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Cosmic microwave background (CMB)

Credit: WMAP
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Galaxy surveys

Credit: SDSS
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Recall wavelet transform in Euclidean space

Project signal onto wavelets

W f
(a, b) = 〈f , ψa,b〉 = |a|−1/2

∫ ∞
−∞

dt f (t) ψ∗
( t − b

a

)
,

where

ψa,b = |a|−1/2
ψ
( t − b

a

)
.

Synthesis signal from wavelet coefficients

f (t) = C−1
ψ

∫ ∞
−∞

db
∫ ∞

0

da
a2
W f

(a, b)ψa,b(t).

Admissibility condition to ensure perfect reconstruction

0 < Cψ ≡
∫ ∞
−∞

dk
|k| |ψ̂(k)|2 <∞.
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Recall wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (Credit: http://www.wavelet.org/tutorial/)
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Continuous wavelets on the sphere

One of the first natural wavelet construction on the sphere was derived in the seminal work of
Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1 · ω), ω = (θ, ϕ) ∈ S2
, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .

PSfrag replacements
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z

r = 2 tan( θ
2
)
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ω

x

North pole
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Figure: Stereographic projection.
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Continuous wavelet analysis

Wavelet family on the sphere constructed from rotations and dilations of a mother spherical
wavelet Ψ:

{Ψa,ρ ≡ R(ρ)D(a)Ψ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Ψ(a, ρ) = 〈f ,Ψa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Wavelet coefficients (of, say, the CMB) live in SO(3)× R+
∗ ; thus, directional structure is

naturally incorporated.

Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001), Risbo (1996)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/
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Mother wavelets

Correspondence principle between spherical and Euclidean wavelets: inverse stereographic
projection of an admissible wavelet on the plane yields an admissible wavelet on the sphere
(Wiaux et al. 2005).

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Ψ = Π
−1

ΨR2 ,

where ΨR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.
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Continuous wavelet synthesis (reconstruction)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Ψ(a, ρ) [R(ρ)L̂ΨΨa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Ψ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Ψa)`m |

2
<∞, ∀` ∈ N

where (Ψa)`m are the spherical harmonic coefficients of Ψa(ω).

Continuous wavelets used in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!
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Continuous wavelets on the sphere via harmonic dilation

Define dilation by scaling in harmonic space (McEwen et al. 2006):

Ψ`m(a) =

√
2`+ 1

8π2
Υm(`a) ,

Wavelet analysis and synthesis defined in the same manner as stereographic wavelets.

Admissibility condition defined on the wavelet generating functions Υ

0 < C`Υ =
∑̀

m=−`

∫ ∞
0

dq
q
|Υm(q)|2 <∞ .

Define admissible wavelet in harmonic space:

Υm(`a) = e−
(`a−L)2+(m−M)2

2 − e−
(`a)2+L2+(m−M)2

2 .

Figure: Harmonic-dilation Morlet wavelet.
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Scale-discretised wavelets on the sphere

Exact reconstruction not feasible in practice with continuous wavelets!

Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere

Alternatives: isotropic wavelets, pyramidal wavelets, ridgelets, curvelets (Starck et al. 2006);
needlets (Narcowich et al. 2006, Baldi et al. 2009, Marinucci et al. 2008)

1 2 4 8 16 32

0

0.2

0.4

0.6

0.8

1

j=0
j=1 j=2 j=3 j=4 j=5

ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.
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Steerability

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is defined in harmonic space in factorised form:

Ψ`m = K̃Ψ(`)SΨ
`m .

Without loss of generality, impose ∑
m

|SΨ
`m|

2
= 1 ,

such that localisation governed largely by K̃Ψ(`) and directionality by SΨ
`m.

By imposing an azimuthal band-limit N, i.e. SΨ
`m = 0, ∀m ≥ N, we recover steerable wavelets

that satisfy (
Rz

(χ)Ψ
)
(ω) =

2N−2∑
p=0

k(χ− χp)
(
Rz

(χp)Ψ
)
(ω) .

By the linearity of the wavelet transform, property extends to wavelet coefficients.
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Fast algorithms

Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

W f
Ψj (ρ) = 〈f ,Ψj

ρ〉 =
∑
`mn

2`+ 1
8π2

(
W f

Ψj

)`
mnD`∗mn (ρ) ,

where (
W f

Ψj

)`
mn =

8π2

2`+ 1
f`mΨ

j∗
`n ,

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski
2001).

Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

f`m =
∑

jn

2`+ 1
8π2

(
W f

Ψj

)`
mnΨ

j
`n ,

where (
W f

Ψj

)`
mn =

∫
SO(3)

d%(ρ) W f
Ψj (ρ)D`mn(ρ) ,

which can be computed efficiently via a factoring of rotations (Risbo 1996) and exactly by
employing the Driscoll & Healy (1994) sampling theorem.
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Driscoll & Healy (DH) sampling theorem

Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

Figure: Sample positions of the DH sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

A new sampling theorem on the sphere (McEwen & Wiaux 2011).

⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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Codes to compute harmonic transforms

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

All codes available from: http://www.jasonmcewen.org/
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Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

C, Matlab, IDL, Java

Support only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

All codes available from: http://www.jasonmcewen.org/
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Scale-discretised wavelets on the sphere
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Figure: Computation time of the scale-discretised wavelet transform.
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Scale-discretised wavelets on the sphere
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Figure: Numerical accuracy of the scale-discretised wavelet transform.
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Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Outline

1 Wavelets on the sphere
Continuous wavelets via stereographic projection
Continuous wavelets via harmonic dilation
Scale-discretised wavelets

2 Wavelets on the ball
Harmonic transforms
Fourier-Laguerre convolution
Scale-discretised wavelets

3 Cosmic strings
Observational signatures
Detection algorithm
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Galaxy surveys

Credit: SDSS
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Fourier-Laguerre transform on the ball

Fourier-Bessel functions are the canonical orthogonal basis on the sphere→ but do not admit
a sampling theorem.

Developed a Fourier-Laguerre transform and corresponding sampling theorem on the ball
(Leistedt & McEwen 2012).

Define the radial basis functions by

Kp(r) ≡
√

p!

(p + 2)!

e−r/2τ

√
τ 3

L(2)
p

(
r
τ

)
,

where L(2)
p is the p-th generalised Laguerre polynomial of order two.

Define the Fourier-Laguerre basis functions by Z`mp(r) = Kp(r)Y`m(ω).
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Fourier-Laguerre transform on the ball

For a band-limited signal, we can compute the Fourier-Laguerre transform exactly.

Compute Fourier-Bessel coefficients exactly from Fourier-Laguerre coefficients.
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Figure: Numerical accuracy of Fourier-Laguerre transform
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Fourier-Laguerre transform on the ball

Fast algorithms to compute the Fourier-Laguerre transform.10
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Figure: Computation time of Fourier-Laguerre transform
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Codes to compute harmonic transforms

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

All codes available from: http://www.jasonmcewen.org/
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Fourier-Laguerre translation and convolution

We construct translation and convolution operators on the radial line by analogy with the
infinite line.

For the standard orthogonal basis φω(x) = eiωx translation of the basis functions defined by
the shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ

∗
ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Define convolution on the radial line of by

(f ? h)(r) ≡ 〈f |Trh〉 =

∫
R+

dss2 f (s) (Trh) (s),

from which it follows that radial convolution in harmonic space is given by the product

(f ? h)p = 〈f ? h|Kp〉 = fphp .
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Fourier-Laguerre translation and convolution

Translation corresponds to convolution with the Dirac delta:

(f ? δs)(r) =
∞∑

p=0

fpKp(s)Kp(r) = (Tsf )(r) .

r

A
m

pl
itu

de

Fig. 1. Band-limited Dirac delta functions plotted on the radial line at
positions s = {0.2, 0.3, 0.4} (plotted in blue, green and red, respectively).
Oscillations are caused by the finite band-limit (here P = 256); as P ! 1
oscillations vanish as the band-limited Delta converges to �s(r) = r�2�R(r�
s).

In order to recover a real space representation of the radial
translation operator we must first consider the Dirac delta
function on the radial line. We define the Dirac delta on the
radial line at position s by �s(r) ⌘ r�2�R(r� s), where �R is
the usual Dirac delta defined on the infinite line R. The Dirac
delta on the radial line satisfies the following normalisation
and sifting properties, respectively:

Z

R+

drr2�s(r) = 1; (12)
Z

R+

drr2f(r)�s(r) = f(s). (13)

The harmonic expansion of the Dirac delta is given by

�s(r) =
1X

p=0

Kp(s)Kp(r), (14)

which follows trivially by the sifting property. For the analysis
of band-limited functions, it is sufficient to consider the band-
limited Dirac delta (see Fig. 1), where the summation of
Eqn. (14) is truncated to P � 1.

