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Cosmological concordance model

Credit: WMAP Science Team
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Observations of the cosmic microwave background (CMB)

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie)

(d) COBE to WMAP [Credit: WMAP Science Team]

(planck movie)

(e) Planck observing strategy [Credit: Planck Collaboration]


cobe2wmap.mp4
Media File (video/mp4)


664_Planck_sky-scan_HD_350x198.mov
Media File (video/quicktime)
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Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang).

Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Cosmic microwave background (CMB)

Temperature of early Universe sufficiently hot that photons
had enough energy to ionise hydrogen.

Compton scattering happened frequently⇒ mean free
path of photons extremely small.

Universe consisted of an opaque photon-baryon fluid.

As Universe expanded it cooled, until majority of photons
no longer had sufficient energy to ionise hydrogen.

Photons decoupled from baryons and the Universe
became essentially transparent to radiation.

Recombination occurred when temperature of Universe
dropped to 3000K (∼400,000 years after the Big Bang). Credit: Max Tegmark

Photons then free to propagate largely unhindered and observed today on celestial
sphere as CMB radiation.

CMB is highly uniform over the celestial sphere, however it contains small fluctuations
at a relative level of 10−5 due to acoustic oscillations in the early Universe.

CMB observed on spherical manifold, hence the geometry of the sphere must be
taken into account in any analysis.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Cosmic microwave background (CMB)

Quantum fluctuations in the early Universe blown to macroscopic scales by inflation,
establishing acoustic oscillations in primordial plasma of the very early Universe.

Provide the seeds of structure formation in our Universe.

Cosmological concordance model explains the power spectrum of these oscillations to very
high precision.

Credit: WMAP Science Team

Although a general cosmological concordance model is now established, many details remain
unclear. Study of more exotic cosmological models now important.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Observations on the sphere

Credit: Alec MacAndrew
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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

(f) ` = 4, m = 2 (g) ` = 4, m = 3

Figure: Spherical harmonic functions (real and imaginary parts).

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .
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Spherical harmonic transform

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L
⇒ summations may be truncated at L− 1:

f (θ, ϕ) =

L−1∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

For a band-limited signal, can we compute f`m exactly?

→ Sampling theorems on the sphere.

Aside: Generalise to spin functions on the sphere.

Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, are defined by their
behaviour under local rotations. By definition, a spin function transforms as

sf ′(θ, ϕ) = e−isχ
sf (θ, ϕ)

under a local rotation by χ, where the prime denotes the rotated function.
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Driscoll & Healy sampling theorem (DH)

Canonical sampling theorem on the sphere dervied by Driscoll & Healy (1994) for equiangular
grids.

Gives an explicit quadrature rule for the spherical harmonic transform:

f`m =

2L−1∑
t=0

2L−1∑
p=0

qDH(θt) f (θt, ϕp) Y∗`m(θt, ϕp) ,

where the sample positions are defined by θt = πt/2L, for t = 0, . . . , 2L− 1, and
ϕp = πp/L, for p = 0, . . . , 2L− 1

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

The quadrature weights are defined implicitly by the solution to

2L−1∑
t=0

qDH(θt) P`(cos θt) =
2π
L
δ`0 , ∀` < 2L ,

and are given explicitly by

qDH(θt) =
2π
L2

sin θt

L−1∑
k=0

sin((2k + 1)θt)

2k + 1
.
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A new sampling theorem

A new sampling theorem (with fast algorithms) has emerged very recently by performing a
factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

Similar to making a periodic extension in θ of a function f on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus

First suggested by Risbo (1996) and Wandelt & Gorski (2001) for the inverse spherical
harmonic transform.
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A new sampling theorem

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)s i−(m+s)
L−1∑
`=0

√
2` + 1

4π
∆
`
m′m ∆

`
m′,−s sf`m

JDM (2011a), Fast, exact (but unstable) spin
spherical harmonic transforms

Even and odd periodic extensions.
Numerically unstable forward transform at modest
band-limits (L ∼ 32)!

Huffenberger & Wandelt (2010), Fast and exact
spin-s spherical harmonic transforms

Merged even and odd periodic extensions by applying
a shift by π in ϕ.
Numerically stable by substituting the Fourier series
expression for sf in the forward transform to develop a
quadrature!

