Sampling theorems and compressive sensing on the sphere

Jason McEwen

http://www.jasonmcewen.org/

Department of Physics and Astronomy University College London (UCL)

26 January 2012 :: BASP seminar :: EPFL, Switzerland

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへ⊙

Compressive Sensing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Harmonic analysis on the sphere

- Spherical harmonics
- Spherical harmonic transform

Sampling theorems

- Driscoll & Healy sampling theorem (DH)
- MW sampling theorem
- Quadrature
- Comparison

Compressive sensing

- Compressive sensing on the sphere
- TV inpainting
- Low-resolution simulations
- High-resolution simulations

Summary

larmonic analys	is	
0		

Compressive Sensir

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spherical harmonics

• Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$\langle f, g \rangle = \int_{\mathbf{S}^2} d\Omega(\theta, \varphi) f(\theta, \varphi) g^*(\theta, \varphi) ,$$

where $d\Omega(\theta,\varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ,φ) define spherical coordinates with colatitude $\theta \in [0,\pi]$ and longitude $\varphi \in [0,2\pi)$. Complex conjugation is denoted by the superscript *.

• The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $L^2(S^2)$ scalar functions on the sphere and are defined by

$$Y_{\ell m}(\theta,\varphi) = \sqrt{rac{2\ell+1}{4\pi}} rac{(\ell-m)!}{(\ell+m)!} P_{\ell}^{m}(\cos\theta) \, \mathrm{e}^{\mathrm{i}m\varphi} \; ,$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \le \ell$, where $P_{\ell}^m(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell+1)Y_{\ell m}$.
- Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- Completeness relation:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta,\varphi) Y_{\ell m}^{*}(\theta',\varphi') = \delta(\cos\theta - \cos\theta') \,\delta(\varphi - \varphi') \,,$$

where $\delta(x)$ is the Dirac delta function.

Harmonic	analysis
0	

Compressive Sensing

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Spherical harmonics

• Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$\langle f, g \rangle = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\theta, \varphi) f(\theta, \varphi) \, g^*(\theta, \varphi) \; ,$$

where $d\Omega(\theta,\varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ,φ) define spherical coordinates with colatitude $\theta \in [0,\pi]$ and longitude $\varphi \in [0,2\pi)$. Complex conjugation is denoted by the superscript *.

• The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $L^2(S^2)$ scalar functions on the sphere and are defined by

$$Y_{\ell m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\varphi},$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \leq \ell$, where $P_{\ell}^m(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell+1)Y_{\ell m}$.
- Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- Completeness relation:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta,\varphi) Y_{\ell m}^{*}(\theta',\varphi') = \delta(\cos\theta - \cos\theta') \,\delta(\varphi - \varphi') \,,$$

where $\delta(x)$ is the Dirac delta function.

Harmonic	analysis
0	

Compressive Sensing

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Spherical harmonics

• Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$\langle f, g \rangle = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\theta, \varphi) f(\theta, \varphi) \, g^*(\theta, \varphi) \; ,$$

where $d\Omega(\theta, \varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ, φ) define spherical coordinates with colatitude $\theta \in [0, \pi]$ and longitude $\varphi \in [0, 2\pi)$. Complex conjugation is denoted by the superscript *.

• The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $L^2(S^2)$ scalar functions on the sphere and are defined by

$$Y_{\ell m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\varphi} ,$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \leq \ell$, where $P_{\ell}^m(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell+1)Y_{\ell m}$.
- Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- Completeness relation:

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta,\varphi) Y_{\ell m}^{*}(\theta',\varphi') = \delta(\cos\theta - \cos\theta') \,\delta(\varphi - \varphi') \,,$$

where $\delta(x)$ is the Dirac delta function.

Harmonic analysis ○●	Sampling theorems	Compressive Sensing	Summary O
Spherical harmo	nic transform		

 Any square integrable scalar function on the sphere *f* ∈ L²(S²) may be represented by its spherical harmonic expansion:

$$f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m} Y_{\ell m}(\theta,\varphi) .$$

• The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$f_{\ell m} = \langle f, Y_{\ell m} \rangle = \int_{S^2} d\Omega(\theta, \varphi) f(\theta, \varphi) Y^*_{\ell m}(\theta, \varphi) .$$

• We consider signals on the sphere band-limited at *L*, that is signals such that $f_{\ell m} = 0, \forall \ell \geq L$ \Rightarrow summations may be truncated to L - 1.

Aside: Generalise to spin functions on the sphere.
 Square integrable spin functions on the sphere *sf* ∈ L²(S²), with integer spin *s* ∈ Z, |*s*| ≤ ℓ, are defined by their behaviour under local rotations. By definition, a spin function transforms as

$$_{s}f'(\theta,\varphi) = \mathrm{e}^{-\mathrm{i}s\chi} {}_{s}f(\theta,\varphi)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

under a local rotation by χ , where the prime denotes the rotated function.

 Exact in the continuous setting but require sampling theorems on the sphere for discrete signals.

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary
0•			
Spherical harm	onic transform		

 Any square integrable scalar function on the sphere *f* ∈ L²(S²) may be represented by its spherical harmonic expansion:

$$f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m} Y_{\ell m}(\theta,\varphi) .$$

• The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$f_{\ell m} = \langle f, Y_{\ell m} \rangle = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\theta, \varphi) \, f(\theta, \varphi) \, Y^*_{\ell m}(\theta, \varphi) \, .$$

• We consider signals on the sphere band-limited at L, that is signals such that $f_{\ell m} = 0, \forall \ell \ge L$ \Rightarrow summations may be truncated to L - 1.

Aside: Generalise to spin functions on the sphere.
 Square integrable spin functions on the sphere *sf* ∈ L²(S²), with integer spin *s* ∈ ℤ, |*s*| ≤ ℓ, are defined by their behaviour under local rotations. By definition, a spin function transforms as

$$_{s}f'(\theta,\varphi) = \mathrm{e}^{-\mathrm{i}s\chi} {}_{s}f(\theta,\varphi)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

under a local rotation by χ , where the prime denotes the rotated function.

