Wavelet localisation of isotropic random fields on the sphere and cosmological implications

Searching for primordial gravitational waves

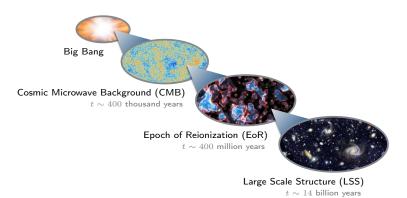
Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL)
University College London (UCL)

Mathematical Models and Methods in Earth and Space Sciences Rome Tor Vergata, May 2019

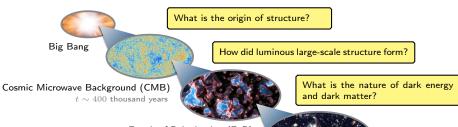
Cosmic evolution

Unanswered fundamental questions



Cosmic evolution

Unanswered fundamental questions



Epoch of Reionization (EoR)

 $t\sim 400$ million years

Cosmic evolution

Unanswered fundamental questions

What is the origin of structure?

How did luminous large-scale structure form?

Cosmic Microwave Background (CMB)

 $t \sim 400$ thousand years

What is the nature of dark energy and dark matter?

Epoch of Reionization (EoR)

 $t \sim 400$ million years

Large Scale Structure (LSS)

 $t \sim 14$ billion years

Planck

MWA

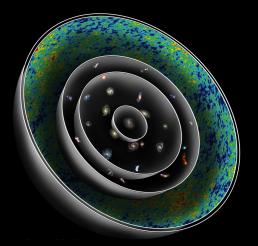
LOFAR

SKA

Euclid

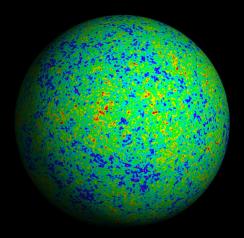
LSST

Cosmological observations on spherical manifolds

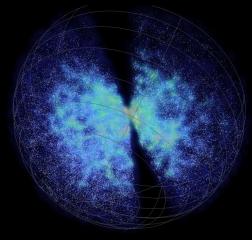


Credit: Abrams and Primack Inc.

Cosmic microwave background (CMB) observed on 2D sphere



Galaxy distribution observed on 3D ball



Credit: SDSS

Outline

- Scale-discretised wavelets on the sphere and ball
- Sampling theory and fast algorithms
- E/B separation for CMB polarization and cosmic shear

- Scale-discretised wavelets on the sphere and ball
- Sampling theory and fast algorithms
- 3 E/B separation for CMB polarization and cosmic shear

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- ullet The natural extension of translations to the sphere are rotations. Rotation of a function $f\in L^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- How define dilation on the sphere?
 - Stereographic projection
 Antoine & Vandergheynst (1999) Wilaux et al. (2005)
 - Harmonic dilation wavelets
 McEwen et al. (2006). Sanz et al. (2006).
 - Isotropic undecimated wavelets
 Starck et al. (2005). Starck et al. (2009)
 - a Needlets
 - Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)
 - Scale-discretised wavelets
 - Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet
- The natural extension of translations to the sphere are rotations. Rotation of a function $f \in L^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- ullet The natural extension of translations to the sphere are rotations. Rotation of a function $f\in L^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- How define dilation on the sphere?
 - Stereographic projection
 Antoine & Vandergheynst (1999), Wiaux et al. (2005)
 - Harmonic dilation wavelets
 McEwen et al. (2006), Sanz et al. (2006)
 - Isotropic undecimated wavelets Starck *et al.* (2005), Starck *et al.* (2009)
 - Needlets
 Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)
 - Scale-discretised wavelets
 Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- ullet The natural extension of translations to the sphere are rotations. Rotation of a function $f\in L^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- How define dilation on the sphere?
 - Stereographic projection Antoine & Vandergheynst (1999), Wiaux et al. (2005)
 - Harmonic dilation wavelets
 McEwen et al. (2006), Sanz et al. (2006)
 - Isotropic undecimated wavelets
 Starck et al. (2005), Starck et al. (2009)
 - Needlets
 Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)
 - Scale-discretised wavelets
 Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)

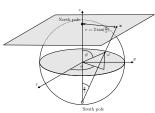


Figure: Stereographic projection

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- ullet The natural extension of translations to the sphere are rotations. Rotation of a function $f\in L^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- How define dilation on the sphere?
 - Stereographic projection
 Antoine & Vandergheynst (1999), Wiaux et al. (2005)
 - Harmonic dilation wavelets
 McEwen et al. (2006), Sanz et al. (2006)
 - Isotropic undecimated wavelets Starck et al. (2005), Starck et al. (2009)
 - Needlets
 Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)
 - Scale-discretised wavelets
 Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)



Figure: Stereographic projection

- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- ullet The natural extension of translations to the sphere are rotations. Rotation of a function $f\in \mathrm{L}^2(\mathbb{S}^2)$ on the sphere is defined by

$$[\mathcal{R}(\rho)f](\omega) = f(\mathsf{R}_{\rho}^{-1}\omega), \quad \omega = (\theta,\varphi) \in \mathbb{S}^2, \quad \rho = (\alpha,\beta,\gamma) \in \mathrm{SO}(3).$$

- How define dilation on the sphere?
 - Stereographic projection
 Antoine & Vandergheynst (1999), Wiaux et al. (2005)
 - Harmonic dilation wavelets
 McEwen et al. (2006), Sanz et al. (2006)
 - Isotropic undecimated wavelets
 Starck et al. (2005), Starck et al. (2009)
 - Needlets
 Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)
 - Scale-discretised wavelets
 Wiaux, McEwen et al. (2008), McEwen et al. (2013, 2015, 2017)

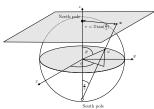


Figure: Stereographic projection

Directional spin wavelets

- Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Extend to functions of arbitrary spin. McEwen et al. (2015)

Spin s signals transform under local rotations of χ by $sf' = e^{-is\chi}sf$

Directional spin wavelets

- Exact reconstruction with directional wavelets on the sphere
 Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Extend to functions of arbitrary spin.

 McEwen et al. (2015)

Spin s signals transform under local rotations of χ by $sf' = e^{-is\chi} sf$

- Why directional wavelets?
 - Peaks of isotropic random fields elongated Bond & Efstathiou (1987)
 - Anisotropic structure (in additional to, e.g., inflationary Gaussian component for CMB)

Axisymmetric kernel construction

ullet Spin scale-discretised wavelet ${}_s\Psi^j$ constructed in separable form in harmonic space:

$$s\Psi_{\ell m}^{j} = \begin{bmatrix} \kappa^{j}(\ell) \\ \\ \text{axisymmetric} \end{bmatrix} \times \begin{bmatrix} \zeta_{\ell m} \\ \\ \text{directional} \end{bmatrix}.$$

Admissible wavelets constructed to satisfy a partition of the identity:

$$\frac{|s\Phi_{\ell 0}|^2}{|s\Phi_{\ell 0}|^2} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{|s\Psi^j_{\ell m}|^2}{|s\Psi^j_{\ell m}|^2} = 1 \;, \quad \forall \ell \;.$$
 scaling function

 Axisymmetric wavelet kernels κ^j(ℓ): smooth, infinitely differentiable (Schwarz) functions with compact support.

Axisymmetric kernel construction

ullet Spin scale-discretised wavelet ${}_s\Psi^j$ constructed in separable form in harmonic space:

$$_{s}\Psi_{\ell m}^{j} = \begin{bmatrix} \kappa^{j}(\ell) \\ \kappa^{j}(\ell) \end{bmatrix} \times \begin{bmatrix} \zeta_{\ell m} \\ \kappa^{j}(\ell) \end{bmatrix}$$
.

