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Spherical harmonics

@ Consider the space of square integrable functions on the sphere L*(S*), with the inner
product of f, g € L*(S?) defined by

0.0 = [, 4260, 0)70.0) ¢ (0,6,
S
where dQ2(6, ») = sin 6 df dy is the usual invariant measure on the sphere and (6, ¢) define

spherical coordinates with colatitude ¢ € [0, =] and longitude ¢ € [0, 27). Complex
conjugation is denoted by the superscript *.
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where dQ2(6, ») = sin 6 df dy is the usual invariant measure on the sphere and (6, ¢) define
spherical coordinates with colatitude ¢ € [0, =] and longitude ¢ € [0, 27). Complex
conjugation is denoted by the superscript *.

@ The scalar spherical harmonic functions form the canonical orthogonal basis for the space of
L*(S?%) scalar functions on the sphere and are defined by
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for natural £ € N and integer m € Z, |m| < ¢, where P/ (x) are the associated Legendre
functions.

@ Eigenfunctions of the Laplacian on the sphere: Ay Yy, = —£(€ 4 1)Yy.
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for natural £ € N and integer m € Z, |m| < ¢, where P/ (x) are the associated Legendre
functions.

@ Eigenfunctions of the Laplacian on the sphere: Ay Yy, = —£(€ 4 1)Yy.

@ Orthogonality relation: (Y, Y,r,) = 840/6,,,, Where &; is the Kronecker delta symbol.
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@ Completeness relation:

oo 14
S ST Vin(8,9) Y7, (0", ¢') = S(cos 8 — cos8) 3 — ') ,
L=0m=—2¢

where 4 (x) is the Dirac delta function.
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Spherical harmonic transform

@ Any square integrable scalar function on the sphere / € L(S*) may be represented by its
spherical harmonic expansion:

oo

14
FO,0) =" > fon Yeu(0,9) .

L=0m=—1¢

@ The spherical harmonic coefficients are given by the usual projection onto each basis function:

fon = . Yew) = [, 490,00 1(0.) Y00 0.5)

@ We consider signals on the sphere band-limited at L, that is signals such that fy,, = 0, V¢ > L
= summations may be truncated to L — 1.
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@ We consider signals on the sphere band-limited at L, that is signals such that fy,, = 0, V¢ > L
= summations may be truncated to L — 1.

@ Aside: Generalise to spin functions on the sphere.
Square integrable spin functions on the sphere . € L2(S?), with integer spin s € Z, |s| < £, are defined by
their behaviour under local rotations. By definition, a spin function transforms as

o (0,0) = TN (0, 0)
under a local rotation by x, where the prime denotes the rotated function.
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@ Sampling theorems on the sphere.
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Sampling theorems on the sphere: state-of-the-art

@ Inexact spherical harmonic transforms exist for a variety of pixelisations of the sphere, for
example:

@ HEALpix (Gorski et al. 2005)
@ IGLOO (Crittenden & Turok 1998)

— Do not lead to sampling theorems on the sphere!
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@ Driscoll & Healy (1994) sampling theorem:
e Equiangular pixelisation of the sphere
@ Require ~ 4L samples on the sphere
@ Semi-naive algorithm with complexity O (L*)
(algorithms with lower scaling exist but they are not generally stable)
e Require a precomputation or otherwise restricted use of Wigner recursions

@ Gauss-Legendre sampling theorem:
e Sample positions given by roots of Legendre functions
e Require ~ 21> samples on the sphere
e Simple separation of variables gives algorithm with complexity O (L?)
@ Require a precomputation or otherwise restricted use of Wigner recursions
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A novel sampling theorem on the sphere

@ We have developed a new sampling theorem and corresponding fast algorithms by performing
a factoring of rotations and then by associating the sphere with the torus through a periodic
extension.
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A novel sampling theorem on the sphere

@ We have developed a new sampling theorem and corresponding fast algorithms by performing

a factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

@ Similar (in flavour but not detail!) to making a periodic extension in ¢ of a function ,f on the
sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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A novel sampling theorem on the sphere: inverse transform

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of ;f may be written:

Inverse spherical harmonic transform

L—1

Sf(ev ‘P) = Z SFm(e) eimw

m=—(L—1)

L—1

<)
sFu(0) = Z st e
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L—1
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where AY = d’ (r/2) are the reduced Wigner functions evaluated at /2.

mn mn
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A novel sampling theorem on the sphere: forward transform

@ By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of ./ may be written:

Forward spherical harmonic transform
et [2EFT ¢ ¢
Fon= GO0 3T AL, Ay G

m/=—(L—1)
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@ This formulation highlights similarities with Fourier series representation.