 Exact in the continuous setting but require sampling theorems on the sphere for discrete signals.

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary
Spherical harmonic			Ŭ

 Any square integrable scalar function on the sphere *f* ∈ L²(S²) may be represented by its spherical harmonic expansion:

$$f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m} Y_{\ell m}(\theta,\varphi) .$$

• The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$f_{\ell m} = \langle f, Y_{\ell m} \rangle = \int_{\mathbb{S}^2} \, \mathrm{d}\Omega(\theta, \varphi) \, f(\theta, \varphi) \, Y^*_{\ell m}(\theta, \varphi) \, .$$

• We consider signals on the sphere band-limited at L, that is signals such that $f_{\ell m} = 0, \forall \ell \ge L$ \Rightarrow summations may be truncated to L - 1.

Aside: Generalise to spin functions on the sphere.
 Square integrable spin functions on the sphere *sf* ∈ L²(S²), with integer spin *s* ∈ ℤ, |*s*| ≤ ℓ, are defined by their behaviour under local rotations. By definition, a spin function transforms as

$$_{s}f'(\theta,\varphi) = e^{-is\chi} {}_{s}f(\theta,\varphi)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

under a local rotation by χ , where the prime denotes the rotated function.

 Exact in the continuous setting but require sampling theorems on the sphere for discrete signals.

Sampling theorems

Compressive Sensin

Summary O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Driscoll & Healy sampling theorem (DH)

• The DH sampling theorem gives an explicit quadrature rule for the spherical harmonic transform:

$$f_{\ell m} = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) f(\theta_t, \varphi_p) Y_{\ell m}^*(\theta_t, \varphi_p) ,$$

where the sample positions are defined by $\theta_t = \pi t/2L$, for t = 0, ..., 2L - 1, and $\varphi_p = \pi p/L$, for p = 0, ..., 2L - 1 $\Rightarrow N_{\text{DH}} = (2L - 1)2L + 1 \sim 4L^2$ samples on the sphere.

• The quadrature weights are defined implicitly by the solution to

$$\sum_{t=0}^{2L-1} q_{\mathsf{DH}}(\theta_t) \, P_\ell(\cos \theta_t) = \frac{2\pi}{L} \, \delta_{\ell 0} \; , \quad \forall \ell < 2L \; ,$$

and are given explicitly by

$$q_{\rm DH}(\theta_t) = \frac{2\pi}{L^2} \sin \theta_t \sum_{k=0}^{L-1} \frac{\sin((2k+1)\theta_t)}{2k+1}$$

Sampling theorems

Compressive Sensin

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Driscoll & Healy sampling theorem (DH)

The DH sampling theorem gives an explicit quadrature rule for the spherical harmonic transform:

$$f_{\ell m} = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) f(\theta_t, \varphi_p) Y_{\ell m}^*(\theta_t, \varphi_p) ,$$

where the sample positions are defined by $\theta_t = \pi t/2L$, for t = 0, ..., 2L - 1, and $\varphi_p = \pi p/L$, for p = 0, ..., 2L - 1 $\Rightarrow N_{\text{DH}} = (2L - 1)2L + 1 \sim 4L^2$ samples on the sphere.

The quadrature weights are defined implicitly by the solution to

$$\sum_{t=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \, \delta_{\ell 0} \,, \quad \forall \ell < 2L \,,$$

and are given explicitly by

$$q_{\rm DH}(\theta_t) = \frac{2\pi}{L^2} \sin \theta_t \sum_{k=0}^{L-1} \frac{\sin((2k+1)\theta_t)}{2k+1}$$

Sampling theorems

Compressive Sensing

Summary O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Driscoll & Healy sampling theorem (DH)

 The exactness of the quadrature rule is proved by considering the sampling distribution of Dirac delta functions defined by

$$s(\theta, \varphi) = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) \, \delta(\cos \theta - \cos \theta_t) \, \delta(\varphi - \varphi_p) \, .$$

• It can be shown that $s_{00} = \sqrt{4\pi}$ and $s_{\ell m} = 0$ for $0 < \ell < 2L, \forall m$.

• Thus, the sampling distribution may be written

$$s(\theta,\varphi) = 1 + \sum_{\ell=2L}^{\infty} \sum_{m=-\ell}^{\ell} s_{\ell m} Y_{\ell m}(\theta,\varphi) \; .$$

 The harmonic coefficients of the product of the original band-limited function and the sampling distribution f^s = f · s are then given by

$$f^s_{\ell m} = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(heta_t) f(heta_t, arphi_p) \, Y^*_{\ell m}(heta_t, arphi_p) \, ,$$

• Notice that these harmonic coefficients are given by the DH quadrature rule and it simply remains to prove that the harmonic coefficients of *f*st agree with those of *f* for the harmonic range of interest (*i.e.* for 0 ≤ ℓ < L).</p>

Sampling theorems

Compressive Sensing

Summary O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Driscoll & Healy sampling theorem (DH)

• The exactness of the quadrature rule is proved by considering the sampling distribution of Dirac delta functions defined by

$$s(\theta,\varphi) = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\rm DH}(\theta_t) \, \delta(\cos\theta - \cos\theta_t) \, \delta(\varphi - \varphi_p) \, .$$

- It can be shown that $s_{00} = \sqrt{4\pi}$ and $s_{\ell m} = 0$ for $0 < \ell < 2L, \forall m$.
- Thus, the sampling distribution may be written

$$s(\theta, \varphi) = 1 + \sum_{\ell=2L}^{\infty} \sum_{m=-\ell}^{\ell} s_{\ell m} Y_{\ell m}(\theta, \varphi) .$$

• The harmonic coefficients of the product of the original band-limited function and the sampling distribution $f^s = f \cdot s$ are then given by

$$f^s_{\ell m} = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) f(\theta_t,\varphi_p) \ Y^*_{\ell m}(\theta_t,\varphi_p) \ ,$$

• Notice that these harmonic coefficients are given by the DH quadrature rule and it simply remains to prove that the harmonic coefficients of *f*st agree with those of *f* for the harmonic range of interest (*i.e.* for 0 ≤ ℓ < *L*).

