = M F A incorporates:
primary beam A of the telescope;
Fourier transform F;
masking M which encodes the incomplete measurements taken by the interferometer.
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Compressive sensing on the sphere

Many signals in Nature are sparse.

Solve inverse problem by applying a prior on sparsity of the signal in a sparsifying basis Ψ or
in the magnitude of its gradient.

Image is recovered by solving:

Basis Pursuit denoising problem

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

where the image is synthesising by x? = Ψα?;

Total Variation (TV) denoising problem

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

`1-norm ‖ · ‖1 is given by the sum of the absolute values of the signal.

TV norm ‖ · ‖TV is given by the `1-norm of the gradient of the signal.

Define discrete TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV .

Tolerance ε is related to an estimate of the noise variance.
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TV inpainting

Solve toy TV inpainting problem on the sphere to recover full map from incomplete
measurements (JDM et al. 2011)

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting

Solve toy TV inpainting problem on the sphere to recover full map from incomplete
measurements (JDM et al. 2011)

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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Gaussianity of the CMB

Statistics of primordial fluctuations provide a useful mechanism for distinguishing between
various scenarios of the early Universe, such as various models of inflation.

In the simplest inflationary scenarios, primordial perturbations seed Gaussian temperature
fluctuations in the CMB.

However, this is not the case for alternative inflationary models.

Evidence of non-Gaussianity in the CMB anisotropies would therefore have profound
implications for our understanding of the early Universe.

Probe WMAP observations of the CMB for evidence of non-Gaussianity.



Harmonic Analysis Wavelets Compressive Sensing Gaussianity of the CMB ISW effect

Wavelet analysis of Gaussianity of the CMB

Various physical processes manifest at different scales and locations
→ wavelets ideal tool to probe CMB for deviations from Gaussianity.

Wavelet coefficients of Gaussian signal remain Gaussian distributed.

Examine the skewness and kurtosis of wavelet coefficients.

Compare to Monte Carlo simulations of Gaussian CMB realisations.

Significant non-Gaussian signal detected in the skewness of wavelet coefficients
(JDM et al. 2005, 2006, 2008).

Figure: χ2 of skewness of wavelet coefficients
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Localisation of non-Gaussian features in the CMB

Localise regions that contribute most significantly to the non-Gaussian signal.

Detection of the “cold spot” anomaly in the CMB.

(a) SMHW coefficients

(b) SMW coefficients

Figure: Spherical wavelet coefficient maps (left) and thresholded maps (right)
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Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.
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Integrated Sachs-Wolfe (ISW) effect

(ball sim constant movie) (ball sim evolving movie)

Figure: ISW effect analogy

CMB photons blue (red) shifted when fall into (out of) potential wells.

Evolution of potential during photon propagation→ net change in photon energy.

Gravitation potentials constant w.r.t. conformal time in matter dominated universe.

Deviation from matter domination due to curvature or dark energy causes potentials to evolve
with time→ secondary anisotropy induced in CMB.


ballsim7_2_prod.avi
Media File (video/avi)


ballsim7_ani1_prod.avi
Media File (video/avi)
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Detecting the ISW effect

WMAP shown universe is (nearly) flat.

Detection of ISW effect⇒ direct evidence for dark energy.

Cannot isolate the ISW signal from CMB anisotropies easily.

Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure.
(Crittenden & Turok 1996)

Wavelets ideal analysis tool to search for correlation induced by ISW effect since signal
manifest at different scales and locations.
(Pioneered by Vielva et al. 2005, followed by JDM et al. 2006, JDM et al. 2007 and others.)

Compute correlation of WMAP and NVSS radio galaxy survey and compare to Monte Carlo
simulations to determine significance of any candidate detections.

(a) WMAP (b) NVSS

Figure: WMAP and NVSS maps after application of the joint mask
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Detection of the ISW effect with wavelets

Significant correlation detected between the WMAP and NVSS data.

Foreground contamination and instrumental systematics ruled out as source of the correlation
⇒ correlation due to ISW effect.

Direct observational evidence for dark energy.
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Figure: Wavelet correlation



Harmonic Analysis Wavelets Compressive Sensing Gaussianity of the CMB ISW effect

Constraining dark energy with wavelets

Possible to use positive detection of the ISW effect to constrain parameters of cosmological
models that describe dark energy:

Proportional energy density ΩΛ.
Equation of state parameter w relating pressure and density of cosmological fluid that models dark
energy, i.e. p = wρ.

Parameter estimates of ΩΛ = 0.63+0.18
−0.17 and w = −0.77+0.35

−0.36 computed from the mean of the
marginalised distributions (consistent with other analysis techniques and data sets).
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Figure: Dark energy likelihoods
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