[Harmonic Analysis](#page-2-0) **A** Novel Sampling Theorem [Compressive Sensing](#page-17-0) [Summary](#page-26-0)

000000

000000

KOD CONTRACT A BOAR KOD A CO

A novel sampling theorem on the sphere with implications for compressive sampling

Jason McEwen

<http://www.jasonmcewen.org/>

Department of Physics and Astronomy University College London (UCL)

BASP Frontiers 2011 :: Villars, Switzerland

[Harmonic analysis on the sphere](#page-2-0)

[A novel sampling theorem](#page-10-0)

Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$
\langle f, \; g \rangle = \int_{\mathbf{S}^2} \; \mathrm{d}\Omega(\theta,\varphi) \, f(\theta,\varphi) \; g^*(\theta,\varphi) \; ,
$$

where $d\Omega(\theta, \varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ, φ) define spherical coordinates with colatitude $\theta \in [0, \pi]$ and longitude $\varphi \in [0, 2\pi)$. Complex conjugation is denoted by the superscript *.

The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $\text{L}^2(\text{S}^2)$ scalar functions on the sphere and are defined by

$$
Y_{\ell m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_\ell^m(\cos\theta) e^{im\varphi},
$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \leq \ell$, where $P_{\ell}^{m}(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell + 1)Y_{\ell m}$.
- \bullet Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- **Completeness relation:**

$$
\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta,\varphi) Y_{\ell m}^*(\theta',\varphi') = \delta(\cos\theta - \cos\theta') \delta(\varphi - \varphi')
$$

Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$
\langle f, \; g \rangle = \int_{\mathbf{S}^2} \; \mathrm{d}\Omega(\theta,\varphi) \, f(\theta,\varphi) \; g^*(\theta,\varphi) \; ,
$$

where $d\Omega(\theta, \varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ, φ) define spherical coordinates with colatitude $\theta \in [0, \pi]$ and longitude $\varphi \in [0, 2\pi)$. Complex conjugation is denoted by the superscript *.

• The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $L^2(S^2)$ scalar functions on the sphere and are defined by

$$
Y_{\ell m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\varphi},
$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \leq \ell$, where $P_{\ell}^{m}(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell + 1)Y_{\ell m}$.
- \bullet Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- **Completeness relation:**

$$
\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}Y_{\ell m}(\theta,\varphi)Y_{\ell m}^{*}(\theta',\varphi')=\delta(\cos\theta-\cos\theta')\,\delta(\varphi-\varphi').
$$

KORKAR KERKER E VOOR

Consider the space of square integrable functions on the sphere $L^2(S^2)$, with the inner product of $f, g \in L^2(S^2)$ defined by

$$
\langle f, g \rangle = \int_{\mathbf{S}^2} \, \mathrm{d}\Omega(\theta, \varphi) f(\theta, \varphi) \, g^*(\theta, \varphi) \;,
$$

where $d\Omega(\theta, \varphi) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere and (θ, φ) define spherical coordinates with colatitude $\theta \in [0, \pi]$ and longitude $\varphi \in [0, 2\pi)$. Complex conjugation is denoted by the superscript *.

The scalar spherical harmonic functions form the canonical orthogonal basis for the space of $L^2(S^2)$ scalar functions on the sphere and are defined by

$$
Y_{\ell m}(\theta,\varphi) = \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\varphi},
$$

for natural $\ell \in \mathbb{N}$ and integer $m \in \mathbb{Z}$, $|m| \leq \ell$, where $P_{\ell}^{m}(x)$ are the associated Legendre functions.

- Eigenfunctions of the Laplacian on the sphere: $\Delta_{S^2} Y_{\ell m} = -\ell(\ell + 1)Y_{\ell m}$.
- \bullet Orthogonality relation: $\langle Y_{\ell m}, Y_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{mm'}$, where δ_{ij} is the Kronecker delta symbol.
- **Completeness relation:**

$$
\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell} Y_{\ell m}(\theta,\varphi) Y_{\ell m}^*(\theta',\varphi') = \delta(\cos\theta - \cos\theta') \delta(\varphi - \varphi'),
$$

KORKAR KERKER E VOOR

where $\delta(x)$ is the Dirac delta function.