Sampling theorems

Compressive Sensing

Summary O

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Driscoll & Healy sampling theorem (DH)

• The exactness of the quadrature rule is proved by considering the sampling distribution of Dirac delta functions defined by

$$s(\theta,\varphi) = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\rm DH}(\theta_t) \, \delta(\cos\theta - \cos\theta_t) \, \delta(\varphi - \varphi_p) \, .$$

- It can be shown that $s_{00} = \sqrt{4\pi}$ and $s_{\ell m} = 0$ for $0 < \ell < 2L, \forall m$.
- Thus, the sampling distribution may be written

$$s(\theta, \varphi) = 1 + \sum_{\ell=2L}^{\infty} \sum_{m=-\ell}^{\ell} s_{\ell m} Y_{\ell m}(\theta, \varphi) .$$

 The harmonic coefficients of the product of the original band-limited function and the sampling distribution f^s = f · s are then given by

$$f^s_{\ell m} = \sum_{t=0}^{2L-1} \sum_{p=0}^{2L-1} q_{\mathrm{DH}}(\theta_t) f(\theta_t, \varphi_p) Y^*_{\ell m}(\theta_t, \varphi_p) ,$$

• Notice that these harmonic coefficients are given by the DH quadrature rule and it simply remains to prove that the harmonic coefficients of *f*st agree with those of *f* for the harmonic range of interest (*i.e.* for 0 ≤ ℓ < L).</p>

Compressive Sensing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Driscoll & Healy sampling theorem (DH)

We may write

$$f^{s}(\theta, \varphi) = f(\theta, \varphi) + \alpha(\theta, \varphi) ,$$

where

$$\alpha(\theta,\varphi) = \sum_{\ell=2L}^{\infty} \sum_{m=-\ell}^{\ell} s_{\ell m} Y_{\ell m}(\theta,\varphi) \sum_{\ell'=0}^{L-1} \sum_{m'=-\ell'}^{\ell'} f_{\ell'm'} Y_{\ell'm'}(\theta,\varphi) .$$

- Since the product of two spherical harmonic functions $Y_{\ell m}(\theta, \varphi) Y_{\ell' m'}(\theta, \varphi)$ can be written as a sum of spherical harmonics with minimum degree $|\ell \ell'|$, the aliasing error $\alpha(\theta, \varphi)$ contains non-zero harmonic content for $\ell > L$ only.
- Aliasing is therefore outside of the harmonic range of interest and $f_{\ell m}^{i} = f_{\ell m}$ for $0 \leq \ell < L$, $|m| < \ell$, thus proving the exact quadrature rule.

Compressive Sensing

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Driscoll & Healy sampling theorem (DH)

We may write

$$f^{s}(\theta, \varphi) = f(\theta, \varphi) + \alpha(\theta, \varphi) ,$$

where

$$\alpha(\theta,\varphi) = \sum_{\ell=2L}^{\infty} \sum_{m=-\ell}^{\ell} s_{\ell m} Y_{\ell m}(\theta,\varphi) \sum_{\ell'=0}^{L-1} \sum_{m'=-\ell'}^{\ell'} f_{\ell'm'} Y_{\ell'm'}(\theta,\varphi) .$$

- Since the product of two spherical harmonic functions Y_{ℓm}(θ, φ) Y_{ℓ'm'}(θ, φ) can be written as a sum of spherical harmonics with minimum degree |ℓ − ℓ'|, the aliasing error α(θ, φ) contains non-zero harmonic content for ℓ > L only.
- Aliasing is therefore outside of the harmonic range of interest and f^s_{ℓm} = f_{ℓm} for 0 ≤ ℓ < L, |m| < ℓ, thus proving the exact quadrature rule.

Sampling theorems

Compressive Sensing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Driscoll & Healy sampling theorem (DH)

• Why 2L samples in θ ? Recap...

• Stems from the implicit definition of the quadrature weights:

$$\sum_{t=0}^{\ell_{\theta}-1} q_{\mathrm{DH}}(\theta_t) \, P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \, \delta_{\ell 0} \, , \quad \forall \ell < 2L \, .$$

• This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

$$\int_{0}^{\pi} \mathrm{d}\theta \sin \theta \, P_{\ell}(\cos \theta_{l}) \, P_{\ell'}(\cos \theta_{l}) = \frac{2}{2\ell+1} \, \delta_{\ell\ell'} \quad \Rightarrow \quad \int_{0}^{\pi} \mathrm{d}\theta \sin \theta \, P_{\ell}(\cos \theta_{l}) = 2 \, \delta_{\ell 0} \, .$$

 An exact quadrature rule is developed by appealing to the orthogonality of the complex exponentials on [0, 2π):

$$2 \delta_{\ell 0} = \int_0^{\pi} d\theta \sin \theta P_{\ell}(\cos \theta_t) = \frac{1}{2} \int_{-\pi}^{\pi} d\theta \sin \theta \operatorname{sgn} \theta P_{\ell}(\cos \theta_t)$$
$$= \sum_{k=0}^{\lfloor \ell/2 \rfloor} \frac{2}{(2k+1)\pi} \int_{-\pi}^{\pi} d\theta \underbrace{\sin \theta \sin ((2k+1)\theta) P_{\ell}(\cos \theta_t)}_{\text{Trig. poly. of max degree } 2(\ell+1)}$$

- Require 4L samples in θ over $2\pi \Rightarrow 2L$ samples in θ on the sphere
- Also recover the explicit form of the quadrature weights.

