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What is sparsity?

— representation of data in such a way that many data points are zero
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Why is sparsity useful?

— efficient characterisation of structure
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Why is sparsity useful?

Add noise

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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Why is sparsity useful?

Inverse transform

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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How can we construct sparsifying transforms?

— many signals in nature have spatially localised, scale-dependent features
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How can we construct sparsifying transforms?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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How can we construct sparsifying transforms?

Figure: Wavelet scaling and shifting [Credit: Gao & Yan (2010)]
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Compressive sensing

“Nothing short of revolutionary.”

– National Science Foundation

Developed by Candes et al. 2006 and Donoho 2006 (and others).

Although many underlying ideas around for a long time.

(a) Emmanuel Candes (b) David Donoho
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

Mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑
i

αiΨi(t) → x =
∑
i

Ψiαi =

 |Ψ0

|

α0+

 |Ψ1

|

α1+· · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Ill-posed inverse problem:

y = Φx+ n = ΦΨα+ n .

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑
i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α

‖α‖0 such that ‖y − ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α

‖α‖1 such that ‖y − ΦΨα‖2 ≤ ε .

Jason McEwen Sparsity in Astrophysics
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An introduction to compressive sensing
Union of subspaces

Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

• Sparse signal: All but K coordinates are zero

• Model: union of K-dimensional subspaces
aligned w/ coordinate axes
(highly nonlinear!)

Geometrical Situation

sparse
signal

nonzero
entries

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing
Intuition

Solutions of `0 and `1 problems often the same.

Geometry of `0, `2 and `1 problems.

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Coherence

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K logN ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√
N max

i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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Analysis vs synthesis

Many new developments (e.g. analysis vs synthesis, structured sparsity).

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

But this is different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x

‖Ωx‖1 such that ‖y − Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 such that ‖y − ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.

Jason McEwen Sparsity in Astrophysics
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα+ n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y − ΦΨα‖22/(2σ2)

)
.

Consider the Laplacian prior:

P(α) ∝ exp
(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-Synthesis = Ψ · arg max
α

P(α |y) = Ψ · arg min
α

‖y − ΦΨα‖22 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!

Jason McEwen Sparsity in Astrophysics
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators
⊂ synthesis-based estimators with appropriate penalty function,

i.e. penalised least-squares (LS)
⊂ MAP estimators

MMSE

Penalised LS

MAP

Jason McEwen Sparsity in Astrophysics
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

For the analysis-based approach, the MAP estimate is then

x?MAP-Analysis = arg max
x

P(x |y) = arg min
x

‖y − Φx‖22 + λ‖Ωx‖1 .

analysis

Identical to the synthesis-based approach if Ω = Ψ† .

But for redundant dictionaries, the analysis-based MAP estimate is

x?MAP-Analysis = Ω† · arg min
γ∈column space Ω

‖y − ΦΩ†γ‖22 + λ‖γ‖1 .

analysis

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet
MEM (maximum entropy method).

Jason McEwen Sparsity in Astrophysics
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Outline
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Radio interferometric imaging
Inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = MFCA may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Radio interferometric imaging
Imaging

Solve the interferometric imaging problem

y = Φx+ n with Φ = MFCA ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis pursuit (BP) denoising problem

α? = arg min
α

‖α‖1 such that ‖y − ΦΨα‖2 ≤ ε ,

synthesis

where the image is synthesised by x? = Ψα?.

Application to simulations by Wiaux et al. 2009, McEwen & Wiaux 2011.

Application of (unconstrained) problem to LOFAR by Garsden, Starck et al. 2014.

Jason McEwen Sparsity in Astrophysics



Sparsity Compressive Sensing Radio Interferometry Interferometric imaging Spread spectrum

Radio interferometric imaging
Imaging

Solve the interferometric imaging problem

y = Φx+ n with Φ = MFCA ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis pursuit (BP) denoising problem

α? = arg min
α

‖α‖1 such that ‖y − ΦΨα‖2 ≤ ε ,

synthesis

where the image is synthesised by x? = Ψα?.

Application to simulations by Wiaux et al. 2009, McEwen & Wiaux 2011.

Application of (unconstrained) problem to LOFAR by Garsden, Starck et al. 2014.

Jason McEwen Sparsity in Astrophysics



Sparsity Compressive Sensing Radio Interferometry Interferometric imaging Spread spectrum

Radio interferometric imaging
Imaging

Solve the interferometric imaging problem

y = Φx+ n with Φ = MFCA ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis pursuit (BP) denoising problem

α? = arg min
α

‖α‖1 such that ‖y − ΦΨα‖2 ≤ ε ,

synthesis

where the image is synthesised by x? = Ψα?.

Application to simulations by Wiaux et al. 2009, McEwen & Wiaux 2011.

Application of (unconstrained) problem to LOFAR by Garsden, Starck et al. 2014.

Jason McEwen Sparsity in Astrophysics



Sparsity Compressive Sensing Radio Interferometry Interferometric imaging Spread spectrum

SARA for radio interferometric imaging
Algorithm

Sparsity averaging reweighted analysis (SARA) for RI imaging
(Carrillo, McEwen & Wiaux 2013, 2014)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√
q

[Ψ1,Ψ2, . . . ,Ψq ],

thus Ψ ∈ RN×D with D = qN .

We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight. ⇒ concatenation of 9 bases.

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

S
A

R
A

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous
problem as the inverse weights→ approximate the `0 problem.
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SARA for radio interferometric imaging
Results on simulations
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SARA for radio interferometric imaging
Results on simulations for continuous visiblities
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Spread spectrum effect
Review

Use theory of compressive sensing to optimise telescope configurations.

Non-coplanar baselines and wide fields→ w-modulation→ spread spectrum effect
→ improves reconstruction quality (first considered by Wiaux et al. 2009b).

The w-modulation operator C has elements defined by

C(l,m) ≡ ei2πw
(
1−
√

1−l2−m2
)
' eiπw‖l‖2 for ‖l‖4 w � 1 ,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
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Spread spectrum effect
Review

Spread spectrum effect in a nutshell

1 Radio interferometers take (essentially) Fourier measurements.

2 Recall, the coherence is the maximum inner product between
measurement vectors and sparsifying atoms.

3 Thus, coherence is (essentially) the maximum of the Fourier coefficients of
the atoms of the sparsifying dictionary.

4 w-modulation spreads the spectrum of the atoms of the sparsifying
dictionary, reducing the maximum Fourier coefficient.

5 Spreading the spectrum reduces coherence, thus improving
reconstruction fidelity.

Consistent with findings of Carozzi et al. (2013) from information theoretic approach.

Studied for constant w (for simplicity) by Wiaux et al. (2009b).

Studied for varying w (with realistic images and various sparse representations) by
Wolz et al. (2013) by developing fast sparse w-projection algorithm.
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Spread spectrum effect for varying w
Results on simulations

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

Consider idealised simulations with uniformly random visibility sampling.
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Figure: Ground truth images in logarithmic scale.
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Figure: Reconstructed images of M31 for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Figure: Reconstruction fidelity using SARA.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Compressive sensing for radio interferometric imaging
Outlook

Effectiveness of compressive sensing for radio interferometric imaging demonstrated.

We have just released the PURIFY code to scale to real data.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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Summary

Astrostatistics is now a mature field.

Informatics techniques (sparsity, wavelets, compressive sensing)
are a complementary approach. . .

. . . leading to the emerging field of astroinformatics.

Many codes for application to cosmological data (CMB, LSS) available from:
www.jasonmcewen.org

For postdoc opportunities see:
www.jasonmcewen.org
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