Admissible wavelets constructed to satisfy a partition of the identity:

$$\frac{|_s \Phi_{\ell 0}|^2}{|_s \Phi_{\ell 0}|^2} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{|_s \Psi^j_{\ell m}|^2}{|_s \Psi^j_{\ell m}|^2} = 1 \,, \quad \forall \ell \,.$$
 scaling function

 Axisymmetric wavelet kernels κ^j(ℓ): smooth, infinitely differentiable (Schwarz) functions with compact support.

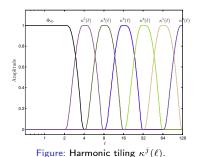
Axisymmetric kernel construction

ullet Spin scale-discretised wavelet ${}_s\Psi^j$ constructed in separable form in harmonic space:

$$_{s}\Psi_{\ell m}^{j} = \begin{bmatrix} \kappa^{j}(\ell) \\ \text{axisymmetric} \end{bmatrix} \times \begin{bmatrix} \zeta_{\ell m} \\ \text{direction} \end{bmatrix}.$$

• Admissible wavelets constructed to satisfy a partition of the identity:

$$\frac{|_s\Phi_{\ell 0}|^2}{|_{\rm caling \ function}} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \frac{|_s\Psi^j_{\ell m}|^2}{|_{\rm wavelet}} = 1 \;, \quad \forall \ell \;.$$



• Axisymmetric wavelet kernels $\kappa^j(\ell)$: smooth, infinitely differentiable (Schwarz) functions with compact support.

Directional kernel construction

Consider directional auto-correlation:

$$\Gamma^{(j)}(\Delta \gamma = \gamma' - \gamma) \equiv \langle \Psi_{\gamma}^{(j)}, \ \Psi_{\gamma'}^{(j)} \rangle$$

Impose auto-correlation of the form:

$$\Gamma^{(j)}(\Delta \gamma) = \sum_{\ell=0}^{\infty} |\kappa^{(j)}(\ell)|^2 \cos^p(\Delta \gamma)$$

Recover directional wavelet kernel:

$$\zeta_{\ell m} = \eta \, v \, \sqrt{\frac{1}{2^p} \binom{p}{(p-m)/2}}$$

whore

$$\eta = \begin{cases} 1, & \text{if } N - 1 \text{ even} \\ \mathrm{i}, & \text{if } N - 1 \text{ odd} \end{cases}, \quad \upsilon = [1 - (-1)^{N+m}]/2 = \begin{cases} 0, & \text{if } N + m \text{ ever} \\ 1, & \text{if } N + m \text{ odd} \end{cases}$$

Directional kernel construction

Consider directional auto-correlation:

$$\Gamma^{(j)}(\Delta\gamma = \gamma' - \gamma) \equiv \langle \Psi_{\gamma}^{(j)}, \ \Psi_{\gamma'}^{(j)} \rangle = \sum_{\ell=0}^{\infty} \left| \kappa^{(j)}(\ell) \right|^2 \sum_{m=-\min(N-1,\ell)}^{\min(N-1,\ell)} \left| \zeta_{\ell m} \right|^2 \mathrm{e}^{(\mathrm{i} m \Delta \gamma)} \,,$$

Impose auto-correlation of the form:

$$\Gamma^{(j)}(\Delta \gamma) = \sum_{\ell=0}^{\infty} |\kappa^{(j)}(\ell)|^2 \cos^p(\Delta \gamma)$$

Recover directional wavelet kernel

$$\zeta_{\ell m} = \eta \, \upsilon \, \sqrt{\frac{1}{2^p} \binom{p}{(p-m)/2}}$$

whore

$$\eta = \begin{cases} 1, & \text{if } N-1 \text{ even} \\ \text{i,} & \text{if } N-1 \text{ odd} \end{cases}, \quad \upsilon = [1-(-1)^{N+m}]/2 = \begin{cases} 0, & \text{if } N+m \text{ even} \\ 1, & \text{if } N+m \text{ odd} \end{cases}$$

Directional kernel construction

Consider directional auto-correlation:

$$\Gamma^{(j)}(\Delta\gamma = \gamma' - \gamma) \equiv \langle \Psi_{\gamma}^{(j)}, \; \Psi_{\gamma'}^{(j)} \rangle = \sum_{\ell=0}^{\infty} \left| \kappa^{(j)}(\ell) \right|^2 \sum_{m=-\min(N-1,\ell)}^{\min(N-1,\ell)} \left| \zeta_{\ell m} \right|^2 \mathrm{e}^{(\mathrm{i} m \Delta \gamma)} \; ,$$

• Impose auto-correlation of the form:

$$\Gamma^{(j)}(\Delta \gamma) = \sum_{\ell=0}^{\infty} |\kappa^{(j)}(\ell)|^2 \cos^p(\Delta \gamma).$$

Recover directional wavelet kernel

$$\zeta_{\ell m} = \eta \, \upsilon \, \sqrt{\frac{1}{2^p} \binom{p}{(p-m)/2}}$$

whore

$$\eta = \begin{cases} 1, & \text{if } N - 1 \text{ even} \\ \mathrm{i}, & \text{if } N - 1 \text{ odd} \end{cases}, \quad \upsilon = [1 - (-1)^{N+m}]/2 = \begin{cases} 0, & \text{if } N + m \text{ even} \\ 1, & \text{if } N + m \text{ odd} \end{cases}$$

Directional kernel construction

Consider directional auto-correlation:

$$\Gamma^{(j)}(\Delta\gamma = \gamma' - \gamma) \equiv \langle \Psi_{\gamma}^{(j)}, \ \Psi_{\gamma'}^{(j)} \rangle = \sum_{\ell=0}^{\infty} \left| \kappa^{(j)}(\ell) \right|^2 \frac{\min(N-1,\ell)}{\sum_{m=-\min(N-1,\ell)} \left| \zeta_{\ell m} \right|^2 \mathrm{e}^{(\mathrm{i} m \Delta \gamma)}}{,$$

• Impose auto-correlation of the form:

$$\Gamma^{(j)}(\Delta\gamma) = \sum_{\ell=0}^{\infty} \left|\kappa^{(j)}(\ell)\right|^2 \boxed{\cos^p(\Delta\gamma)}.$$

Recover directional wavelet kernel

$$\zeta_{\ell m} = \eta \, v \, \sqrt{\frac{1}{2^p} \binom{p}{(p-m)/2}}$$

where

$$\eta = \begin{cases} 1, & \text{if } N-1 \text{ even} \\ \mathrm{i}, & \text{if } N-1 \text{ odd} \end{cases}, \quad \upsilon = [1-(-1)^{N+m}]/2 = \begin{cases} 0, & \text{if } N+m \text{ even} \\ 1, & \text{if } N+m \text{ odd} \end{cases}$$

$$p=\min\{N-1,\ell-[1+(-1)^{N+\ell}]/2\} \text{ for all } 1 \text{ for$$

Directional kernel construction

Consider directional auto-correlation:

$$\Gamma^{(j)}(\Delta\gamma = \gamma' - \gamma) \equiv \langle \Psi_{\gamma}^{(j)}, \ \Psi_{\gamma'}^{(j)} \rangle = \sum_{\ell=0}^{\infty} \left| \kappa^{(j)}(\ell) \right|^2 \underbrace{\sum_{m=-\min(N-1,\ell)}^{\min(N-1,\ell)} \left| \zeta_{\ell m} \right|^2 \mathrm{e}^{(\mathrm{i} m \Delta \gamma)}}_{m=-\min(N-1,\ell)},$$

• Impose auto-correlation of the form:

$$\Gamma^{(j)}(\Delta\gamma) = \sum_{\ell=0}^{\infty} \left|\kappa^{(j)}(\ell)\right|^2 \boxed{\cos^p(\Delta\gamma)}.$$

Recover directional wavelet kernel:

$$\boxed{\zeta_{\ell m} = \eta \, \upsilon \, \sqrt{\frac{1}{2^p} \binom{p}{(p-m)/2}}},$$

where

$$\eta = \begin{cases} 1, & \text{if } N-1 \text{ even} \\ \mathrm{i}, & \text{if } N-1 \text{ odd} \end{cases}, \quad \upsilon = [1-(-1)^{N+m}]/2 = \begin{cases} 0, & \text{if } N+m \text{ even} \\ 1, & \text{if } N+m \text{ odd} \end{cases}$$

$$p = \min\{N - 1, \ell - [1 + (-1)^{N + \ell}]/2\}$$

Directional kernel construction

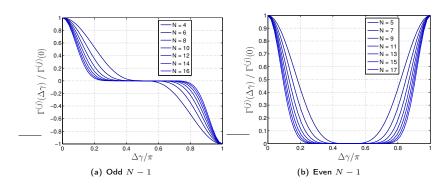


Figure: Directional auto-correlation for even and odd N-1.