Sampling theorems

Compressive Sensing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Driscoll & Healy sampling theorem (DH)

- Why 2L samples in θ ? Recap...
- Stems from the implicit definition of the quadrature weights:

$$\sum_{t=0}^{N_{\theta}-1} q_{\mathrm{DH}}(\theta_t) P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \,\delta_{\ell 0} \,, \quad \forall \ell < 2L \,.$$

• This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

$$\int_{0}^{\pi} \mathrm{d}\theta \sin \theta \, P_{\ell}(\cos \theta_{t}) \, P_{\ell'}(\cos \theta_{t}) = \frac{2}{2\ell+1} \, \delta_{\ell\ell'} \quad \Rightarrow \quad \int_{0}^{\pi} \, \mathrm{d}\theta \sin \theta \, P_{\ell}(\cos \theta_{t}) = 2 \, \delta_{\ell 0} \, .$$

 An exact quadrature rule is developed by appealing to the orthogonality of the complex exponentials on [0, 2π):

$$2 \,\delta_{\ell 0} = \int_0^{\pi} \,\mathrm{d}\theta \sin\theta \,P_\ell(\cos\theta_t) = \frac{1}{2} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \sin\theta \,\mathrm{sgn}\theta \,P_\ell(\cos\theta_t)$$
$$= \sum_{k=0}^{\lfloor \ell/2 \rfloor} \frac{2}{(2k+1)\pi} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \,\underbrace{\sin\theta \,\sin\left((2k+1)\theta\right) P_\ell(\cos\theta_t)}_{\text{Trig. poly. of max degree } 2(\ell+1)}$$

- Require 4*L* samples in θ over $2\pi \Rightarrow 2L$ samples in θ on the sphere
- Also recover the explicit form of the quadrature weights.

 Harmonic analysis
 Sampling theorems
 Compressive Sensing

 OO
 OOOOOOOOOO
 OOOOOOOOOO

Driscoll & Healy sampling theorem (DH)

- Why 2L samples in θ ? Recap...
- Stems from the implicit definition of the quadrature weights:

$$\sum_{t=0}^{N_{\theta}-1} q_{\mathrm{DH}}(\theta_t) P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \,\delta_{\ell 0} \;, \quad \forall \ell < 2L \;.$$

• This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) \, P_{\ell'}(\cos \theta_t) = \frac{2}{2\ell+1} \, \delta_{\ell\ell'} \quad \Rightarrow \quad \int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) = 2 \, \delta_{\ell 0} \, .$$

 An exact quadrature rule is developed by appealing to the orthogonality of the complex exponentials on [0, 2π):

$$2 \,\delta_{\ell 0} = \int_0^{\pi} \,\mathrm{d}\theta \sin\theta \,P_\ell(\cos\theta_t) = \frac{1}{2} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \sin\theta \,\mathrm{sgn}\theta \,P_\ell(\cos\theta_t)$$
$$= \sum_{k=0}^{\lfloor \ell/2 \rfloor} \frac{2}{(2k+1)\pi} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \,\underbrace{\sin\theta \,\sin\left((2k+1)\theta\right) P_\ell(\cos\theta_t)}_{\text{Trig. poly. of max degree } 2(\ell+1)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Require 4*L* samples in θ over $2\pi \Rightarrow 2L$ samples in θ on the sphere
- Also recover the explicit form of the quadrature weights.

 Harmonic analysis
 Sampling theorems
 Compressive Sensing

 CO
 OOOOOOOOOO
 OOOOOOOOOO

Driscoll & Healy sampling theorem (DH)

- Why 2L samples in θ ? Recap...
- Stems from the implicit definition of the quadrature weights:

$$\sum_{t=0}^{N_{\theta}-1} q_{\mathrm{DH}}(\theta_t) P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \,\delta_{\ell 0} \,, \quad \forall \ell < 2L \,.$$

• This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) \, P_{\ell'}(\cos \theta_t) = \frac{2}{2\ell+1} \, \delta_{\ell\ell'} \quad \Rightarrow \quad \int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) = 2 \, \delta_{\ell 0} \, .$$

 An exact quadrature rule is developed by appealing to the orthogonality of the complex exponentials on [0, 2π):

$$2 \,\delta_{\ell 0} = \int_0^{\pi} \,\mathrm{d}\theta \sin\theta \,P_{\ell}(\cos\theta_t) = \frac{1}{2} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \sin\theta \,\mathrm{sgn}\theta \,P_{\ell}(\cos\theta_t)$$
$$= \sum_{k=0}^{\lfloor \ell/2 \rfloor} \frac{2}{(2k+1)\pi} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \,\underbrace{\sin\theta \,\sin\left((2k+1)\theta\right) P_{\ell}(\cos\theta_t)}_{\text{Trig. poly. of max degree } 2(\ell+1)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Require 4L samples in θ over $2\pi \Rightarrow 2L$ samples in θ on the sphere
- Also recover the explicit form of the quadrature weights.

Driscoll & Healy sampling theorem (DH)

- Why 2L samples in θ ? Recap...
- Stems from the implicit definition of the quadrature weights:

$$\sum_{t=0}^{N_{\theta}-1} q_{\mathrm{DH}}(\theta_t) P_{\ell}(\cos \theta_t) = \frac{2\pi}{L} \,\delta_{\ell 0} \,, \quad \forall \ell < 2L \,.$$

• This is essentially an exact quadrature rule for the integration of Legendre polynomials, since

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) \, P_{\ell'}(\cos \theta_t) = \frac{2}{2\ell+1} \, \delta_{\ell\ell'} \quad \Rightarrow \quad \int_0^{\pi} d\theta \sin \theta \, P_{\ell}(\cos \theta_t) = 2 \, \delta_{\ell 0} \, .$$

 An exact quadrature rule is developed by appealing to the orthogonality of the complex exponentials on [0, 2π):

$$2 \,\delta_{\ell 0} = \int_0^{\pi} \,\mathrm{d}\theta \sin\theta \,P_\ell(\cos\theta_t) = \frac{1}{2} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \sin\theta \,\mathrm{sgn}\theta \,P_\ell(\cos\theta_t)$$
$$= \sum_{k=0}^{\lfloor \ell/2 \rfloor} \frac{2}{(2k+1)\pi} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \,\underbrace{\sin\theta \,\sin\left((2k+1)\theta\right) P_\ell(\cos\theta_t)}_{\text{Trig. poly. of max degree } 2(\ell+1)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Require 4*L* samples in θ over $2\pi \Rightarrow 2L$ samples in θ on the sphere
- Also recover the explicit form of the quadrature weights.

