CosmoInformatics

Sparsity, wavelets, compressive sensing and all that. . .

Jason McEwen [www.jasonmcewen.org](http://jasonmcewen.org) [@jasonmcewen](https://twitter.com/jasonmcewen)

Mullard Space Science Laboratory (MSSL) University College London (UCL)

MSSL Astro Seminar, Mar 2014

イロト イ母 トイラ トイラト

 OQ

What is sparsity?

— representation of data in such a way that many data points are zero

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

What is sparsity?

メロメメ 倒 メメ きょくきょうき

 Ω

What is sparsity?

Sparsifying transform

メロメメ 倒 メメ きょくきょうき

 2990

— efficient characterisation of structure

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q @

Add noise

メロメメ 倒 メメ ミメメ ミメー

重

 299

Sparsifying transform

Jason McEwen [CosmoInformatics](#page-0-0)

メロトメ 伊 トメ ミトメ ミト

重

 QQ

Sparsifying transform

メロメメ 倒 メメ きょくきょうき

 299

Threshold

イロト イ部 トイヨ トイヨ トー

重

 $2Q$

Jason McEwen [CosmoInformatics](#page-0-0)

イロメ イ団メ イヨメ イヨメー

重

 299

Inverse transform

イロト イ部 トイヨ トイヨ トー

 299

重

 $2Q$

重

メロメメ 倒 メメ きょくきょう

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]

— many signals in nature have spatially localised, scale-dependent features

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

 $2Q$

Figure: Fourier vs wavelet transform [Credit: <http://www.wavelet.org/tutorial/>]

 299

Fourier (1807) Haar (1909) Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: <http://www.wavelet.org/tutorial/>]

Figure: Wavelet scaling and shifting [Credit: <http://www.wavelet.org/tutorial/>[\]](#page-16-0)

 $2Q$

Observations on the celestial sphere in cosmology

© 2006 Abrams and Primack, Inc.

 \leftarrow

 Ω

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

 QQ

Outline

[Dark energy](#page-17-0)

- **o** [ISW effect](#page-18-0)
- [Continuous wavelets on the sphere](#page-22-0)
- [Detecting dark energy](#page-36-0)
- [Cosmic strings](#page-40-0)
	- [String physics](#page-41-0)
	- **[Scale-discretised wavelets on the sphere](#page-47-0)**
	- [String estimation](#page-60-0)

[Radio interferometry](#page-82-0)

- [Interferometric imaging](#page-83-0)
- [Compressive sensing](#page-91-0)
- [Imaging with CS](#page-112-0)

[Large-scale structure](#page-130-0)

- **[Wavelets on ball](#page-131-0)**
- **[Cosmic voids](#page-141-0)**

Dark energy

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

Figure: Content of the Universe [Credit: Planck]

イロメ イ母メ イヨメ イヨメ

 QQ

Dark energy

- Universe consists of ordinary baryonic matter, cold dark matter and dark energy.
- Dark energy represents energy density of empty space, which acts as a repulsive force.
- Strong evidence for dark energy exists but we know very little about its nature and origin.
- A consistent model in the framework of particle physics lacking.

Figure: Content of the Universe [Credit: Planck]

イロメ イ母メ イヨメ イヨメ

 $2Q$

Integrated Sachs Wolfe Effect Analogy

(no dark energy)

(with dark energy)

(a) No dark energy

(b) With dark energy

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q @

Figure: Analogy of ISW effect

メロトメ 伊 トメ ミトメ ミト

 $2Q$

Integrated Sachs Wolfe Effect Correlation between CMB and LSS

Figure: Constraining dark energy through any correlation between the CMB and LSS.

Recall wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting [Credit: [http://www.wa](http://www.wavelet.org/tutorial/)[v](#page-21-0)[ele](http://www.wavelet.org/tutorial/)[t.](#page-23-0)[o](http://www.wavelet.org/tutorial/)[r](#page-21-0)g4t[u](http://www.wavelet.org/tutorial/)[t](#page-23-0)or[ia](#page-22-0)[l](#page-35-0)[/](http://www.wavelet.org/tutorial/)] $2Q$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$
[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).
$$

イロト イ母 トイラ トイラト

 QQ

• How define dilation on the sphere?