Scalar wavelets

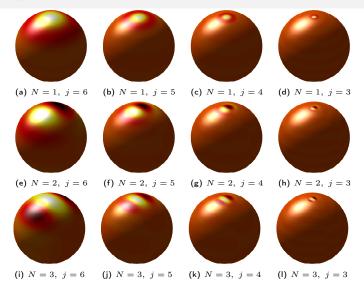


Figure: Scalar scale-discretised wavelets on the sphere.

Spin wavelets

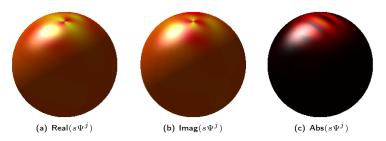


Figure: Spin scale-discretised wavelets on the sphere.

Forward and inverse transform (i.e. analysis and synthesis)

 The spin scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\overline{W^{s\Psi^{j}}(\rho) = \langle sf, \mathcal{R}_{\rho \ s}\Psi^{j} \rangle} = \int_{\mathbb{S}^{2}} d\Omega(\omega) s f(\omega) (\mathcal{R}_{\rho \ s}\Psi^{j})^{*}(\omega) .$$
projection

- Framework applied for functions of any spin
- Wavelet coefficients are scalar and not spin.
- Wavelet coefficients live in $SO(3) \times \mathbb{Z}$; thus, directional structure is naturally incorporated
- The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$${}_{s}f(\omega) = \sum_{j=0}^{J} \left[\int_{SO(3)} d\varrho(\rho) W^{s\Psi^{j}}(\rho) (\mathcal{R}_{\rho \ s} \Psi^{j})(\omega) \right].$$

finite our

wavelet contribution

Forward and inverse transform (i.e. analysis and synthesis)

 The spin scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\frac{W^{s\Psi^{j}}(\rho) = \langle sf, \mathcal{R}_{\rho \ s}\Psi^{j} \rangle}{\text{projection}} = \int_{\mathbb{S}^{2}} d\Omega(\omega) s f(\omega) (\mathcal{R}_{\rho \ s}\Psi^{j})^{*}(\omega) .$$

- Framework applied for functions of any spin.
- Wavelet coefficients are scalar and not spin.
- ullet Wavelet coefficients live in $SO(3) \times \mathbb{Z}$; thus, directional structure is naturally incorporated.
- The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$${}_{s}f(\omega) = \sum_{j=0}^{J} \left[\int_{SO(3)} d\varrho(\rho) W^{s} \Psi^{j}(\rho) (\mathcal{R}_{\rho \ s} \Psi^{j})(\omega) \right].$$

finite our

wavelet contribution

Forward and inverse transform (i.e. analysis and synthesis)

 The spin scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$\boxed{ W^{s\Psi^{j}}(\rho) = \langle sf, \mathcal{R}_{\rho \ s}\Psi^{j} \rangle } = \int_{\mathbb{S}^{2}} d\Omega(\omega)_{s} f(\omega) (\mathcal{R}_{\rho \ s}\Psi^{j})^{*}(\omega) .$$
projection

- Framework applied for functions of any spin.
- Wavelet coefficients are scalar and not spin.
- Wavelet coefficients live in $SO(3) \times \mathbb{Z}$; thus, directional structure is naturally incorporated.
- The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$$sf(\omega) = \left[\int_{\mathrm{SO}(3)}^{J} \mathrm{d}\varrho(\rho) W^{s\Psi^{j}}(\rho) (\mathcal{R}_{\rho \ s} \Psi^{j})(\omega) \right].$$

finite sum

wavelet contribution

Scale-discretised wavelets on the sphere Steerability

- ullet By imposing an azimuthal band-limit N, we recover steerable wavelets.
- By the linearity of the wavelet transform, steerability extends to wavelet coefficients:

$$W^{s\Psi^{j}}(\alpha,\beta,\gamma) = \sum_{g=0}^{M-1} z(\gamma - \gamma_g) W^{s\Psi^{j}}(\alpha,\beta,\gamma_g).$$

steerability

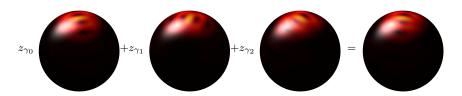


Figure: Steered wavelet computed from basis wavelets.

Scale-discretised wavelets on the sphere Steerability

- ullet By imposing an azimuthal band-limit N, we recover steerable wavelets.
- By the linearity of the wavelet transform, steerability extends to wavelet coefficients:

$$W^{s\Psi^{j}}(\alpha,\beta,\gamma) = \sum_{g=0}^{M-1} z(\gamma - \gamma_g) W^{s\Psi^{j}}(\alpha,\beta,\gamma_g).$$

steerability

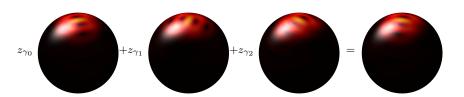


Figure: Steered wavelet computed from basis wavelets.

Localisation of Gaussian random fields

Wavelet localisation (McEwen, Durastanti, Wiaux 2017)

Directional scale-discretised wavelets $\Psi \in L^2(\mathbb{S}^2)$, defined on the sphere \mathbb{S}^2 and centred on the North pole, satisfy the localisation bound:

$$\left|\Psi^{(j)}(\theta,\varphi)\right| \le \frac{C_1^{(j)}}{\left(1 + C_2^{(j)}\theta\right)^{\xi}}$$

(there exist strictly positive constants $C_1^{(j)}, C_2^{(j)} \in \mathbb{R}_*^+$ for any $\xi \in \mathbb{R}_*^+$). Follows from theorem by Geller & Mayeli (2009).

Wavelet asymptotic uncorrelation (McEwen, Durastanti, Wiaux 2017)

For Gaussian random fields on the sphere, directional scale-discretised wavelet coefficients are asymptotically uncorrelated. The directional wavelet correlation satisfies the bound:

$$\Xi^{(jj')}(\rho_1, \rho_2) \le \frac{C_1^{(j)}}{\left(1 + C_2^{(j)}\beta\right)^{\xi}}$$

where $\beta \in [0,\pi)$ is an angular separation between Euler angles ρ_1 and ρ_2 (there exist strictly positive constants $C_1^{(j)}, C_2^{(j)} \in \mathbb{R}_+^+$ for any $\xi \in \mathbb{R}_+^+$, $\xi \geq 2N$, where N is the azimuthal band-limit of the wavelet and |i-j'| < 2). Follows from theorem by Geller & Mayeli (2009).

Localisation of Gaussian random fields

Wavelet localisation (McEwen, Durastanti, Wiaux 2017)

Directional scale-discretised wavelets $\Psi\in L^2(\mathbb{S}^2)$, defined on the sphere \mathbb{S}^2 and centred on the North pole, satisfy the localisation bound:

$$\left| \left| \Psi^{(j)}(\theta, \varphi) \right| \le \frac{C_1^{(j)}}{\left(1 + C_2^{(j)} \theta \right)^{\xi}} \right|$$

(there exist strictly positive constants $C_1^{(j)}, C_2^{(j)} \in \mathbb{R}_*^+$ for any $\xi \in \mathbb{R}_*^+$). Follows from theorem by Geller & Mayeli (2009).