Harmonic analysis OO	Sampling theorems	Compressive Sensing	Summary O
MW sampling theore	m		

- MW sampling theorem follows by a factoring of rotations and then by associating the sphere with the torus through a periodic extension.
- Similar (in flavour but not detail!) to making a periodic extension in θ of a function f on the sphere.

• Whereas DH perform an implicit extension of θ to $[0, 2\pi)$ in developing their exact quadrature rule, we perform an explicit extension of f to $[0, 2\pi)$ but restrict the continuous integral defining the quadrature weights to $[0, \pi]$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

analysis

Compressive Sensing

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MW sampling theorem

- MW sampling theorem follows by a factoring of rotations and then by associating the sphere with the torus through a periodic extension.
- Similar (in flavour but not detail!) to making a periodic extension in *θ* of a function *f* on the sphere.

Figure: Associating functions on the sphere and torus

• Whereas DH perform an implicit extension of θ to $[0, 2\pi)$ in developing their exact quadrature rule, we perform an explicit extension of f to $[0, 2\pi)$ but restrict the continuous integral defining the quadrature weights to $[0, \pi]$.

analysis

Compressive Sensing

MW sampling theorem

- MW sampling theorem follows by a factoring of rotations and then by associating the sphere
 with the torus through a periodic extension.
- Similar (in flavour but not detail!) to making a periodic extension in *θ* of a function *f* on the sphere.

Figure: Associating functions on the sphere and torus

• Whereas DH perform an implicit extension of θ to $[0, 2\pi)$ in developing their exact quadrature rule, we perform an explicit extension of f to $[0, 2\pi)$ but restrict the continuous integral defining the quadrature weights to $[0, \pi]$.

Harmonic analysis	Sampling theorems	Compressive Sen
	0000000000	000000000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MW sampling theorem

 By a factoring of rotations, a reordering of summations and a separation of variables, the forward transform of sf may be written:

$${}_{s\!f_{\ell m}} = (-1)^{s} \, i^{m+s} \sqrt{\frac{2\ell+1}{4\pi}} \sum_{m'=-(L-1)}^{L-1} \Delta^{\ell}_{m'm} \, \Delta^{\ell}_{m',\,-s} \, {}^{s}G_{mm'} \; ,$$

where

$$_{s}G_{mm'} = \int_{0}^{\pi} \mathrm{d}\theta \sin\theta \,_{s}G_{m}(\theta) \,\mathrm{e}^{-\mathrm{i}m'\theta}$$

and

$$_{s}G_{m}(\theta) = \int_{0}^{2\pi} \mathrm{d}\varphi \,_{s}f(\theta,\varphi) \,\mathrm{e}^{-\mathrm{i}m\varphi} \;.$$

 The integral over φ is simply a Fourier transform, hence the orthogonality of the complex exponentials may be exploited to evaluate this integral exactly by

$${}_{s}G_{m}(\theta_{t}) = \frac{2\pi}{2L-1} \sum_{p=-(L-1)}^{L-1} {}_{s}f(\theta_{t},\varphi_{p}) e^{-\mathrm{i}m\varphi_{p}} ,$$

where $\varphi_p = 2\pi p/(2L-1)$, for p = 0, ..., 2L-2, and $\theta_t = \pi(2t+1)/(2L-1)$, for t = 0, ..., L-1 $\Rightarrow N_{MW} = (L-1)(2L-1) + 1 \sim 2L^2$ samples on the sphere.

• It remains to develop an exact quadrature rule to evaluate the integral over θ .

Harmonic analysis	Sampling theorems	Compressive Se
	0000000000	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MW sampling theorem

 By a factoring of rotations, a reordering of summations and a separation of variables, the forward transform of sf may be written:

$${}_{s\!f_{\ell m}} = (-1)^s \, i^{m+s} \sqrt{\frac{2\ell+1}{4\pi}} \sum_{m'=-(L-1)}^{L-1} \Delta^\ell_{m'm} \, \Delta^\ell_{m',\,-s} \, {}^s G_{mm'} \; ,$$

where

$${}_{s}G_{mm'} = \int_{0}^{\pi} \mathrm{d}\theta \sin\theta {}_{s}G_{m}(\theta) \mathrm{e}^{-\mathrm{i}m'\theta}$$

and

$${}_{s}G_{m}(\theta) = \int_{0}^{2\pi} \mathrm{d}\varphi \, {}_{s}f(\theta,\varphi) \, \mathrm{e}^{-\mathrm{i}m\varphi} \, .$$

 The integral over φ is simply a Fourier transform, hence the orthogonality of the complex exponentials may be exploited to evaluate this integral exactly by

$${}_{s}G_{m}(\theta_{t}) = \frac{2\pi}{2L-1} \sum_{p=-(L-1)}^{L-1} {}_{s}f(\theta_{t},\varphi_{p}) e^{-\mathrm{i}m\varphi_{p}} ,$$

where $\varphi_p = 2\pi p/(2L-1)$, for $p = 0, \dots, 2L-2$, and $\theta_t = \pi(2t+1)/(2L-1)$, for $t = 0, \dots, L-1$ $\Rightarrow N_{MW} = (L-1)(2L-1) + 1 \sim 2L^2$ samples on the sphere.

• It remains to develop an exact quadrature rule to evaluate the integral over θ .