Any square integrable scalar function on the sphere $f \in L^2(S^2)$ may be represented by its spherical harmonic expansion:

$$
f(\theta,\varphi)=\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}f_{\ell m}Y_{\ell m}(\theta,\varphi).
$$

The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$
f_{\ell m} = \langle f, Y_{\ell m} \rangle = \int_{S^2} d\Omega(\theta, \varphi) f(\theta, \varphi) Y_{\ell m}^*(\theta, \varphi).
$$

 \bullet We consider signals on the sphere band-limited at *L*, that is signals such that $f_{\ell m} = 0$, $\forall \ell \geq L$ ⇒ summations may be truncated to *L* − 1.

Aside: Generalise to spin functions on the sphere. Square integrable spin functions on the sphere $s^f \in L^2(S^2)$, with integer spin $s \in \mathbb{Z}$, $|s| \leq \ell$, are defined by

$$
s f'(\theta, \varphi) = e^{-is\chi} s f(\theta, \varphi)
$$

KORK ERKER ADAM ADA

• Sampling theorems on the sphere.

Any square integrable scalar function on the sphere $f \in L^2(S^2)$ may be represented by its spherical harmonic expansion:

$$
f(\theta,\varphi)=\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}f_{\ell m}Y_{\ell m}(\theta,\varphi).
$$

 \bullet The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$
\left|f_{\ell m}=\langle f,\ Y_{\ell m}\rangle=\int_{S^2} d\Omega(\theta,\varphi) f(\theta,\varphi) Y_{\ell m}^*(\theta,\varphi)\right.
$$

- \bullet We consider signals on the sphere band-limited at *L*, that is signals such that $f_{\ell m} = 0$, $\forall \ell \geq L$ ⇒ summations may be truncated to *L* − 1.
- Aside: Generalise to spin functions on the sphere. Square integrable spin functions on the sphere $_s f \in L^2(S^2)$, with integer spin $s \in \mathbb{Z}$, $|s| \leq \ell$, are defined by their behaviour under local rotations. By definition, a spin function transforms as

$$
{}_{s}f'(\theta,\varphi) = e^{-is\chi} {}_{s}f(\theta,\varphi)
$$

KORK ERKER ADAM ADA

under a local rotation by γ , where the prime denotes the rotated function.

• Sampling theorems on the sphere.

Any square integrable scalar function on the sphere $f \in L^2(S^2)$ may be represented by its spherical harmonic expansion:

$$
f(\theta,\varphi)=\sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}f_{\ell m}Y_{\ell m}(\theta,\varphi).
$$

 \bullet The spherical harmonic coefficients are given by the usual projection onto each basis function:

$$
\left|f_{\ell m}=\langle f,\ Y_{\ell m}\rangle=\int_{S^2} d\Omega(\theta,\varphi) f(\theta,\varphi) Y_{\ell m}^*(\theta,\varphi)\right.
$$

- \bullet We consider signals on the sphere band-limited at *L*, that is signals such that $f_{\ell m} = 0$, $\forall \ell \geq L$ ⇒ summations may be truncated to *L* − 1.
- Aside: Generalise to spin functions on the sphere. Square integrable spin functions on the sphere $_s f \in L^2(S^2)$, with integer spin $s \in \mathbb{Z}$, $|s| \leq \ell$, are defined by their behaviour under local rotations. By definition, a spin function transforms as

$$
{}_{s}f'(\theta,\varphi) = e^{-is\chi} {}_{s}f(\theta,\varphi)
$$

KORK ERKER ADAM ADA

under a local rotation by χ , where the prime denotes the rotated function.

• Sampling theorems on the sphere.

- Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for example:
	- HEALpix (Gorski *et al.* 2005)
	- **• IGLOO** (Crittenden & Turok 1998)
	- \rightarrow Do **not** lead to sampling theorems on the sphere!
- **•** Driscoll & Healy (1994) sampling theorem:
	- Equiangular pixelisation of the sphere
	- Require $\sim 4L^2$ samples on the sphere
	- Semi-naive algorithm with complexity $\mathcal{O}(L^3)$
	- Require a precomputation or otherwise restricted use of Wigner recursions
- Gauss-Legendre sampling theorem:
	- Sample positions given by roots of Legendre functions
	- Require $\sim 2L^2$ samples on the sphere
	- Simple separation of variables gives algorithm with complexity $\mathcal{O}(L^3)$
	- Require a precomputation or otherwise restricted use of Wigner recursions