The spherical dilation operator is defined through the conjugation of the Euclidean dilation and

$$
\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi .
$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$
[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).
$$

translation

イロト イ母 トイラ トイラト

 QQ

• How define dilation on the sphere?

The spherical dilation operator is defined through the conjugation of the Euclidean dilation and

$$
\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi.
$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$
[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).
$$

translation

K ロ ト K 何 ト K ヨ ト K ヨ ト

 QQQ

• How define dilation on the sphere?

The spherical dilation operator is defined through the conjugation of the Euclidean dilation and

$$
\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi .
$$

- One of the first natural wavelet construction on the sphere was derived in the seminal work of Antoine and Vandergheynst (1998) (reintroduced by Wiaux 2005).
- Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a mother wavelet.
- The natural extension of translations to the sphere are rotations. Rotation of a function *f* on the sphere is defined by

$$
[\mathcal{R}(\rho)f](\omega) = f(\rho^{-1} \cdot \omega), \quad \omega = (\theta, \varphi) \in \mathbb{S}^2, \quad \rho = (\alpha, \beta, \gamma) \in SO(3).
$$

 $\frac{2}{\pi}$

(□) () →

South pole

y

 QQ

• How define dilation on the sphere? • The spherical dilation operator is defined through the conjugation of the Euclidean dilation and stereographic projection Π: $\mathcal{D}(a) \equiv \Pi^{-1} d(a) \Pi$. dilation \overline{x} . $z_{\rm A}$ $r = 2 \tan(\frac{\theta}{2})$. θ φ θ ω x North pole

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ:

$$
\{\Psi_{a,\rho}\equiv\mathcal{R}(\rho)\mathcal{D}(a)\Psi:\rho\in\mathrm{SO}(3),\,a\in\mathbb{R}^+_*\}.
$$

dictionary

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 QQ

• The forward wavelet transform is given by

$$
W_{\Psi}^{f}(a,\rho) = \langle f, \Psi_{a,\rho} \rangle \bigg) \equiv \int_{\mathbb{S}^{2}} d\Omega(\omega) f(\omega) \, \Psi_{a,\rho}^{*}(\omega) ,
$$

projection

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

Wavelet coefficients live in ${\rm SO}(3)\times \mathbb{R}^+_*$; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ:

$$
\{\Psi_{a,\rho}\equiv\mathcal{R}(\rho)\mathcal{D}(a)\Psi:\rho\in\mathrm{SO}(3),\,a\in\mathbb{R}^+_*\}.
$$

dictionary

 QQQ

• The forward wavelet transform is given by

$$
\left[W_{\Psi}^f(a,\rho) = \langle f,\Psi_{a,\rho}\rangle\right] \equiv \int_{\mathbb{S}^2} d\Omega(\omega) f(\omega) \Psi_{a,\rho}^*(\omega) ,
$$

projection

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

Wavelet coefficients live in ${\rm SO}(3)\times \mathbb{R}^+_*$; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Forward transform (*i.e.* analysis)

Wavelet family on the sphere constructed from rotations and dilations of a mother wavelet Ψ:

$$
\{\Psi_{a,\rho}\equiv\mathcal{R}(\rho)\mathcal{D}(a)\Psi:\rho\in\mathrm{SO}(3),\,a\in\mathbb{R}^+_*\}.
$$

dictionary

イロト イ押 トイラ トイラト

 QQ

• The forward wavelet transform is given by

$$
\left[W_{\Psi}^f(a,\rho) = \langle f,\Psi_{a,\rho}\rangle\right] \equiv \int_{\mathbb{S}^2} d\Omega(\omega) f(\omega) \Psi_{a,\rho}^*(\omega) ,
$$

projection

where $d\Omega(\omega) = \sin \theta \, d\theta \, d\varphi$ is the usual invariant measure on the sphere.

Wavelet coefficients live in $\mathrm{SO}(3)\times\mathbb{R}^+_*$; thus, directional structure is naturally incorporated.

Continuous wavelets on the sphere Fast algorithms

- Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
	- Factoring of rotations: McEwen *et al.* (2007), Wandelt & Gorski (2001), Risbo (1996)
	- Separation of variables: Wiaux *et al.* (2005)

FastCSWT code <http://www.fastcswt.org>

イロト イ母 トイラト イラト

 QQ

Fast directional continuous spherical wavelet transform algorithms McEwen *et al.* (2007)

- **A** Fortran
- Supports directional and steerable wavelets

イロメ イ団メ イヨメ イヨメー

 QQ

Continuous wavelets on the sphere Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux *et al.* 2005).
- \bullet Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$
\boxed{\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2}},
$$

where $\Psi_{\mathbb{R}^2}\in\mathrm{L}^2(\mathbb{R}^2,\,\mathrm{d}^2\bm{x})$ is an admissible wavelet on the plane.