Harmonic analysis	Sampling theorems	Compressive Sen
	0000000000	000000000

MW sampling theorem

 By a factoring of rotations, a reordering of summations and a separation of variables, the forward transform of sf may be written:

$${}_{s\!f_{\ell m}} = (-1)^{s} \, i^{m+s} \sqrt{\frac{2\ell+1}{4\pi}} \sum_{m'=-(L-1)}^{L-1} \Delta^{\ell}_{m'm} \, \Delta^{\ell}_{m'\,,\,-s\,\,s} G_{mm'} \;,$$

where

$${}_{s}G_{mm'} = \int_{0}^{\pi} \mathrm{d}\theta \sin\theta {}_{s}G_{m}(\theta) \mathrm{e}^{-\mathrm{i}m'\theta}$$

and

$${}_{s}G_{m}(\theta) = \int_{0}^{2\pi} \mathrm{d}\varphi \, {}_{s}f(\theta,\varphi) \, \mathrm{e}^{-\mathrm{i}m\varphi} \, .$$

 The integral over φ is simply a Fourier transform, hence the orthogonality of the complex exponentials may be exploited to evaluate this integral exactly by

$${}_{s}G_{m}(\theta_{t}) = \frac{2\pi}{2L-1} \sum_{p=-(L-1)}^{L-1} {}_{s}f(\theta_{t},\varphi_{p}) e^{-\mathrm{i}m\varphi_{p}} ,$$

where $\varphi_p = 2\pi p/(2L-1)$, for $p = 0, \dots, 2L-2$, and $\theta_t = \pi(2t+1)/(2L-1)$, for $t = 0, \dots, L-1$ $\Rightarrow N_{MW} = (L-1)(2L-1) + 1 \sim 2L^2$ samples on the sphere.

• It remains to develop an exact quadrature rule to evaluate the integral over θ .

Harmonic analysis	Sampling theorems	Compressive Sensing

MW sampling theorem

• We develop an exact quadrature rule to evaluate the integral over θ by extending ${}_{s}G_{m}(\theta)$ to the domain $\theta \in [0, 2\pi)$ through the construction

$$\tilde{G}_{m}(\theta_{t}) = \begin{cases} {}_{s}G_{m}(\theta_{t}) , & t \in \{0, 1, \dots, L-1\} \\ (-1)^{m+s} {}_{s}G_{m}(\theta_{2L-2-t}) , & t \in \{L, \dots, 2L-2\} \end{cases}$$

so that ${}_{s}\tilde{G}_{m}(\theta_{t})$ may be expressed by a Fourier series.

• Substituting into the integral over θ yields

$${}_{s}G_{mm'} = 2\pi \sum_{m''=-(L-1)}^{L-1} {}_{s}F_{mm''} w(m''-m') ,$$

where the weights are given by

$$w(m') = \int_0^{\pi} \mathrm{d}\theta \sin\theta \; \mathrm{e}^{\mathrm{i}m'\theta} = \begin{cases} \pm \mathrm{i}\pi/2, & m' = \pm 1\\ 0, & m' \; \mathrm{odd}, \; m' \neq \pm 1\\ 2/(1-m'^2), & m' \; \mathrm{even} \end{cases}$$

with

$${}_{s}F_{mm'} = \frac{1}{2\pi(2L-1)} \sum_{t=-(L-1)}^{L-1} {}_{s}\tilde{G}_{m}(\theta_{t}) e^{-im'\theta_{t}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Since the spherical harmonic coefficients sf em are recovered exactly, all of the information content of the function sf is captured in the finite set of samples.

Harmonic	analysis

Compressive Sensing

MW sampling theorem

• We develop an exact quadrature rule to evaluate the integral over θ by extending ${}_{s}G_{m}(\theta)$ to the domain $\theta \in [0, 2\pi)$ through the construction

$$\tilde{G}_m(\theta_t) = \begin{cases} {}_s G_m(\theta_t) , & t \in \{0, 1, \dots, L-1\} \\ (-1)^{m+s} {}_s G_m(\theta_{2L-2-t}) , & t \in \{L, \dots, 2L-2\} \end{cases}$$

so that ${}_{s}\tilde{G}_{m}(\theta_{t})$ may be expressed by a Fourier series.

• Substituting into the integral over θ yields

$${}_{s}G_{mm'} = 2\pi \sum_{m''=-(L-1)}^{L-1} {}_{s}F_{mm''} w(m''-m') ,$$

where the weights are given by

$$w(m') = \int_0^{\pi} d\theta \sin \theta e^{im'\theta} = \begin{cases} \pm i\pi/2, & m' = \pm 1\\ 0, & m' \text{ odd}, & m' \neq \pm 1\\ 2/(1 - m'^2), & m' \text{ even} \end{cases}$$

with

$${}_{s}F_{mm'} = \frac{1}{2\pi(2L-1)} \sum_{t=-(L-1)}^{L-1} {}_{s}\tilde{G}_{m}(\theta_{t}) e^{-im'\theta_{t}}.$$

Since the spherical harmonic coefficients of *f* are recovered exactly, all of the information content of the function of is captured in the finite set of samples.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Harmonic	analysis

Compressive Sensing

MW sampling theorem

• We develop an exact quadrature rule to evaluate the integral over θ by extending ${}_{s}G_{m}(\theta)$ to the domain $\theta \in [0, 2\pi)$ through the construction

$$\tilde{G}_m(\theta_t) = \begin{cases} {}_s G_m(\theta_t) , & t \in \{0, 1, \dots, L-1\} \\ (-1)^{m+s} {}_s G_m(\theta_{2L-2-t}) , & t \in \{L, \dots, 2L-2\} \end{cases}$$

so that ${}_{s}\tilde{G}_{m}(\theta_{t})$ may be expressed by a Fourier series.

• Substituting into the integral over θ yields

$${}_{s}G_{mm'} = 2\pi \sum_{m''=-(L-1)}^{L-1} {}_{s}F_{mm''} w(m''-m') ,$$

where the weights are given by

$$w(m') = \int_0^{\pi} d\theta \sin \theta e^{im'\theta} = \begin{cases} \pm i\pi/2, & m' = \pm 1\\ 0, & m' \text{ odd}, & m' \neq \pm 1\\ 2/(1 - m'^2), & m' \text{ even} \end{cases}$$

with

$${}_{s}F_{mm'} = \frac{1}{2\pi(2L-1)} \sum_{t=-(L-1)}^{L-1} {}_{s}\tilde{G}_{m}(\theta_{t}) e^{-im'\theta_{t}}$$

Since the spherical harmonic coefficients sf em are recovered exactly, all of the information content of the function sf is captured in the finite set of samples.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Quadrature

- Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating the integral of a band-limited function on the sphere.
- The quadrature rule can be made explicit:

$$\int_{\mathbb{S}^2} \mathrm{d}\Omega(\theta,\varphi) \, {}_{s}\!f(\theta,\varphi) = \sum_{t=0}^{N_\theta-1} \, \sum_{p=0}^{N_\varphi-1} \, q(\theta_t) \, {}_{s}\!f(\theta_t,\varphi_p) \, ,$$

where $N_{\theta}, N_{\theta}, q \in \{q_{\text{DH}}, q_{\text{MW}}\}$ and the sample positions $\{\theta_t, \varphi_p\}$ depend on the chosen sampling theorem.