Wavelet asymptotic uncorrelation (McEwen, Durastanti, Wiaux 2017)

For Gaussian random fields on the sphere, directional scale-discretised wavelet coefficients are asymptotically uncorrelated. The directional wavelet correlation satisfies the bound:

$$\Xi^{(jj')}(\rho_1, \rho_2) \le \frac{C_1^{(j)}}{\left(1 + C_2^{(j)}\beta\right)^{\xi}}$$

where $\beta \in [0,\pi)$ is an angular separation between Euler angles ρ_1 and ρ_2 (there exist strictly positive constants $C_1^{(j)}, C_2^{(j)} \in \mathbb{R}_*^+$ for any $\xi \in \mathbb{R}_*^+$, $\xi \geq 2N$, where N is the azimuthal band-limit of the wavelet and |j-j'| < 2). Follows from theorem by Geller & Mayeli (2009).

Parseval frame

Parseval frame property (McEwen, Durastanti, Wiaux 2017)

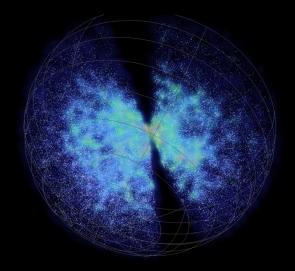
Scale-discretised wavelets form a Parseval (tight) frame:

$$|A||f||^2 \le \int_{\mathbb{S}^2} d\Omega(\omega) \left| \langle f, \mathcal{R}_{\omega} \Phi \rangle \right|^2 + \sum_{j=J_0}^J \int_{SO(3)} d\varrho(\rho) \left| \langle f, \mathcal{R}_{\rho} \Psi^{(j)} \rangle \right|^2 \le B||f||^2,$$

with A=B=1, for any band-limited $f\in L^2(\mathbb{S}^2)$, and where $\|\cdot\|^2=\langle\cdot,\cdot\rangle$.

(Adopt shorthand integral notation, although by appealing to sampling theorems and exact quadrature rules integrals may be replaced by finite sums.)

Galaxy distribution observed on the 3D ball



Credit: SDSS

 Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet (Leistedt & McEwen 2012; McEwen & Leistedt 2013; Lesitedt, McEwen, Kitching & Peiris 2015):

$$\boxed{ W^{s\Psi^{jj'}}(r,\rho) = \langle sf, \, \mathcal{T}_{(r,\rho)} \, s\Psi^{jj'} \rangle } = \int_{\mathbb{B}^3} \, \mathrm{d}^3 \boldsymbol{r} \, sf(\boldsymbol{r}) (\mathcal{T}_{(r,\rho)} \, s\Psi^{jj'})^*(\boldsymbol{r}) \, .$$
projection

Original function may be recovered exactly in practice from wavelet coefficients:

$$sf(r) = \sum_{j \ j'} \left[\int_{SO(3)} d\varrho(\rho) \int_{\mathbb{R}^+} dr \ W^{s\Psi^{jj'}}(r, \rho) (\mathcal{T}_{(r,\rho)} \ s\Psi^{jj'})(r) \right].$$
 wavelet contribution

• Define translation operator on positive real line $\mathbb{R}^+ = [0, \infty)$.

 Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet (Leistedt & McEwen 2012; McEwen & Leistedt 2013; Lesitedt, McEwen, Kitching & Peiris 2015):

$$\boxed{ W^{s\Psi^{jj'}}(r,\rho) = \langle sf, \, \mathcal{T}_{(r,\rho)} \, s\Psi^{jj'} \rangle } = \int_{\mathbb{B}^3} \, \mathrm{d}^3 \boldsymbol{r} \, sf(\boldsymbol{r}) (\mathcal{T}_{(r,\rho)} \, s\Psi^{jj'})^*(\boldsymbol{r}) \, .$$
projection

Original function may be recovered exactly in practice from wavelet coefficients:

$$sf(\boldsymbol{r}) = \sum_{j\,j'} \left[\int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) \int_{\mathbb{R}^+} \mathrm{d}\boldsymbol{r} \, W^{s\,\Psi^{j\,j'}}(\boldsymbol{r},\rho) (\mathcal{T}_{(\boldsymbol{r},\rho)} \, s\Psi^{j\,j'})(\boldsymbol{r}) \right].$$

• Define translation operator on positive real line $\mathbb{R}^+ = [0, \infty)$.

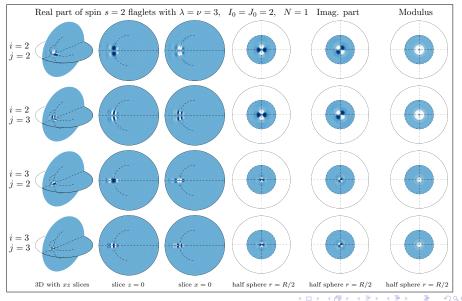
 Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet (Leistedt & McEwen 2012; McEwen & Leistedt 2013; Lesitedt, McEwen, Kitching & Peiris 2015):

$$\boxed{ W^{s\Psi^{jj'}}(r,\rho) = \langle sf, \, \mathcal{T}_{(r,\rho)} \, s\Psi^{jj'} \rangle } = \int_{\mathbb{B}^3} \, \mathrm{d}^3 \boldsymbol{r} \, sf(\boldsymbol{r}) (\mathcal{T}_{(r,\rho)} \, s\Psi^{jj'})^*(\boldsymbol{r}) \, .$$
projection

Original function may be recovered exactly in practice from wavelet coefficients:

$$sf(\boldsymbol{r}) = \sum_{j\,j'} \left[\int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) \int_{\mathbb{R}^+} \mathrm{d}\boldsymbol{r} \, W^{s\,\Psi^{j\,j'}}(\boldsymbol{r},\rho) (\mathcal{T}_{(\boldsymbol{r},\rho)} \, s\Psi^{j\,j'})(\boldsymbol{r}) \right].$$

• Define translation operator on positive real line $\mathbb{R}^+ = [0, \infty)$.



Outline

- Scale-discretised wavelets on the sphere and ball
- Sampling theory and fast algorithms
- 3 E/B separation for CMB polarization and cosmic shear

Sampling theory on the sphere \mathbb{S}^2

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere \mathbb{S}^2 (McEwen & Wiaux 2011)

Information content of a signal $f \in L^2(\mathbb{S}^2)$ on the sphere \mathbb{S}^2 , band-limited at L, can be captured in $\sim 2L^2$ equiangular samples.

Outline of proof: factoring of rotations, mapping of sphere \mathbb{S}^2 to torus \mathbb{T}^2 , Fourier transform

- Previous canonical sampling theorem on the sphere based on the seminal work of Driscoll & Healy (1994)
 - Required $\sim 4L^2$ samples
 - Reduction in the Nyquist rate on the sphere by a factor of 2 (McEwen & Wiaux 2011)

Sampling theory on the sphere \mathbb{S}^2

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere \mathbb{S}^2 (McEwen & Wiaux 2011)

Information content of a signal $f \in L^2(\mathbb{S}^2)$ on the sphere \mathbb{S}^2 , band-limited at L, can be captured in $\sim 2L^2$ equiangular samples.

Outline of proof: factoring of rotations, mapping of sphere \mathbb{S}^2 to torus \mathbb{T}^2 , Fourier transform

- Previous canonical sampling theorem on the sphere based on the seminal work of Driscoll & Healy (1994)
 - Required $\sim 4L^2$ samples
 - Reduction in the Nyquist rate on the sphere by a factor of 2 (McEwen & Wiaux 2011).