KORK ERKER ADAM ADA

- Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for example:
	- HEALpix (Gorski *et al.* 2005)
	- **• IGLOO** (Crittenden & Turok 1998)
	- \rightarrow Do **not** lead to sampling theorems on the sphere!
- Driscoll & Healy (1994) sampling theorem:
	- **Equiangular pixelisation of the sphere**
	- Require $\sim 4L^2$ samples on the sphere
	- Semi-naive algorithm with complexity $\mathcal{O}(L^3)$ (algorithms with lower scaling exist but they are not generally stable)
	- Require a precomputation or otherwise restricted use of Wigner recursions
- Gauss-Legendre sampling theorem:
	- Sample positions given by roots of Legendre functions
	- Require $\sim 2L^2$ samples on the sphere
	- Simple separation of variables gives algorithm with complexity $O(L^3)$
	- Require a precomputation or otherwise restricted use of Wigner recursions

KORK ERKER ADAM ADA

We have developed a new sampling theorem and corresponding fast algorithms by performing a factoring of rotations and then by associating the sphere with the torus through a periodic extension.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet Similar (in flavour but not detail!) to making a periodic extension in θ of a function *sf* on the

- We have developed a new sampling theorem and corresponding fast algorithms by performing a factoring of rotations and then by associating the sphere with the torus through a periodic extension.
- \bullet Similar (in flavour but not detail!) to making a periodic extension in θ of a function *sf* on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

KORK STRAIN A STRAIN A STRAIN

Figure: Associating functions on the sphere and torus

[Harmonic Analysis](#page-2-0) [A Novel Sampling Theorem](#page-10-0) [Compressive Sensing](#page-17-0) [Summary](#page-26-0) A novel sampling theorem on the sphere: inverse transform

By a factoring of rotations, a reordering of summations and a separation of variables, the inverse transform of *^sf* may be written:

KORKARA KERKER DAGA

where $\Delta^\ell_{\it mn} \equiv d^\ell_{\it mn}(\pi/2)$ are the reduced Wigner functions evaluated at $\pi/2.$

By a factoring of rotations, a reordering of summations and a separation of variables, the forward transform of *^sf* may be written:

Forward spherical harmonic transform $s f_{\ell m} = (-1)^s i^{m+s} \sqrt{\frac{2\ell+1}{4\pi}}$ $\frac{2+1}{4\pi}$ $\sum_{n=1}^{L-1}$ $m' = -(L-1)$ $\Delta_{m^{\prime}m}^{\ell} \Delta_{m^{\prime},-s}^{\ell}$, ϵ $\int_{s}^{R} G_{mm'} = \int_{0}^{\pi} d\theta \sin \theta \sqrt{s} G_{m}(\theta) e^{-im'\theta}$ $⁰$ </sup> $\delta_{s}G_{m}(\theta) = \int^{2\pi} \,\mathrm{d}\varphi \,{}_{s}\!f(\theta,\varphi) \,\mathrm{e}^{-\mathrm{i}m\varphi}$ $\mathbf{0}$

- \bullet
- The Fourier series expansion is only defined for periodic functions; thus, to recast these

By a factoring of rotations, a reordering of summations and a separation of variables, the forward transform of *^sf* may be written:

Forward spherical harmonic transform $s f_{\ell m} = (-1)^s i^{m+s} \sqrt{\frac{2\ell+1}{4\pi}}$ $\frac{2+1}{4\pi}$ $\sum_{n=1}^{L-1}$ $m' = -(L-1)$ $\Delta_{m^{\prime}m}^{\ell} \Delta_{m^{\prime},-s}^{\ell}$, ϵ $\int_0^{\pi} G_{mm'} = \int_0^{\pi}$ $\int_0^{\pi} d\theta \sin \theta_s G_m(\theta) e^{-im'\theta}$ $\delta_{s}G_{m}(\theta) = \int^{2\pi} \,\mathrm{d}\varphi \,{}_{s}\!f(\theta,\varphi) \,\mathrm{e}^{-\mathrm{i}m\varphi}$ $\mathbf{0}$

- This formulation highlights similarities with Fourier series representation.
- The Fourier series expansion is only defined for periodic functions; thus, to recast these expressions in a form amenable to the application of Fourier transforms we must make a periodic extension in colatitude θ.