Compressive Sensing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Comparison

	DH Divide-and-conquer	DH Semi-naive	MW
Pixelisation scheme	equiangular	equiangular	equiangular
Asymptotic complexity	$\mathcal{O}(L^{5/2}\log_2^{1/2}L)$	$\mathcal{O}(L^3)$	$\mathcal{O}(L^3)$
Precomputation	Υ	Ν	Ν
Stability	Ν	Y	Y
Flexibility of Wigner recursion	Ν	Ν	Y
Number of samples	4L ²	$4L^2$	2L ²

Compressive Sensing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Comparison

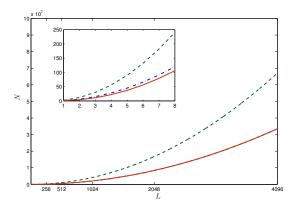


Figure: Number of samples (MW=red; DH=green; GL=blue)

Compressive Sensing

ヘロト 人間 とくほとくほとう

Comparison

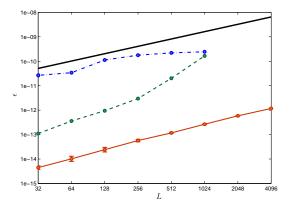


Figure: Numerical accuracy (MW=red; DH=green; GL=blue)

Compressive Sensing

ヘロト 人間 とくほとくほとう

æ

Comparison

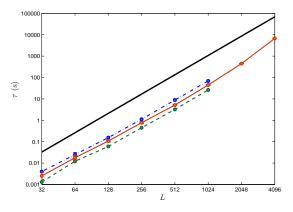


Figure: Computation time(MW=red; DH=green; GL=blue)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Compressive sensing on the sphere

- A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing.
- Many natural signals are sparse in measures defined in the spatial domain, such as in the magnitude of their gradient.
- A more efficient sampling of a band-limited signal on the sphere improves both the dimensionality and sparsity of the signal in the spatial domain.
- For a given number of measurements, a more efficient sampling theorem improves the quality
 of compressive sampling reconstruction.
- Illustrate with a total variation (TV) inpainting problem on the sphere.

Harmonic analysis	Sampling theorems	Compressive Sensing	Summar
TV inpainting			

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
 - the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
 - N is the number of samples on the sphere of the chosen sampling theorem;
 - *M* noisy measurements $y \in \mathbb{R}^M$ are acquired;
 - the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
 - the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$\int_{\mathbb{S}^2} \mathrm{d}\Omega \ |\nabla f| \simeq \sum_{t=0}^{N_\theta - 1} \sum_{p=0}^{N_\varphi - 1} \ |\nabla f| \ q(\theta_t) \simeq \sum_{t=0}^{N_\theta - 1} \sum_{p=0}^{N_\varphi - 1} \sqrt{q^2(\theta_t) \left(\delta_\theta x\right)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \left(\delta_\varphi x\right)^2} \equiv \|x\|_{\mathrm{TV}} \ .$$

• TV inpainting problem solved directly on the sphere:

$$x^{\star} = \operatorname*{arg\,min}_{x} \|x\|_{\mathrm{TV}} \, \, \mathrm{such \, that} \, \, \|y - \Phi x\|_{2} \leq \epsilon \; .$$

• TV inpainting problem solved in harmonic space:

$$\hat{x}^* = \operatorname*{arg\,min}_{\hat{x}} \|\Lambda \hat{x}\|_{\mathrm{TV}} \text{ such that } \|y - \Phi \Lambda \hat{x}\|_2 \leq \epsilon \ ,$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}$.

(日)

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary O
TV inpainting			

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
 - the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
 - N is the number of samples on the sphere of the chosen sampling theorem;
 - *M* noisy measurements $y \in \mathbb{R}^M$ are acquired;
 - the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
 - the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$\int_{\mathbb{S}^2} \,\mathrm{d}\Omega \, |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\varphi-1} \, |\nabla f| \, q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \, \sum_{p=0}^{N_\varphi-1} \, \sqrt{q^2(\theta_t) \left(\delta_\theta \mathbf{x}\right)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \left(\delta_\varphi \mathbf{x}\right)^2} \equiv \|\mathbf{x}\|_{\mathrm{TV}} \; .$$

• TV inpainting problem solved directly on the sphere:

$$x^{\star} = \operatorname*{arg\,min}_{x} \|x\|_{\mathrm{TV}}$$
 such that $\|y - \Phi x\|_{2} \leq \epsilon$.

• TV inpainting problem solved in harmonic space:

$$\hat{x}^* = \operatorname*{arg\,min}_{\hat{x}} \|\Lambda \hat{x}\|_{\mathrm{TV}} \text{ such that } \|y - \Phi \Lambda \hat{x}\|_2 \leq \epsilon \ ,$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}$.

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary O
TV inpainting			

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
 - the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
 - N is the number of samples on the sphere of the chosen sampling theorem;
 - *M* noisy measurements $y \in \mathbb{R}^M$ are acquired;
 - the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
 - the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$\int_{\mathbb{S}^2} \,\mathrm{d}\Omega \; |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\varphi-1} \; |\nabla f| \; q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\varphi-1} \; \sqrt{q^2(\theta_t) \big(\delta_\theta \mathbf{x}\big)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \big(\delta_\varphi \mathbf{x}\big)^2} \equiv \|\mathbf{x}\|_{\mathrm{TV}} \; .$$

• TV inpainting problem solved directly on the sphere:

$$oldsymbol{x}^{\star} = rgmin_{oldsymbol{x}} \|oldsymbol{x}\|_{ ext{TV}}$$
 such that $\|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon$.