With the Dirac delta function now defined on the radial line,
we show that the radial translation operator defined above is
simply the convolution of a function with the shifted Dirac
delta function:

(f ? �s)(r) =
1X

p=0

fpKp(s)Kp(r) = (Tsf)(r), (15)

where the final equality follows by Eqn. (8). Radial convo-
lution and translation are thus the natural analogues of the
respective operators defined on the infinite line.

We define the translation operator on the ball by combining
the angular and radial translation operators, giving

Tr ⌘ TrR(✓,'). (16)

The action of the radial translation operator on functions
defined on the ball is shown in Fig. 2. The convolution on the
ball of f 2 L2(B3) with an axisymmetric kernel h 2 L2(B3)
is then defined by the inner product

(f ? h)(r) ⌘ hf |TrhiB3 =

Z

B3

d3sf(s)(Trh)⇤(s), (17)

where s 2 B3. In harmonic space, axisymmetric convolution
on the ball may be written

(f ? h)`mp = hf ? h|Z`mpiB3 =

r
4⇡

2` + 1
f`mph

⇤
`0p, (18)

with f`mp = hf |Z`mpiB3 and h`0p�m0 = hh|Z`mpiB3 .

IV. FLAGLETS ON THE BALL

With an exact harmonic transform and a convolution op-
erator defined on the ball in hand, we are now in a position
to construct our exact wavelet transform on the ball, which
we call the flaglet transform (for Fourier-LAGuerre wavelet
transform) [5].

For a function of interest f 2 L2(B3), we define its jj0-th
wavelet coefficient W jj0 2 L2(B3) by the convolution of f
with the axisymmetric wavelet, or flaglet,  jj0 2 L2(B3):

W jj0
(r) ⌘ (f ? jj0

)(r) = hf |Tr 
jj0iB3 . (19)

The scales j, j0 2 N+
0 respectively relate to angular and radial

spaces. The wavelet coefficients contain the detail information
of the signal only; a scaling function and corresponding scaling
coefficients must be introduced to represent the low-frequency,
approximate information of the signal. The scaling coefficients
W� 2 L2(B3) are defined by the convolution of f with the
scaling function � 2 L2(B3):

W�(r) ⌘ (f ? �)(r) = hf |Tr�iB3 . (20)

Provided the flaglets and scaling function satisfy an ad-
missibility property (defined below), the function f may be
reconstructed exactly from its wavelet and scaling coefficients
by

f(r) =

Z

B3

d3r0W�(r0)(Tr�)(r0)

+
JX

j=J0

J 0X

j0=J 0
0

Z

B3

d3r0W jj0
(r0)(Tr 

jj0
)(r0).

(21)

The parameters J0 and J (J 0
0 and J 0) define the minimum

and maximum wavelet scales considered respectively for the
angular (radial) space and depend on the band-limit of f and
the specific definition of the wavelets and scaling function (see
[5]).

The admissibility condition under which a band-limited
function f can be reconstructed exactly is given by the
following resolution of the identity:

4⇡

2` + 1

 
|�`0p|2 +

JX

j=J0

J0X

j0=J 0
0

| jj0

`0p|2
!

= 1, 8`, p, (22)

where �`0p�m0 = h�|Z`mpiB3 and  jj0

`0p�m0 =

h jj0 |Z`mpiB3 . We refer the reader to our previous article
[5] for an example of the construction of specific wavelets
and scaling functions that satisfy the admissibility condition,
where we construct suitable wavelets by tiling the `-p
harmonic plane. The resulting wavelets are plotted in Fig. 2.

Figure: Band limited translated Dirac delta functions
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Fig. 1. Band-limited Dirac delta functions plotted on the radial line at
positions s = {0.2, 0.3, 0.4} (plotted in blue, green and red, respectively).
Oscillations are caused by the finite band-limit (here P = 256); as P ! 1
oscillations vanish as the band-limited Delta converges to �s(r) = r�2�R(r�
s).
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Z

R+

drr2�s(r) = 1; (12)
Z

R+

drr2f(r)�s(r) = f(s). (13)

The harmonic expansion of the Dirac delta is given by

�s(r) =
1X

p=0

Kp(s)Kp(r), (14)

which follows trivially by the sifting property. For the analysis
of band-limited functions, it is sufficient to consider the band-
limited Dirac delta (see Fig. 1), where the summation of
Eqn. (14) is truncated to P � 1.