• Properties of our new sampling theorem:

- **Equiangular pixelisation of the sphere**
- Require $\sim 2L^2$ samples on the sphere (and still fewer than Gauss-Legendre sampling)
- Exploit fast Fourier transforms to yield a fast algorithm with complexity $\mathcal{O}(L^3)$
- No precomputation and very flexible regarding use of Wigner recursions
- Extends to spin function on the sphere with no change in complexity or computation time

Figure: Performance of our sampling theorem (MW=red; DH=green; GL=blue)

KORKARYKERKE PORCH

- **•** Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating the integral of a band-limited function on the sphere.
- The quadrature rule can be made explicit:

$$
\int_{\mathbb{S}^2} d\Omega(\theta, \varphi) \, \jmath f(\theta, \varphi) = \sum_{t=0}^{L-1} \, \sum_{p=0}^{2L-2} \, q_{\text{MW}}(\theta_t) \, \jmath f(\theta_t, \varphi_p) \; .
$$

A similar quadrature rule can be given for the Driscoll & Healy sampling theorem. However, 2*L* samples in colatitude θ are required $\Rightarrow \sim 4L^2$ samples on the sphere.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing.
- Many natural signals are sparse in measures defined in the spatial domain, such as in the magnitude of their gradient.
- A more efficient sampling of a band-limited signal on the sphere improves both the dimensionality and sparsity of the signal in the spatial domain.
- For a given number of measurements, a more efficient sampling theorem improves the quality of compressive sampling reconstruction.

KOD CONTRACT A BOAR KOD A CO

• Illustrate with a total variation (TV) inpainting problem on the sphere.

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
	- the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
	- *N* is the number of samples on the sphere of the chosen sampling theorem;
	- M noisy measurements $y \in \mathbb{R}^M$ are acquired;
	- the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
	- the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$
\left|\int_{S^2} d\Omega |\nabla f| \simeq \sum_{t=0}^{N_\theta-1}\sum_{p=0}^{N_\phi-1} |\nabla f| \, q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1}\sum_{p=0}^{N_\phi-1} \sqrt{q^2(\theta_t)(\delta_\theta x)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} (\delta_\phi x)^2} \equiv \|x\|_{\rm TV}.
$$

 \bullet TV inpainting problem solved directly on the sphere:

$$
x^* = \underset{\mathbf{x}}{\arg\min} \, \| \mathbf{x} \|_{\text{TV}} \, \text{ such that } \, \| \mathbf{y} - \Phi \mathbf{x} \|_2 \leq \epsilon \, .
$$

● TV inpainting problem solved in harmonic space:

$$
\mathbf{\hat{x}}^{\star} = \underset{\mathbf{\hat{x}}}{\arg \min} \|\Lambda \mathbf{\hat{x}}\|_{TV} \text{ such that } \| \mathbf{y} - \Phi \Lambda \mathbf{\hat{x}}\|_2 \leq \epsilon \,,
$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}.$

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
	- the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
	- *N* is the number of samples on the sphere of the chosen sampling theorem;
	- M noisy measurements $y \in \mathbb{R}^M$ are acquired;
	- the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
	- the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$
\int_{S^2} d\Omega \; |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\theta-1} \; |\nabla f| \; q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\phi-1} \; \sqrt{q^2(\theta_t) \big(\delta_\theta x\big)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \big(\delta_\varphi x\big)^2} \equiv \|x\|_{\rm TV} \; .
$$

 \bullet TV inpainting problem solved directly on the sphere:

$$
x^* = \underset{x}{\arg\min} \|x\|_{TV} \text{ such that } \|y - \Phi x\|_2 \leq \epsilon.
$$

● TV inpainting problem solved in harmonic space:

$$
\hat{\mathbf{x}}^* = \underset{\hat{\mathbf{x}}}{\arg\min} \|\Lambda \hat{\mathbf{x}}\|_{TV} \text{ such that } \| \mathbf{y} - \Phi \Lambda \hat{\mathbf{x}}\|_2 \leq \epsilon \,,
$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}.$