Sampling theory on the sphere \mathbb{S}^2

Exact and efficient spherical harmonic transforms

Equiangular sampling theorem on the sphere \mathbb{S}^2 (McEwen & Wiaux 2011)

Information content of a signal $f \in L^2(\mathbb{S}^2)$ on the sphere \mathbb{S}^2 , band-limited at L, can be captured in $\sim 2L^2$ equiangular samples.

Outline of proof: factoring of rotations, mapping of sphere \mathbb{S}^2 to torus \mathbb{T}^2 , Fourier transform

- Previous canonical sampling theorem on the sphere based on the seminal work of Driscoll & Healy (1994)
 - Required $\sim 4L^2$ samples.
 - Reduction in the Nyquist rate on the sphere by a factor of 2 (McEwen & Wiaux 2011).

Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

• Wavelet coefficients for scale j live on the rotation group SO(3): $W^{s\Psi^j} \in L^2(SO(3))$.

$$W^{s\Psi^j} \in L^2(SO(3))$$

- Develop fast wavelet transforms by considering their (Wigner) harmonic representation.

$$F(\rho) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} F_{mn}^{\ell} D_{mn}^{\ell*}(\rho)$$

$$F_{mn}^{\ell} = \langle F, D_{mn}^{\ell*} \rangle = \int_{SO(3)} d\varrho(\rho) F(\rho) D_{mn}^{\ell}(\rho).$$

Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

• Wavelet coefficients for scale j live on the rotation group SO(3): $W^{s\Psi^j} \in L^2(SO(3))$.

$$W^{s\Psi^j} \in L^2(SO(3))$$

- Develop fast wavelet transforms by considering their (Wigner) harmonic representation.
- Signal on the rotation group $F \in L^2(SO(3))$ may expressed by Wigner decomposition:

$$F(\rho) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} F_{mn}^{\ell} D_{mn}^{\ell*}(\rho)$$

where Wigner coefficients given by usual projection onto basis functions:

$$F_{mn}^{\ell} = \langle F, D_{mn}^{\ell*} \rangle = \int_{SO(3)} d\varrho(\rho) F(\rho) D_{mn}^{\ell}(\rho).$$

Sampling theory on the rotation group SO(3)

Exact and efficient Wigner transforms

• Wavelet coefficients for scale j live on the rotation group SO(3): $W^{s\Psi^j} \in L^2(SO(3))$.

$$W^{s\Psi^j} \in L^2(SO(3))$$
.

- Develop fast wavelet transforms by considering their (Wigner) harmonic representation.
- Signal on the rotation group $F \in L^2(SO(3))$ may expressed by Wigner decomposition:

$$F(\rho) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} F_{mn}^{\ell} D_{mn}^{\ell*}(\rho)$$

where Wigner coefficients given by usual projection onto basis functions:

$$\boxed{F_{mn}^{\ell} = \langle F, D_{mn}^{\ell*} \rangle} = \int_{SO(3)} d\varrho(\rho) F(\rho) D_{mn}^{\ell}(\rho).$$

Equiangular sampling theorem on the rotation group SO(3) (McEwen et al. 2015)

Information content of a signal $F \in L^2(SO(3))$ on the rotation group SO(3), band-limited at L, can be captured in $\sim 4L^3$ equiangular samples.

Fast Wigner transform Timing

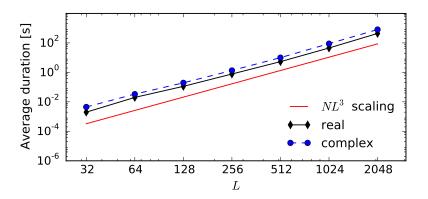


Figure: N=4

Fast Wigner transform Accuracy

10⁻¹⁵

32

64

 10^{-12} 10^{-13} 10^{-14} 10^{-15}

Figure: N=4

256

L

512

2048

128

1024

Fast directional spin scale-discretised wavelet transform on the sphere Exact and efficient computation via Wigner transforms

• Directional wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$(W^{s\Psi^{j}})_{mn}^{\ell} = \frac{8\pi^{2}}{2\ell+1} s f_{\ell m} s \Psi_{\ell n}^{j*},$$

analysis

with

$$W^{s\Psi^{j}}(\rho) = \sum_{\ell mn} \frac{2\ell+1}{8\pi^{2}} (W^{s\Psi^{j}})_{mn}^{\ell} D_{mn}^{\ell*}(\rho) .$$

Directional wavelet synthesis can be posed as a forward Wigner transform on SO(3):

$$_{s}f(\omega) = \sum_{j=0}^{J} \sum_{\ell mn} \frac{2\ell+1}{8\pi^{2}} \big(W^{s}\Psi^{j}\big)_{mn}^{\ell} \, _{s}\Psi^{j}_{\ell n} \, _{s}Y_{\ell m}(\omega) \, ,$$

synthesis

whore

$$(W^{s\Psi^j})_{mn}^{\ell} = \langle W^{s\Psi^j}, D_{mn}^{\ell*} \rangle = \int_{SO(3)} d\varrho(\rho) W^{s\Psi^j}(\rho) D_{mn}^{\ell}(\rho) .$$

Fast directional spin scale-discretised wavelet transform on the sphere Exact and efficient computation via Wigner transforms

 \bullet Directional wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$\left[\left(W^{s\Psi^{j}} \right)_{mn}^{\ell} = \frac{8\pi^{2}}{2\ell + 1} \, s f_{\ell m} \, s \Psi_{\ell n}^{j*} \,, \right]$$

with

$$W^{s\Psi^{j}}(\rho) = \sum_{\ell mn} \frac{2\ell+1}{8\pi^{2}} (W^{s\Psi^{j}})_{mn}^{\ell} D_{mn}^{\ell*}(\rho) .$$

 \bullet Directional wavelet synthesis can be posed as a forward Wigner transform on SO(3):

$${}_{s}f(\omega) = \sum_{j=0}^{J} \sum_{\ell mn} \frac{2\ell+1}{8\pi^{2}} (W^{s\Psi^{j}})_{mn}^{\ell} {}_{s}\Psi^{j}_{\ell n} {}_{s}Y_{\ell m}(\omega) ,$$

synthesis

where

$$\left(\left(W^{s\Psi^j} \right)_{mn}^{\ell} = \langle W^{s\Psi^j}, D_{mn}^{\ell*} \rangle = \int_{SO(3)} d\varrho(\rho) W^{s\Psi^j}(\rho) D_{mn}^{\ell}(\rho) . \right)$$

Fast directional spin scale-discretised wavelet transform on the sphere Timing

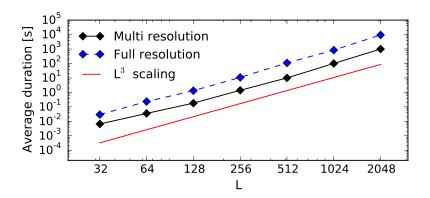


Figure: N = 5, s = 2

Fast directional spin scale-discretised wavelet transform on the sphere Accuracy

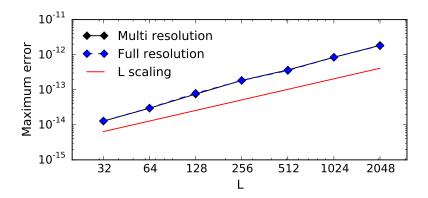


Figure: N = 5, s = 2

Sampling theory and harmonic transforms

Codes (www.jasonmcewen.org/codes.html)

SSHT code

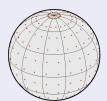
http://www.spinsht.org

SSHT: Fast & exact spin spherical harmonic transforms
McEwen & Wiaux (2011)

- C, Matlab, Python
- Efficient sampling theorem on the sphere \mathbb{S}^2
- Fast algos