@ The Fourier series expansion is only defined for periodic functions; thus, to recast these
expressions in a form amenable to the application of Fourier transforms we must make a
periodic extension in colatitude 6.
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A novel sampling theorem on the sphere: properties

@ Properties of our new sampling theorem:
e Equiangular pixelisation of the sphere
e Require ~ 21> samples on the sphere (and still fewer than Gauss-Legendre sampling)
e Exploit fast Fourier transforms to yield a fast algorithm with complexity O (L?)
@ No precomputation and very flexible regarding use of Wigner recursions
e Extends to spin function on the sphere with no change in complexity or computation time

p L [

(a) Number of samples (b) Numerical accuracy (c) Computation time

Figure: Performance of our sampling theorem (MW=red; DH=green; GL=blue)
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A novel sampling theorem on the sphere: quadrature

@ Sampling theorems effectively encode (often implicitly) an exact quadrature rule for evaluating
the integral of a band-limited function on the sphere.

@ The quadrature rule can be made explicit:

L—1 2L—2

/Sz dQ(0, ) f(0, ) = Z Z aaw (01) of (015 p) -

=0 p=0

@ A similar quadrature rule can be given for the Driscoll & Healy sampling theorem. However, 2L
samples in colatitude ¢ are required = ~ 4L? samples on the sphere.
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Compressive sensing on the sphere

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing.

@ Many natural signals are sparse in measures defined in the spatial domain, such as in the
magnitude of their gradient.

@ A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

@ For a given number of measurements, a more efficient sampling theorem improves the quality
of compressive sampling reconstruction.

@ lllustrate with a total variation (TV) inpainting problem on the sphere.
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:

the samples of / are denoted by the concatenated vector x € R";

N is the number of samples on the sphere of the chosen sampling theorem;

M noisy measurements y € RY are acquired;

the measurement operator & € RM %" represents a random masking of the signal;
the noise n € R is assumed to be iid Gaussian with zero mean.
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@ TV inpainting problem solved directly on the sphere:

x* = argmin ||x||rv suchthat ||y — ®x|, < e.
x
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TV inpainting

@ Consider inpainting problem y = ®x + r in the context of different sampling theorems, where:
@ the samples of / are denoted by the concatenated vector x € RY;
@ N is the number of samples on the sphere of the chosen sampling theorem;
@ M noisy measurements y ¢ RY are acquired;
@ the measurement operator & € RY >V represents a random masking of the signal;
@ the noise n € R is assumed to be iid Gaussian with zero mean.

@ Define TV norm on the sphere:

Ng—1 Np—1 Ng—1 Np—1
[ P [ » 612(9:)

foaoivi= X 3 vae) = Y X ([0 (300 + T (506)? = sl -

=0 p=0 t=0  p=0

@ TV inpainting problem solved directly on the sphere:

x* = argmin ||x||rv suchthat ||y — ®x|, < e.
x

@ TV inpainting problem solved in harmonic space:

#* = argmin ||AZ||ry suchthat ||y — ®AZ|) < e,
®

where A represents the inverse spherical harmonic transform and harmonic coefficients are
2
represented by the concatenated vector # € C-".
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TV inpainting

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L> = 1/2
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TV inpainting

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L> = 1/2
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TV inpainting

@ Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem.

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L> = 1/2
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TV inpainting
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Figure: Reconstruction performance for the DH and MW sampling theorems
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Summary

@ We have developed a new sampling theorem on the sphere requiring fewer than half the
number of samples of the canonical Driscoll & Healy sampling theorem.

@ A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for compressive sensing, both in terms of the
dimensionality and sparsity of signals.

@ We have demonstrated improved reconstruction quality when solving an inpainting problem in
the context of different sampling theorems.

Upcoming publications

@ McEwen, J. D. and Wiaux, Y., A novel sampling theorem on the sphere, IEEE Trans.
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@ McEwen, J. D., Puy, G., Thiran, J.-P., Vandergheynst, P, Ville, D. V. D., and Wiaux, Y.,

Efficient and compressive sampling on the sphere, IEEE Trans. Sig. Proc., submitted,
2011.
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SSHT code

@ Code to compute exact spin spherical harmonic transforms (SSHT) in the context of
our new sampling theorem will be available very soon from:
http://www.jasonmcewen.org/
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