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Spherical harmonics

Consider the space of square integrable functions on the sphere L2(S2), with the inner
product of f , g ∈ L2(S2) defined by

〈f , g〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) g∗(θ, ϕ) ,

where dΩ(θ, ϕ) = sin θ dθ dϕ is the usual invariant measure on the sphere and (θ, ϕ) define
spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π). Complex
conjugation is denoted by the superscript ∗.

The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L2(S2) scalar functions on the sphere and are defined by

Y`m(θ, ϕ) =

√
2`+ 1

4π
(`− m)!

(`+ m)!
Pm
` (cos θ) eimϕ

,

for natural ` ∈ N and integer m ∈ Z, |m| ≤ `, where Pm
` (x) are the associated Legendre

functions.

Eigenfunctions of the Laplacian on the sphere: ∆S2 Y`m = −`(`+ 1)Y`m.

Orthogonality relation: 〈Y`m, Y`′m′ 〉 = δ``′δmm′ , where δij is the Kronecker delta symbol.

Completeness relation:

∞∑
`=0

∑̀
m=−`

Y`m(θ, ϕ) Y∗`m(θ
′
, ϕ
′
) = δ(cos θ − cos θ′) δ(ϕ− ϕ′) ,

where δ(x) is the Dirac delta function.
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Spherical harmonic transform

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =
∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L
⇒ summations may be truncated to L− 1.

Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, |s| ≤ `, are defined by
their behaviour under local rotations. By definition, a spin function transforms as

sf ′(θ, ϕ) = e−isχ
sf (θ, ϕ)

under a local rotation by χ, where the prime denotes the rotated function.

Sampling theorems on the sphere.
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Sampling theorems on the sphere: state-of-the-art

Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for
example:

HEALpix (Gorski et al. 2005)
IGLOO (Crittenden & Turok 1998)

→ Do not lead to sampling theorems on the sphere!

Driscoll & Healy (1994) sampling theorem:
Equiangular pixelisation of the sphere
Require ∼ 4L2 samples on the sphere
Semi-naive algorithm with complexity O(L3)
(algorithms with lower scaling exist but they are not generally stable)

Require a precomputation or otherwise restricted use of Wigner recursions

Gauss-Legendre sampling theorem:
Sample positions given by roots of Legendre functions
Require ∼ 2L2 samples on the sphere
Simple separation of variables gives algorithm with complexity O(L3)

Require a precomputation or otherwise restricted use of Wigner recursions
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A novel sampling theorem on the sphere

We have developed a new sampling theorem and corresponding fast algorithms by performing
a factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

Similar (in flavour but not detail!) to making a periodic extension in θ of a function sf on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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A novel sampling theorem on the sphere: inverse transform

By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of sf may be written:

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf `m

where ∆`
mn ≡ d`mn(π/2) are the reduced Wigner functions evaluated at π/2.
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A novel sampling theorem on the sphere: forward transform

By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of sf may be written:

Forward spherical harmonic transform

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

This formulation highlights similarities with Fourier series representation.

The Fourier series expansion is only defined for periodic functions; thus, to recast these
expressions in a form amenable to the application of Fourier transforms we must make a
periodic extension in colatitude θ.
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A novel sampling theorem on the sphere: properties

Properties of our new sampling theorem:
Equiangular pixelisation of the sphere
Require ∼ 2L2 samples on the sphere (and still fewer than Gauss-Legendre sampling)
Exploit fast Fourier transforms to yield a fast algorithm with complexity O(L3)

No precomputation and very flexible regarding use of Wigner recursions
Extends to spin function on the sphere with no change in complexity or computation time
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Figure: Performance of our sampling theorem (MW=red; DH=green; GL=blue)
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A novel sampling theorem on the sphere: quadrature

Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating
the integral of a band-limited function on the sphere.

The quadrature rule can be made explicit:∫
S2

dΩ(θ, ϕ) sf (θ, ϕ) =

L−1∑
t=0

2L−2∑
p=0

qMW(θt) sf (θt, ϕp) .

A similar quadrature rule can be given for the Driscoll & Healy sampling theorem. However, 2L
samples in colatitude θ are required⇒∼ 4L2 samples on the sphere.
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Compressive sensing on the sphere

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing.

Many natural signals are sparse in measures defined in the spatial domain, such as in the
magnitude of their gradient.

A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

For a given number of measurements, a more efficient sampling theorem improves the quality
of compressive sampling reconstruction.

Illustrate with a total variation (TV) inpainting problem on the sphere.
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TV inpainting

Consider inpainting problem y = Φx + n in the context of different sampling theorems, where:
the samples of f are denoted by the concatenated vector x ∈ RN ;
N is the number of samples on the sphere of the chosen sampling theorem;
M noisy measurements y ∈ RM are acquired;
the measurement operator Φ ∈ RM×N represents a random masking of the signal;
the noise n ∈ RM is assumed to be iid Gaussian with zero mean.

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂? = arg min
x̂
‖Λx̂‖TV such that ‖y− ΦΛx̂‖2 ≤ ε ,

where Λ represents the inverse spherical harmonic transform and harmonic coefficients are

represented by the concatenated vector x̂ ∈ CL2
.
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TV inpainting

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting
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Figure: Reconstruction performance for the DH and MW sampling theorems
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Summary

We have developed a new sampling theorem on the sphere requiring fewer than half the
number of samples of the canonical Driscoll & Healy sampling theorem.

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing, both in terms of the
dimensionality and sparsity of signals.

We have demonstrated improved reconstruction quality when solving an inpainting problem in
the context of different sampling theorems.

Upcoming publications

McEwen, J. D. and Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans.
Sig. Proc., in press, 2011.

McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P., Ville, D. V. D., and Wiaux, Y.,
Efficient and compressive sampling on the sphere, IEEE Trans. Sig. Proc., submitted,
2011.

SSHT code

Code to compute exact spin spherical harmonic transforms (SSHT) in the context of
our new sampling theorem will be available very soon from:
http://www.jasonmcewen.org/

http://www.jasonmcewen.org/
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