SO3 code

http://www.sothree.org



SO3: Fast & exact Wigner transforms

McEwen, Büttner, Leistedt, Peiris, Wiaux (2015)

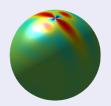
- . C. Matlab, Python
- Efficient sampling theorem on the rotation group SO(3)
- Fast algos

Spin scale-discretised wavelets on the sphere and ball

Codes (www.jasonmcewen.org/codes.html)

S2LET code

http://www.s2let.org



S2LET: Fast & exact wavelets on the sphere Leistedt, McEwen, Vandergheynst, Wiaux (2012) McEwen, Leistedt, Büttner, Peiris, Wiaux (2015)

- . C. Matlab, Python
- · Supports directional, steerable, spin wavelets
- Fast algos

FLAGLET code

http://www.flaglets.org



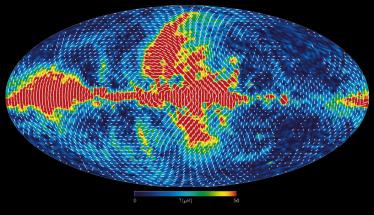
FLAGLET: Fast & exact wavelets on the ball Leistedt & McEwen (2012), McEwen & Leistedt (2013) Leistedt. McEwen. Kitching. Peiris (2015)

- C. Matlab. Python
- Supports directional, steerable, spin wavelets
- Fast algos

Outline

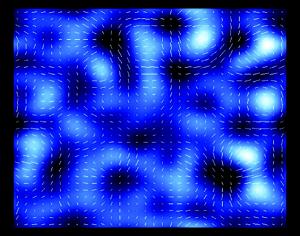
- Scale-discretised wavelets on the sphere and ball
- Sampling theory and fast algorithms
- E/B separation for CMB polarization and cosmic shear

CMB polarization



WMAP K-band $_2P=Q+\mathrm{i}U$ map [Credit: WMAP]

Cosmic shear



Cosmic shear $_2\gamma=\gamma_1+\mathrm{i}\gamma_2\,$ map [Credit: Ellis (2010)]

E- and B-modes

Full-sky

• Decompose $\pm_2 P$ into parity even and parity odd components:

$$\epsilon(\omega) = -\frac{1}{2} \left[\vec{\eth}^2 \,_2 P(\omega) + \vec{\eth}^2 \,_{-2} P(\omega) \right]$$

$$\beta(\omega) = \frac{\mathrm{i}}{2} \left[\overline{\eth}^2 \,_2 P(\omega) - \eth^2 \,_{-2} P(\omega) \right] \int_{\underline{\Box}}^{\overline{\Box}} \underline{\eth}^2 \,_{-2} P(\omega)$$

where \eth and \eth are spin lowering and raising (differential) operators, respectively.

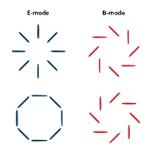


Figure: E-mode (even parity) and B-mode (odd parity) signals [Credit: http://www.skyandtelescope.com/].

- Different physical processes exhibit different symmetries and thus behave differently under parity transformation.
- Can exploit this property to separate signals arising from different underlying physical mechanisms.

Full-sky

• Decompose $\pm_2 P$ into parity even and parity odd components:

$$\left[\epsilon(\omega) = -\frac{1}{2} \left[\bar{\eth}^2 \,_2 P(\omega) + \bar{\eth}^2 \,_{-2} P(\omega) \right] \right]^{\frac{\omega}{2}}$$

$$\beta(\omega) = \frac{\mathrm{i}}{2} \left[\overline{\eth}^2 \,_2 P(\omega) - \eth^2 \,_{-2} P(\omega) \right]$$

where \eth and \eth are spin lowering and raising (differential) operators, respectively.

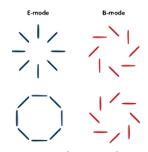


Figure: E-mode (even parity) and B-mode (odd parity) signals [Credit: http://www.skyandtelescope.com/].

- Different physical processes exhibit different symmetries and thus behave differently under parity transformation.
- Can exploit this property to separate signals arising from different underlying physical mechanisms.
- Mapping E- and B-modes on the sky of great importance for forthcoming experiments.

E- and B-modes

- On a manifold without boundary (i.e. full sky), a spin ±2 signal can be decomposed uniquely into E- and B-modes.
- On a manifold with boundary (i.e. partial sky), decomposition not unique.
- Recovering E and B-modes from partial sky observations is challenging since mask leaks contamination.
 - Pure and ambiguous modes (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013).
 - E-modes: vanishing curl
 - B-modes: vanishing divergence
 - Pure E-modes: orthogonal to all B-modes
 - Pure B-modes: orthogonal to all E-modes
 - Number of existing techniques (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Bowyer et al. 2011, Kim 2013, Ferté et al. 2013).
- Exploit wavelets
 (Leistedt, McEwen, Büttner, Peiris 2017)

- On a manifold without boundary (i.e. full sky), a spin ± 2 signal can be decomposed uniquely into E- and B-modes.
- On a manifold with boundary (i.e. partial sky), decomposition not unique.
- Recovering E and B-modes from partial sky observations is challenging since mask leaks contamination.

E- and B-modes

- On a manifold without boundary (i.e. full sky), a spin ± 2 signal can be decomposed uniquely into E- and B-modes.
- On a manifold with boundary (i.e. partial sky), decomposition not unique.
- Recovering E and B-modes from partial sky observations is challenging since mask leaks contamination.

- Pure and ambiguous modes (Lewis et al. 2002. Bunn et al. 2003. Smith 2006. Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013).
 - · E-modes: vanishing curl
 - · B-modes: vanishing divergence
 - Pure E-modes: orthogonal to all B-modes
 - Pure B-modes: orthogonal to all E-modes
- Number of existing techniques (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga

E- and B-modes

- On a manifold without boundary (i.e. full sky), a spin ±2 signal can be decomposed uniquely into E- and B-modes.
- On a manifold with boundary (i.e. partial sky), decomposition not unique.
- Recovering E and B-modes from partial sky observations is challenging since mask leaks contamination.

- · E-modes: vanishing curl
- · B-modes: vanishing divergence
- Pure E-modes: orthogonal to all B-modes
- Pure B-modes: orthogonal to all E-modes
- Number of existing techniques (Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Bowyer et al. 2011, Kim 2013, Ferté et al. 2013).
- Exploit wavelets
 (Leistedt, McEwen, Büttner, Peiris 2017).

• Spin wavelet transform of $\pm 2P = Q \pm iU$ (observable):

$$\frac{W_{\pm_2P}^{2\Psi^j}(\rho) = \langle \pm_2 P, \mathcal{R}_{\rho \pm_2} \Psi^j \rangle}{\text{spin wavelet transform}} = \int_{\mathbb{S}^2} d\Omega(\omega) \pm_2 P(\omega) (\mathcal{R}_{\rho \pm_2} \Psi^j)^*(\omega).$$

• Scalar wavelet transforms of E and B (non-observable)

$$W_{\epsilon}^{0\Psi^{j}}(\rho) = \langle \epsilon, \mathcal{R}_{\rho} \ _{0}\Psi^{j} \rangle \ ,$$

scalar wavelet transform

$$W_{\beta}^{0\Psi^{j}}(\rho) = \langle \beta, \mathcal{R}_{\rho} | 0 \Psi^{j} \rangle$$
,

scalar wavelet transform

where $_0\Psi^j\equiv \bar{\eth}^2{}_2\Psi^j$.