With the Dirac delta function now defined on the radial line,
we show that the radial translation operator defined above is
simply the convolution of a function with the shifted Dirac
delta function:

(f ? �s)(r) =
1X

p=0

fpKp(s)Kp(r) = (Tsf)(r), (15)

where the final equality follows by Eqn. (8). Radial convo-
lution and translation are thus the natural analogues of the
respective operators defined on the infinite line.

We define the translation operator on the ball by combining
the angular and radial translation operators, giving

Tr ⌘ TrR(✓,'). (16)

The action of the radial translation operator on functions
defined on the ball is shown in Fig. 2. The convolution on the
ball of f 2 L2(B3) with an axisymmetric kernel h 2 L2(B3)
is then defined by the inner product

(f ? h)(r) ⌘ hf |TrhiB3 =

Z

B3

d3sf(s)(Trh)⇤(s), (17)

where s 2 B3. In harmonic space, axisymmetric convolution
on the ball may be written

(f ? h)`mp = hf ? h|Z`mpiB3 =

r
4⇡

2` + 1
f`mph

⇤
`0p, (18)

with f`mp = hf |Z`mpiB3 and h`0p�m0 = hh|Z`mpiB3 .

IV. FLAGLETS ON THE BALL

With an exact harmonic transform and a convolution op-
erator defined on the ball in hand, we are now in a position
to construct our exact wavelet transform on the ball, which
we call the flaglet transform (for Fourier-LAGuerre wavelet
transform) [5].

For a function of interest f 2 L2(B3), we define its jj0-th
wavelet coefficient W jj0 2 L2(B3) by the convolution of f
with the axisymmetric wavelet, or flaglet,  jj0 2 L2(B3):

W jj0
(r) ⌘ (f ? jj0

)(r) = hf |Tr 
jj0iB3 . (19)

The scales j, j0 2 N+
0 respectively relate to angular and radial

spaces. The wavelet coefficients contain the detail information
of the signal only; a scaling function and corresponding scaling
coefficients must be introduced to represent the low-frequency,
approximate information of the signal. The scaling coefficients
W� 2 L2(B3) are defined by the convolution of f with the
scaling function � 2 L2(B3):

W�(r) ⌘ (f ? �)(r) = hf |Tr�iB3 . (20)

Provided the flaglets and scaling function satisfy an ad-
missibility property (defined below), the function f may be
reconstructed exactly from its wavelet and scaling coefficients
by

f(r) =

Z

B3

d3r0W�(r0)(Tr�)(r0)

+
JX

j=J0

J 0X

j0=J 0
0

Z

B3

d3r0W jj0
(r0)(Tr 

jj0
)(r0).

(21)

The parameters J0 and J (J 0
0 and J 0) define the minimum

and maximum wavelet scales considered respectively for the
angular (radial) space and depend on the band-limit of f and
the specific definition of the wavelets and scaling function (see
[5]).

The admissibility condition under which a band-limited
function f can be reconstructed exactly is given by the
following resolution of the identity:

4⇡

2` + 1

 
|�`0p|2 +

JX

j=J0

J 0X

j0=J 0
0

| jj0

`0p|2
!

= 1, 8`, p, (22)

where �`0p�m0 = h�|Z`mpiB3 and  jj0

`0p�m0 =

h jj0 |Z`mpiB3 . We refer the reader to our previous article
[5] for an example of the construction of specific wavelets
and scaling functions that satisfy the admissibility condition,
where we construct suitable wavelets by tiling the `-p
harmonic plane. The resulting wavelets are plotted in Fig. 2.

Figure: Band limited translated Dirac delta functions
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Fourier-Laguerre translation and convolution

Translation corresponds to convolution with the Dirac delta:

(f ? δs)(r) =
∞∑

p=0

fpKp(s)Kp(r) = (Tsf )(r) .

Angular aperture of localised functions (and flaglets) is invariant under radial translation.
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(b) Wavelet kernel translated by r = 042

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Exact wavelets on the ball (Leistedt & McEwen 2012).

Define translation and convolution operators on the radial
line.