JDM & Wiaux (2011b), A novel sampling theorem on the sphere

Performed the periodic extension in the Fourier transform of sf in ϕ.
Reduced the number of samples by a factor of two!
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A new sampling theorem

Properties:

Equiangular pixelisation of the sphere

Require ∼ 2L2 samples on the sphere

Exploit fast Fourier transforms to yield a fast algorithm with complexity O(L3)

No precomputation and very flexible regarding use of Wigner recursions
Extends to spin function on the sphere with no change in complexity or computation time
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Figure: Performance of various sampling theorems (DH sampling theorem; new sampling theorem)
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Compressive sensing on the sphere

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing.

Many natural signals are sparse in dictionaries with atoms position on each grid point through
a convolution, for example in wavelets frames, or in other measures defined directly in the
spatial domain, such as in the magnitude of their gradient.

A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

For a given number of measurements, a more efficient sampling theorem improves the quality
of compressive sampling reconstruction.

Illustrate with a total variation (TV) inpainting problem on the sphere.
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TV inpainting

Consider inpainting problem y = Φx + n in the context of different sampling theorems, where:
the samples of f are denoted by the concatenated vector x ∈ RN ;
N is the number of samples on the sphere of the chosen sampling theorem;
M noisy measurements y ∈ RM are acquired;
the measurement operator Φ ∈ RM×N represents a random masking of the signal;
the noise n ∈ RM is assumed to be iid Gaussian with zero mean.

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂? = arg min
x̂
‖Ψx̂‖TV such that ‖y− ΦΨx̂‖2 ≤ ε ,

where Ψ represents the inverse spherical harmonic transform and harmonic coefficients are

represented by the concatenated vector x̂ ∈ CL2
.
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the different sampling theorems.

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve
optimisation problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Ground truth



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve
optimisation problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Ground truth



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve
optimisation problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Measurements (M/L2 = 1/4)
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TV inpainting: high-resolution simulations

Require fast adjoint operators as well as fast spherical harmonic transforms to solve
optimisation problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Figure: Reconstruction (M/L2 = 1/4)
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Outline

1 Cosmology
Big Bang
Cosmic microwave background

2 Harmonic analysis on the sphere
Spherical harmonic transform
Sampling theorems

3 Compressive sensing on the sphere
Compressive sensing
TV inpainting
Simulations

4 Wavelets on the sphere
Recap Euclidean wavelets
Continuous wavelets
Scale-discretised wavelets

5 Wavelets on the ball
Scale-discretised wavelets
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (image from http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Wavelet transform in Euclidean space

Project signal onto wavelets

W f
(a, b) = 〈f , ψa,b〉 = |a|−1/2

∫ ∞
−∞

dt f (t) ψ∗
( t − b

a

)
,

where ψa,b = |a|−1/2ψ( t−b
a ).

Synthesis signal from wavelet coefficients

f (t) = C−1
ψ

∫ ∞
−∞

db
∫ ∞

0

da
a2
W f

(a, b)ψa,b(t).

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡
∫ ∞
−∞

dk
|k|
|ψ̂(k)|2 <∞.

Construct on sphere in analogous manner.
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine
and Vandergheynst (1998) (reintroduced by Wiaux (2005)).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Characterised by the
elements of the rotation group SO(3), which parameterise in terms of the three Euler angles
ρ = (α, β, γ). Rotation of a function f on the sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ρ ∈ SO(3) .

How define dilation and admissible wavelets on the sphere?
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Stereographic projection

Apply stereographic projection to build an association with
the plane.

Stereographic projection operator is defined by
Π : ω → x = Πω = (r(θ), ϕ) where r = 2 tan(θ/2),
ω ≡ (θ, ϕ) ∈ S2 and x ∈ R2 is a point in the plane,
denoted here by the polar coordinates (r, ϕ). The inverse
operator is Π−1 : x→ ω = Π−1x = (θ(r), ϕ), where
θ(r) = 2 tan−1(r/2).