• Spin wavelet coefficients of $\pm 2P$ are connected to scalar wavelet coefficients of E/B:

E/B separation

Connections between spin and scalar wavelet coefficients

• Spin wavelet transform of $\pm 2P = Q \pm iU$ (observable):

$$\frac{W_{\pm_2 P}^{2\Psi^j}(\rho) = \langle \pm_2 P, \mathcal{R}_{\rho \pm_2 \Psi^j} \rangle}{\text{spin wavelet transform}} = \int_{\mathbb{S}^2} d\Omega(\omega) \pm_2 P(\omega) (\mathcal{R}_{\rho \pm_2 \Psi^j})^*(\omega) .$$

• Scalar wavelet transforms of E and B (non-observable):

$$W_{\epsilon}^{0\Psi^{j}}(\rho) = \langle \epsilon, \mathcal{R}_{\rho} \ _{0}\Psi^{j} \rangle \ ,$$

scalar wavelet transform

$$W_{\beta}^{0\Psi^{j}}(\rho) = \langle \beta, \mathcal{R}_{\rho} \ _{0}\Psi^{j} \rangle$$

scalar wavelet transform

where $_0\Psi^j\equiv \bar{\eth}^2{}_2\Psi^j$.

Spin wavelet coefficients of $\pm 2P$ are connected to scalar wavelet coefficients of E/B:

$$W_{\epsilon}^{0\Psi^{j}}(\rho) = -\mathrm{Re} \Big[W_{\pm 2P}^{2\Psi^{j}}(\rho) \Big] \quad \text{and} \quad W_{\beta}^{0\Psi^{j}}(\rho) = \mp \mathrm{Im} \Big[W_{\pm 2P}^{2\Psi^{j}}(\rho) \Big] \; .$$

E/B separation

Connections between spin and scalar wavelet coefficients

• Spin wavelet transform of $\pm 2P = Q \pm iU$ (observable):

$$\frac{W_{\pm_2 P}^{2\Psi^j}(\rho) = \langle \pm_2 P, \mathcal{R}_{\rho \pm_2 \Psi^j} \rangle}{\text{spin wavelet transform}} = \int_{\mathbb{S}^2} d\Omega(\omega) \pm_2 P(\omega) (\mathcal{R}_{\rho \pm_2 \Psi^j})^*(\omega) .$$

• Scalar wavelet transforms of E and B (non-observable):

$$W_{\epsilon}^{0\Psi^{j}}(\rho) = \langle \epsilon, \mathcal{R}_{\rho} \ _{0}\Psi^{j} \rangle$$

scalar wavelet transform

$$W_{\beta}^{0\Psi^{j}}(\rho) = \langle \beta, \mathcal{R}_{\rho} \ _{0}\Psi^{j} \rangle ,$$

scalar wavelet transform

where $_0\Psi^j\equiv \bar{\eth}^2{}_2\Psi^j$.

Spin wavelet coefficients of $\pm 2P$ are connected to scalar wavelet coefficients of E/B:

$$\boxed{ W_{\epsilon}^{0\Psi^j}(\rho) = -\mathrm{Re}\Big[W_{\pm 2P}^{2\Psi^j}(\rho)\Big] \quad \text{and} \quad W_{\beta}^{0\Psi^j}(\rho) = \mp\mathrm{Im}\Big[W_{\pm 2P}^{2\Psi^j}(\rho)\Big] \,. }$$

E/B separation Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

• Compute spin wavelet transform of $\pm 2P = Q + iU$:

$$\begin{array}{ccc} & & \text{Spin wavelet transform} \\ & \xrightarrow{} & & & & W^{2\Psi^j}_{\pm 2P}(\rho) \end{array}$$

Account for mask in wavelet domain (simultaneous harmonic and spatial localisation)

$$W_{\pm 2P}^{2\Psi^{j}}(\rho) \xrightarrow{\text{Mitigate mask}} \bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho)$$

Construct E/B maps:

(a)
$$W_{\epsilon}^{0\Psi^{j}}(\rho) = -\text{Re}\left[\bar{W}_{+2P}^{2\Psi^{j}}(\rho)\right]$$

(b)
$$W_{\beta}^{0\Psi^{j}}(\rho) = \mp \mathrm{Im} \Big[\bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho)$$

Inverse scalar wavelet transform $\xrightarrow{\quad \quad \quad \quad \quad \quad } \epsilon(\omega)$

Inverse scalar wavelet transform

$$\xrightarrow{\text{S2LET}} \beta(\omega)$$

General approach to recover E/B signals using scale-discretised wavelets

• Compute spin wavelet transform of $\pm 2P = Q + iU$:

$${}_{\pm 2}P(\omega) \quad \xrightarrow{\begin{array}{c} \text{Spin wavelet transform} \\ \hline \end{array}} \quad W^{2\Psi^j}_{\pm 2P}(\rho)$$

Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):

$$W_{\pm 2P}^{2\Psi^{j}}(\rho) \quad \xrightarrow{\text{Mitigate mask}} \quad \bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho)$$

Construct E/B maps:

(a)
$$W_{\epsilon}^{0\Psi^{j}}(\rho) = -\text{Re}\left[\bar{W}_{+2P}^{2\Psi^{j}}(\rho)\right]$$

(b)
$$W_{\beta}^{0\Psi^{j}}(\rho) = \mp \mathrm{Im} \Big[\bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho) \Big]$$

Inverse scalar wavelet transform $\xrightarrow{} \epsilon(\omega)$

Inverse scalar wavelet transform

$$o$$
 S2LET eta

E/B separation

Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

① Compute spin wavelet transform of $\pm 2P = Q + iU$:

$${}_{\pm 2}P(\omega) \quad \xrightarrow{\begin{array}{c} \text{Spin wavelet transform} \\ \hline \end{array}} \quad W^{2\Psi^j}_{\pm 2P}(\rho)$$

Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):

$$W^{2\Psi^j}_{\pm 2P}(\rho) \quad \xrightarrow{\text{Mitigate mask}} \quad \bar{W}^{2\Psi^j}_{\pm 2P}(\rho)$$

Construct E/B maps:

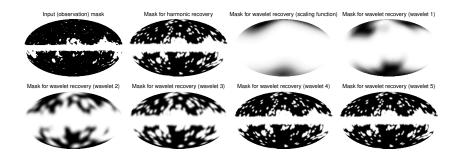
(a)
$$W_{\epsilon}^{0\Psi^{j}}(\rho) = -\text{Re}\left[\bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho)\right]$$
 Inverse

(b)
$$W_{\beta}^{0\Psi^{j}}(\rho) = \mp \mathrm{Im} \Big[\bar{W}_{\pm 2P}^{2\Psi^{j}}(\rho) \Big]$$

Inverse scalar wavelet transform $\xrightarrow{S2LET} \epsilon(\omega)$

Inverse scalar wavelet transform
$$\xrightarrow{S2LET} \beta(\omega)$$

E/B separation Scale-dependent masking



Pure and ambiguous modes

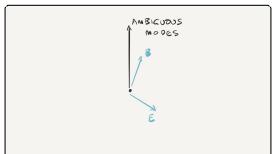
• Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure and ambiguous modes

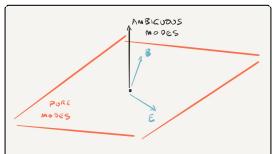
Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure and ambiguous modes

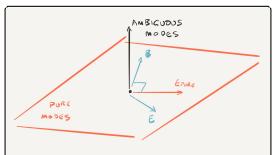
Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure and ambiguous modes

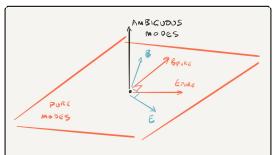
Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure and ambiguous modes

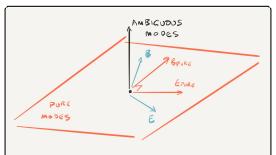
Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure and ambiguous modes