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
	- the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
	- *N* is the number of samples on the sphere of the chosen sampling theorem;
	- M noisy measurements $y \in \mathbb{R}^M$ are acquired;
	- the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
	- the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$
\int_{S^2} d\Omega \; |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\theta-1} \; |\nabla f| \; q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\phi-1} \; \sqrt{q^2(\theta_t) \big(\delta_\theta x\big)^2 + \frac{q^2(\theta_t)}{\sin^2\theta_t} \big(\delta_\varphi x\big)^2} \equiv \|x\|_{\rm TV} \; .
$$

• TV inpainting problem solved directly on the sphere:

$$
x^* = \underset{x}{\arg\min} \|x\|_{TV} \text{ such that } \|y - \Phi x\|_2 \leq \epsilon.
$$

● TV inpainting problem solved in harmonic space:

$$
\hat{\mathbf{x}}^* = \underset{\hat{\mathbf{x}}}{\arg\min} \|\Lambda \hat{\mathbf{x}}\|_{TV} \text{ such that } \| \mathbf{y} - \Phi \Lambda \hat{\mathbf{x}}\|_2 \leq \epsilon \,,
$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{x} \in \mathbb{C}^{L^2}.$

- Consider inpainting problem $y = \Phi x + n$ in the context of different sampling theorems, where:
	- the samples of *f* are denoted by the concatenated vector $x \in \mathbb{R}^N$;
	- *N* is the number of samples on the sphere of the chosen sampling theorem;
	- M noisy measurements $y \in \mathbb{R}^M$ are acquired;
	- the measurement operator $\Phi \in \mathbb{R}^{M \times N}$ represents a random masking of the signal;
	- the noise $n \in \mathbb{R}^M$ is assumed to be iid Gaussian with zero mean.
- Define TV norm on the sphere:

$$
\int_{S^2} d\Omega |\nabla f| \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\theta-1} |\nabla f| \, q(\theta_t) \simeq \sum_{t=0}^{N_\theta-1} \sum_{p=0}^{N_\phi-1} \sqrt{q^2(\theta_t) \big(\delta_\theta x\big)^2 + \frac{q^2(\theta_t)}{\sin^2 \theta_t} \big(\delta_\varphi x\big)^2} \equiv \|x\|_{\rm TV} \; .
$$

TV inpainting problem solved directly on the sphere:

$$
x^* = \underset{x}{\arg\min} \|x\|_{TV} \text{ such that } \|y - \Phi x\|_2 \leq \epsilon.
$$

TV inpainting problem solved in harmonic space:

$$
\hat{\boldsymbol{x}}^\star = \underset{\hat{\boldsymbol{x}}}{\arg\min} \ \|\Lambda \hat{\boldsymbol{x}}\|_{\text{TV}} \ \ \text{such that} \ \ \| \boldsymbol{y} - \boldsymbol{\Phi} \Lambda \hat{\boldsymbol{x}} \|_2 \leq \epsilon \ ,
$$

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are represented by the concatenated vector $\hat{\pmb{x}} \in \mathbb{C}^{L^2}$.

KORK ERKER ADAM ADA

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling theorem and our new sampling theorem.

Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling theorem and our new sampling theorem.

Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling theorem and our new sampling theorem.

Figure: Earth topographic data reconstructed in the harmonic domain for $M/L^2 = 1/2$

Figure: Reconstruction performance for the DH and MW sampling theorems

- We have developed a new sampling theorem on the sphere requiring fewer than half the number of samples of the canonical Driscoll & Healy sampling theorem.
- A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals.
- We have demonstrated improved reconstruction quality when solving an inpainting problem in the context of different sampling theorems.

Upcoming publications

- McEwen, J. D. and Wiaux, Y., *A novel sampling theorem on the sphere*, IEEE Trans. Sig. Proc., in press, 2011.
- \bullet McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P., Ville, D. V. D., and Wiaux, Y., *Efficient and compressive sampling on the sphere*, IEEE Trans. Sig. Proc., submitted, 2011.

SSHT code

Code to compute exact spin spherical harmonic transforms (SSHT) in the context of our new sampling theorem will be available very soon from:

```
http://www.jasonmcewen.org/
```