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Define the action of the stereographic projection operator on functions on the plane
and sphere. Consider the space of square integrable functions in L2(R2, d2x) on the
plane and L2(S2, dΩ(ω)) on the sphere.

The action of the stereographic projection operator
Π : f ∈ L2(S2, dΩ(ω))→ p = Πf ∈ L2(R2, d2x) on functions is defined as

p(r, ϕ) = (Πf )(r, ϕ) = (1 + r2
/4)
−1f (θ(r), ϕ) .

The inverse stereographic projection operator
Π−1 : p ∈ L2(R2, d2x)→ f = Π−1p ∈ L2(S2, dΩ(ω)) on functions is then

f (θ, ϕ) = (Π
−1p)(θ, ϕ) = [1 + tan2

(θ/2)]p(r(θ), ϕ) .
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Dilation on the sphere

The spherical dilation operator D(a) : f (ω)→ [D(a)f ](ω) in L2(S2, dΩ(ω)) is defined as the
conjugation by Π of the Euclidean dilation d(a) in L2(R2, d2x) on tangent plane at north pole:

D(a) ≡ Π
−1 d(a) Π .

Spherical dilation given by

[D(a)f ](ω) = [λ(a, θ, ϕ)]
1/2 f (ω1/a) ,

where ωa = (θa, ϕ) and tan(θa/2) = a tan(θ/2).

Cocycle of a spherical dilation is defined by

λ(a, θ, ϕ) ≡
4a2

[(a2 − 1) cos θ + (a2 + 1)]2 .
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Wavelet analysis formula

Wavelets on the sphere may now be constructed from rotations and dilations of a mother
spherical wavelet Φ ∈ L2(S2, dΩ(ω)). The corresponding wavelet family
{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+

∗ } provides an over-complete set of functions in
L2(S2, dΩ(ω)).

The CSWT of f ∈ L2(S2, dΩ(ω)) is given by the projection on to each wavelet atom in the
usual manner:

Ŵ f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Φ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)
Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)
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Wavelet synthesis formula

The synthesis of a signal on the sphere from its wavelet coefficients is given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)Ŵ f
Φ(a, ρ) [R(ρ)L̂ΦΦa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

The L̂Φ operator in L2(S2, dΩ(ω)) is defined by the action

(L̂Φg)`m ≡ g`m/Ĉ`Φ

on the spherical harmonic coefficients of functions g ∈ L2(S2, dΩ(ω)).

In order to ensure the perfect reconstruction of a signal synthesised from its wavelet
coefficients, the admissibility condition

0 < Ĉ`Φ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Φa)`m |

2
<∞

must be satisfied for all ` ∈ N, where (Φa)`m are the spherical harmonic coefficients of Φa(ω).
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Correspondence principle

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Scale-discretised wavelets

Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
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Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.

The scale-discretised wavelet Γ ∈ L2(S2, dΩ) is
defined in harmonic space:

Γ̂`m = K̃Γ(`)SΓ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Γ(α

J
`) +

J∑
j=0

K̃2
Γ(α

j
`) = 1.
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Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WF
Γ(ρ, α

j
) = 〈F,Γρ,αj 〉 =

∫
S2

dΩ(ω) F(ω) Γ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

F (ω) =
[
ΦαJ F

]
(ω) +

J∑
j=0

∫
SO(3)

dρWF
Γ

(
ρ, α

j
) [

R (ρ) Ld
Γαj

]
(ω) ,

where the operator Ld is defined by the following action on the spherical harmonic coefficients
of functions: L̂dGlm = (2l + 1)Ĝlm/8π2.
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Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.
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Data on the three-ball (solid sphere)
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Wavelets on the ball

Boris Leistedt & JDM (2012), Exact wavelets on the solid sphere, in preparation.

Figure: Harmonic tiling on the ball.