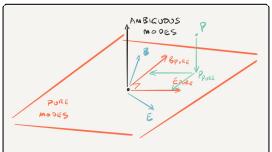
Pure and ambiguous modes

(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

• E-modes: vanishing curl

• B-modes: vanishing divergence

• Pure E-modes: orthogonal to all B-modes



Pure mode wavelet estimator

Consider masked Stokes parameters:

$$_{0}M=M, \quad _{\pm 1}M=\eth _{\pm }M, \quad _{\pm 2}M=\eth _{\pm }^{2}M,$$

spin adjusted masks

$$_{\pm 2}\widetilde{P} = {}_{0}M_{\pm 2}P, \quad _{\pm 1}\widetilde{P} = {}_{\mp 1}M_{\pm 2}P, \quad _{\pm 0}\widetilde{P} = {}_{\mp 2}M_{\pm 2}P.$$

masked Stokes parameters

where $\eth_{\pm} = \{ \eth \text{ if } +, \bar{\eth} \text{ if } - \}.$

Pure wavelet estimators (Leistedt, McEwen, Büttner, Peiris 2017):

$$\widehat{W}_{\epsilon}^{0\Psi^{j}}(\rho) = -\operatorname{Re}\left[W_{\pm 2\tilde{P}}^{\pm 2\Upsilon^{j}}(\rho) + 2W_{\pm 1\tilde{P}}^{\pm 1\Upsilon^{j}}(\rho) + W_{0\tilde{P}}^{0\Upsilon^{j}}(\rho)\right],$$

$$\widehat{W}_{\beta}^{0\Psi^{j}}(\rho) = \mp \operatorname{Im} \left[W_{\pm 2\tilde{P}}^{\pm 2\tilde{\Upsilon}^{j}}(\rho) + 2W_{\pm 1\tilde{P}}^{\pm 1\tilde{\Upsilon}^{j}}(\rho) + W_{0\tilde{P}}^{0\tilde{\Upsilon}^{j}}(\rho) \right], \quad \stackrel{\text{def}}{=}$$

where $\pm_s \Upsilon^j = \eth^s_\pm(_0 \Psi^j)$ are spin adjusted wavelets and assuming the Dirichlet and Neumann boundary conditions, *i.e.* that the mask and its derivative vanish at the boundaries

Pure mode wavelet estimator

Consider masked Stokes parameters:

$$\begin{bmatrix} 0M = M, & \pm 1M = \eth \pm M, & \pm 2M = \eth \pm M, \end{bmatrix}$$

spin adjusted masks

$$\pm_2 \tilde{P} = {}_0 M \pm_2 P, \quad \pm_1 \tilde{P} = \mp_1 M \pm_2 P, \quad \pm_0 \tilde{P} = \mp_2 M \pm_2 P.$$

masked Stokes parameters

where $\eth_{\pm} = \{ \eth \text{ if } +, \bar{\eth} \text{ if } - \}.$

Pure wavelet estimators (Leistedt, McEwen, Büttner, Peiris 2017):

$$\widehat{W}_{\epsilon}^{0\Psi^{j}}(\rho) = -\operatorname{Re}\left[W_{\pm 2\tilde{P}}^{\pm 2\Upsilon^{j}}(\rho) + 2W_{\pm 1\tilde{P}}^{\pm 1\Upsilon^{j}}(\rho) + W_{0\tilde{P}}^{0\Upsilon^{j}}(\rho)\right],$$

$$\widehat{W_{\beta}^{0}\Psi^{j}}(\rho) = \mp \operatorname{Im} \left[W_{\pm 2\widetilde{P}}^{\pm 2\Upsilon^{j}}(\rho) + 2W_{\pm 1\widetilde{P}}^{\pm 1\Upsilon^{j}}(\rho) + W_{0\widetilde{P}}^{0\Upsilon^{j}}(\rho) \right],$$

where $\pm_s \Upsilon^j = \vartheta^s_{\pm}(0\Psi^j)$ are spin adjusted wavelets and assuming the Dirichlet and Neumann boundary conditions, *i.e.* that the mask and its derivative vanish at the boundaries.

Pure mode wavelet estimator

Consider masked Stokes parameters

$$_{0}M=M,\quad _{\pm 1}M=\eth _{\pm }M,\quad _{\pm 2}M=\eth _{\pm }^{2}M,$$

spin adjusted masks

$$\pm 2\tilde{P} = {}_{0}M \pm 2P, \quad \pm 1\tilde{P} = \mp 1M \pm 2P, \quad \pm 0\tilde{P} = \mp 2M \pm 2P.$$

masked Stokes parameters

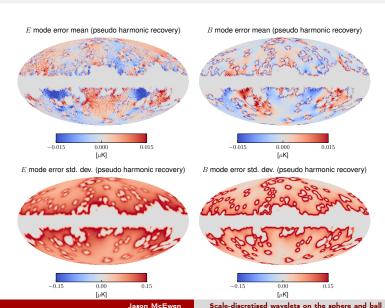
where $\eth_{\pm} = \{ \eth \text{ if } +, \bar{\eth} \text{ if } - \}$

Pure wavelet estimators (Leistedt, McEwen, Büttner, Peiris 2017):

$$\begin{split} \widehat{W_{\epsilon}^{0}}^{\Psi^{j}}(\rho) &= - \text{ Re} \left[\begin{array}{c} W_{\pm 2}^{+2} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) \\ & \text{pseudo} \end{array} \right] + \left[\begin{array}{c} 2W_{\pm 1}^{\pm 1} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) + W_{0}^{0} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) \\ & \text{pure correction} \end{array} \right], \\ \widehat{W_{\beta}^{0}}^{\Psi^{j}}(\rho) &= \mp \text{ Im} \left[\begin{array}{c} W_{\pm 2} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) \\ & \text{\pm 2} \overset{\tilde{P}}{\tilde{P}}(\rho) \end{array} \right] + \left[\begin{array}{c} 2W_{\pm 1} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) + W_{0} \overset{\Upsilon^{j}}{\tilde{P}}(\rho) \\ & \text{\pm 1} \overset{\tilde{P}}{\tilde{P}}(\rho) + W_{0} \overset{\tilde{P}}{\tilde{P}}(\rho) \end{array} \right]. \end{split}$$

• Correction terms require spin ± 1 wavelet transforms.

Results: pseudo harmonic approach



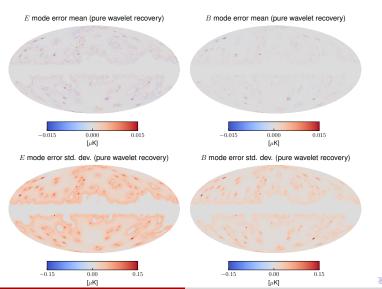
Results: pseudo wavelet approach

 $[\mu K]$

Jason McEwen

E mode error mean (pseudo wavelet recovery) B mode error mean (pseudo wavelet recovery) 0.000 0.015 -0.0150.000 0.015 -0.015 $[\mu K]$ [μK] E mode error std. dev. (pseudo wavelet recovery) B mode error std. dev. (pseudo wavelet recovery) 0.00 0.15 0.00 -0.15-0.150.15

Results: pure wavelet approach



Results: summary

Pure E/B separation with spin wavelets (without optimisation) reduces leakage by over an order of magnitude (Leistedt, McEwen et al. 2017; arXiv:1605.01414).

Improvement in sensitivity to tensor-to-scalar ratio r of 10^2 – 10^4 .

 Also applicable for mapping dark matter from observations by weak lensing experiments (e.g. Euclid).

Summary

Spin scale-discretised wavelets on the sphere \mathbb{S}^2 and ball SO(3) are powerful tools for studying CMB and weak gravitational lensing and beyond (e.g. Earth sciences, diffusion MRI).

- Exact forward (analysis) and inverse (synthesis) transforms in theory and practice.
- Probe directional structure.
- Framework applies to signals of any spin.
- Excellent localisation properties
 (localisation of Gaussian random fields).
- Parseval frame.
- Fast algorithms to scale to big-data (leveraging exact and efficient harmonic transforms on S² and SO(3)).