Dilation performed in harmonic space.

Scale-discretised wavelet Ψ ∈ L2(B3) is defined in
harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the identity:

4π
2`+ 1

(
|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.
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Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Exact wavelets on the ball (Leistedt & McEwen 2012).

Define translation and convolution operators on the radial
line.

Dilation performed in harmonic space.

Scale-discretised wavelet Ψ ∈ L2(B3) is defined in
harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the identity:

4π
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(
|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
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= 1, ∀`, p.
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Scale-discretised wavelets on the ball

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Scale-discretised wavelets on the ball

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) ≡ (f ?Ψ

jj′
)(r) = 〈f |TrRωΨ

jj′ 〉 =

∫
B3

d3r′f (r′)(TrRωΨ
jj′

)(r′) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (r) =

∫
B3

d3r′WΦ
(r′)(TrRωΦ)(r′) +

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj′
(r′)(TrRωΨ

jj′
)(r′) .

Alternatives: Spherical 3D isotropic wavelets (Lanusse, Rassat & Starck 2012)
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Code for scale-discretised wavelet on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

C, Matlab, IDL, Java

Exact (Fourier-LAGuerre) wavelets on the ball – coined flaglets!

Available from: http://www.jasonmcewen.org/

Jason McEwen Signal processing on spherical manifolds
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Scale-discretised wavelets on the ball
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Figure: Numerical accuracy of the flaglet transform.
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Scale-discretised wavelets on the ball
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Figure: Computation time of the flaglet transform.
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Scale-discretised wavelet transform of N-body simulation

(a) Band-limited data (b) (j, j′) = (6, 6) (c) (j, j′) = (7, 6)

(d) Scaling coefficients (e) (j, j′) = (6, 7) (f) (j, j′) = (7, 7)

Figure: Wavelet transform of of an N-body simulation.
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Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.
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Outline

1 Wavelets on the sphere
Continuous wavelets via stereographic projection
Continuous wavelets via harmonic dilation
Scale-discretised wavelets

2 Wavelets on the ball
Harmonic transforms
Fourier-Laguerre convolution
Scale-discretised wavelets

3 Cosmic strings
Observational signatures
Detection algorithm
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Cosmic structure
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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP.]
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

Amplitude of the signal is given by the string tension Gµ.

Search for a weak string signal s embedded in the CMB c, with observations d given by

d = c + s .

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Using wavelets to detect cosmic strings

Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and

position ρ ∈ SO(3).
Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
e

(
− 1

2

(
Wc

jρ
σc

j

)2)
, where (σ

c
j )

2
= 〈Wc

jρ Wc
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

e

(
−

∣∣∣∣ Ws
jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.

Jason McEwen Signal processing on spherical manifolds



Wavelets on the Sphere Wavelets on the Ball Cosmic Strings Observational signatures Detection algorithm

Spherical wavelet-Bayesian string tension estimation

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .
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Figure: Posterior distribution of the string tension (true Gµ = 3 × 10−6).
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Spherical wavelet-Bayesian string tension estimation
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Figure: Posterior distribution of the string tension (true Gµ = 2 × 10−6).
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =
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Figure: Posterior distribution of the string tension (true Gµ = 1 × 10−6).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms to the alternative model Mc that
the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) .

Table: Tension estimates and log-evidence differences for simulations.

Gµ/10−6 0.7 0.8 0.9 1.0 2.0 3.0

Ĝµ/10−6 1.1 1.2 1.2 1.3 2.1 3.1
∆lnE −1.3 −1.1 −0.9 −0.7 5.5 29
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Recovering string maps

Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(Ws

jρ |Wd).

Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

Ws
jρ =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
)

=

∫
R

d(Gµ) P(Gµ | d) Ws
jρ(Gµ) ,

where

Ws
jρ(Gµ) =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
jρ,Gµ)

=
1

P(Wd
jρ |Gµ)

∫
R

dWs
jρ Ws

jρ Pc
j (Wd

jρ − Ws
jρ) Ps

j (Ws
jρ |Gµ) .

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

Work in progress. . .
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Summary

Observations on spherical manifolds are prevalent.

Necessitate rigorous signal processing techniques on spherical manifolds:

Sampling theorems
Wavelets
Compressive sensing

In cosmology, sensitive methods are required to extract the weak signatures of new physics
from next-generation observations.
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