WΨjj′
(r, ω) = 〈f , TrRωΨ

jj′ 〉

= (f ?Ψ
jj′

)(r, ω)

=

∫
B3
R+

d3r′ f (r′) (TrRωΨ
jj′

)
∗
(r′)

f (r, ω) =

∫
B3
R+

d3r′ WΦ
(r′) (TrRωΦ)(r′)

+
∑

jj′

∫
B3
R+

d3r′ WΨjj′
(r′) (TrRωΨ

jj′
)(r′).
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Wavelets on the ball

Figure: Wavelets on the ball.
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Summary

Upcoming publication

B. Leistedt & JDM, Exact wavelets on the solid sphere, IEEE Trans. Sig. Proc., in preparation.

Codes

SSHT Code to compute exact (spin) spherical harmonic transforms based on the
new sampling theorem (Fortran, C, Matlab).

FastCSWT Code to compute fast continuous wavelet transforms (forward transform only)
using the fast convolution of Wandelt & Gorski (2001) (Fortran).

S2DW Code to compute fast scale-discretised wavelet transforms on the sphere
(Fortran).

S2LET Code to compute fast scale-discretised wavelet transforms on the sphere
(Fortran, C, Matlab) [TO APPEAR].

B3LET Code to compute fast scale-discretised wavelet transforms on the solid
sphere (Fortran, C, Matlab) [TO APPEAR].

All codes available under the GPL from http://www.jasonmcewen.org/

http://www.jasonmcewen.org/
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Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.
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matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Dark energy

Universe consists of ordinary baryonic matter, cold dark
matter and dark energy.

Dark energy represents energy density of empty space.
Modelled by a cosmological fluid with negative pressure
acting as a repulsive force.

Evidence for dark energy provided by observations of
CMB, supernovae and large scale structure of Universe.

Credit: WMAP Science Team

However, a consistent model in the framework of particle physics lacking. Indeed, attempts to
predict a cosmological constant obtain a value that is too large by a factor of ∼ 10120.

Dark energy dominates our Universe but yet we know very little about its nature and origin.

Verification of dark energy by independent physical methods of considerable interest.

Independent methods may also prove more sensitive probes of properties of dark energy.



Cosmology Harmonic analysis Compressive sensing on the sphere Wavelets on the sphere Wavelets on the ball

Integrated Sachs-Wolfe (ISW) effect

(ball sim constant movie) (ball sim evolving movie)

Figure: ISW effect analogy

CMB photons blue (red) shifted when fall into (out of) potential wells.

Evolution of potential during photon propagation→ net change in photon energy.

Gravitation potentials constant w.r.t. conformal time in matter dominated universe.

Deviation from matter domination due to curvature or dark energy causes potentials to evolve
with time→ secondary anisotropy induced in CMB.


ballsim7_2_prod.avi
Media File (video/avi)


ballsim7_ani1_prod.avi
Media File (video/avi)
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Detecting the ISW effect

WMAP shown universe is (nearly) flat.

Detection of ISW effect⇒ direct evidence for dark energy.

Cannot isolate the ISW signal from CMB anisotropies easily.

Instead, detect by cross-correlating CMB anisotropies with tracers of large scale structure.
(Crittenden & Turok 1996

Wavelets ideal analysis tool to search for correlation induced by ISW effect since signal
manifest at different scales and locations.
(Pioneered by Vielva et al. 2005, followed by JDM et al. 2006, JDM et al. 2007 and others.)

Compute correlation of WMAP and NVSS radio galaxy survey and compare to Monte Carlo
simulations to determine significance of any candidate detections.

(a) WMAP (b) NVSS

Figure: WMAP and NVSS maps after application of the joint mask
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Detection of the ISW effect with wavelets

Significant correlation detected between the WMAP and NVSS data.

Foreground contamination and instrumental systematics ruled out as source of the correlation
⇒ correlation due to ISW effect.

Direct observational evidence for dark energy.
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Figure: Wavelet correlation
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Constraining dark energy with wavelets

Possible to use positive detection of the ISW effect to constrain parameters of cosmological
models that describe dark energy:

Proportional energy density ΩΛ.
Equation of state parameter w relating pressure and density of cosmological fluid that models dark
energy, i.e. p = wρ.

Parameter estimates of ΩΛ = 0.63+0.18
−0.17 and w = −0.77+0.35

−0.36 computed from the mean of the
marginalised distributions (consistent with other analysis techniques and data sets).
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Figure: Dark energy likelihoods
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