• TV inpainting problem solved in harmonic space:

$$\hat{x}^* = \operatorname*{arg\,min}_{\hat{x}} \|\Lambda \hat{x}\|_{\mathrm{TV}} \, \, \mathrm{such \, that} \, \, \|y - \Phi \Lambda \hat{x}\|_2 \leq \epsilon \, ,$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}$.

(日) (日) (日) (日) (日) (日) (日)

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary O
TV inpainting			

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
 - the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
 - N is the number of samples on the sphere of the chosen sampling theorem;
 - *M* noisy measurements $y \in \mathbb{R}^M$ are acquired;
 - the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
 - the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$\int_{\mathbb{S}^2} \,\mathrm{d}\Omega \; |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\varphi-1} \; |\nabla f| \; q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\varphi-1} \; \sqrt{q^2(\theta_t) \big(\delta_\theta \mathbf{x}\big)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \big(\delta_\varphi \mathbf{x}\big)^2} \equiv \|\mathbf{x}\|_{\mathrm{TV}} \; .$$

• TV inpainting problem solved directly on the sphere:

$$oldsymbol{x}^{\star} = rgmin_{oldsymbol{x}} \|oldsymbol{x}\|_{ ext{TV}}$$
 such that $\|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon$.

• TV inpainting problem solved in harmonic space:

$$\hat{x}^{\star} = \operatorname*{arg\,min}_{\hat{x}} \|_{\mathrm{TV}} \text{ such that } \|y - \Phi \Lambda \hat{x}\|_{2} \leq \epsilon \;,$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}$.

(日) (日) (日) (日) (日) (日) (日)

Harmonic analysis OO	Sampling theorems	Compressive Sensing	Summary O
TV inpainting: low-re	solution simulations		

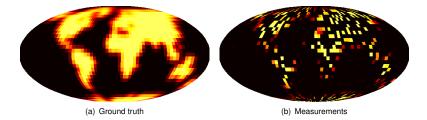


Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Harmonic analysis OO	Sampling theorems	Compressive Sensing	Summary O
TV inpainting: low-	resolution simulations		

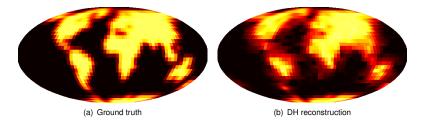


Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Harmonic analysis OO	Sampling theorems	Compressive Sensing	Summary O
TV inpainting: lov	v-resolution simulations	3	

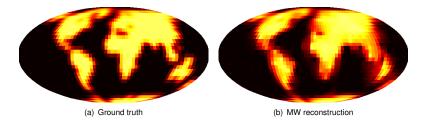


Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Harmonic analysis	Sampling theorems	Compressive Sensing	Summary O
TV inpainting: I	ow-resolution simulations		

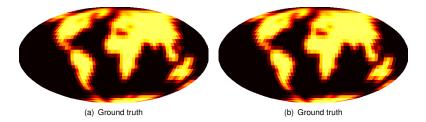


Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Compressive Sensing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

TV inpainting: low-resolution simulations

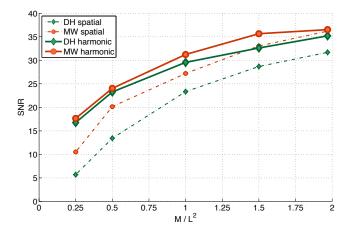


Figure: Reconstruction performance for the DH and MW sampling theorems

Compressive Sensing

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

TV inpainting: high-resolution simulations

- Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
 optimisation problems.
- MW sampling more efficient, hence develop fast adjoints for this case only.

Compressive Sensing

TV inpainting: high-resolution simulations

- Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
 optimisation problems.
- MW sampling more efficient, hence develop fast adjoints for this case only.

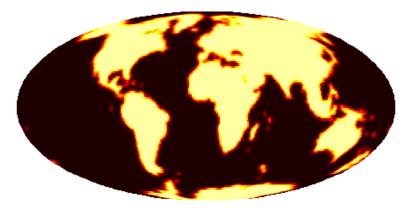


Figure: Ground truth

Compressive Sensing

TV inpainting: high-resolution simulations

- Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
 optimisation problems.
- Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

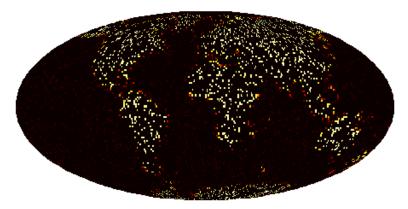


Figure: Measurements $(M/L^2 = 1/4)$

Compressive Sensing

TV inpainting: high-resolution simulations

- Require fast adjoint operators as well as fast spherical harmonic transforms to solve the
 optimisation problems.
- Superiority of MW sampling theorem clear, hence develop fast adjoints for this case only.

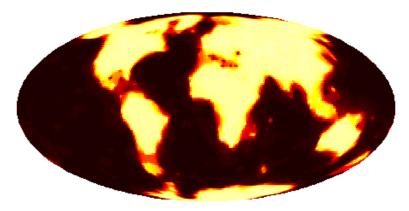


Figure: MW reconstruction $(M/L^2 = 1/4)$

analysis

Compressive Sensing

Summary

- We have developed a new sampling theorem on the sphere requiring fewer than half the number of samples of the canonical Driscoll & Healy sampling theorem.
- A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals.
- We have demonstrated improved reconstruction quality when solving an inpainting problem in the context of different sampling theorems.
- We have developed fast adjoint spherical harmonic transform operators to tackle problems with high band-limits.

Related publications

- McEwen, J. D. and Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans. Sig. Proc., 59(12): 5876-5887, 2011.
- McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P., Ville, D. V. D., and Wiaux, Y., *Efficient and compressive sampling on the sphere*, IEEE Trans. Sig. Proc., submitted, 2011.

SSHT code

 Code available to compute exact spin spherical harmonic transforms (SSHT) in the context of our new sampling theorem: http://www.jasonmcewen.org/