 -209

Continuous wavelets on the sphere Mother wavelets

- Correspondence principle between spherical and Euclidean wavelets (Wiaux *et al.* 2005).
- \bullet Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets defined on the plane:

$$
\boxed{\Psi = \Pi^{-1} \Psi_{\mathbb{R}^2}},
$$
construction

where $\Psi_{\mathbb{R}^2}\in\mathrm{L}^2(\mathbb{R}^2,\,\mathrm{d}^2\pmb{x})$ is an admissible wavelet on the plane.

イロメ イ団メ イモメ イモメー

G. QQQ

Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$
f(\omega) = \underbrace{\int_0^\infty \frac{da}{a^3} \int_{SO(3)} d\varrho(\rho)}_{\text{'sum' continuous}} \underbrace{W^f_{\Psi}(a,\rho) \left[\mathcal{R}(\rho) \widehat{L}_{\Psi} \Psi_a \right](\omega)}_{\text{weighted basis functions}},
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

Perfect reconstruction iff wavelets satisfy admissibility property: \bullet

$$
0<\widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} \frac{da}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}
$$

BUT... exact reconstruction not feasible in practice! \bullet

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$
f(\omega) = \underbrace{\int_0^\infty \frac{da}{a^3} \int_{SO(3)} d\varrho(\rho)}_{\text{'sum' continuous}} \underbrace{W^f_\Psi(a,\rho) \left[\mathcal{R}(\rho)\widehat{L}_\Psi \Psi_a\right](\omega)}_{\text{weighted basis functions}},
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

• Perfect reconstruction iff wavelets satisfy admissibility property:

$$
0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{da}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}
$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega).$

BUT... exact reconstruction not feasible in practice! \bullet

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Continuous wavelets on the sphere Inverse transform (*i.e.* synthesis)

• The inverse wavelet transform given by

$$
f(\omega) = \underbrace{\int_0^\infty \frac{da}{a^3} \int_{SO(3)} d\varrho(\rho)}_{\text{'sum' continuous}} \underbrace{W^f_\Psi(a,\rho) \left[\mathcal{R}(\rho)\widehat{L}_\Psi \Psi_a\right](\omega)}_{\text{weighted basis functions}},
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3).

• Perfect reconstruction iff wavelets satisfy admissibility property:

$$
0 < \widehat{C}_{\Psi}^{\ell} \equiv \frac{8\pi^2}{2\ell+1} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \frac{da}{a^3} \mid (\Psi_a)_{\ell m} \mid^2 < \infty, \quad \forall \ell \in \mathbb{N}
$$

where $(\Psi_a)_{\ell m}$ are the spherical harmonic coefficients of $\Psi_a(\omega).$

BUT... exact reconstruction not feasible in practice! \bullet
K ロ ト K 伺 ト K ヨ ト K ヨ ト

Þ

 QQ

Detecting dark energy Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen *et al.* 2007, McEwen *et al.* 2008).
- Compare to 1000 Monte Carlo simulations.
- Correlation detected at 99.9% significance.

 \Rightarrow Independent evidence for the existence of dark energy!

Detecting dark energy Wavelet coefficient correlation

- Compute wavelet correlation of CMB and LSS data (McEwen *et al.* 2007, McEwen *et al.* 2008).
- Compare to 1000 Monte Carlo simulations.
- Correlation detected at 99.9% significance.

 \Rightarrow Independent evidence for the existence of dark energy!

Figure: Wavelet correlation N_{σ} surface. Contours are shown at 3σ .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

メロメメ 倒 メメ きょく ミメー

 $E = \Omega Q$

Detecting dark energy Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
	- **Energy density** Ω_{Λ} **.**
	- Equation of state parameter *w* relating pressure and density of cosmological fluid modelling dark energy, *i.e.* $p = w\rho$.

• Parameter estimates of
$$
\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}
$$
 and $w = -0.77^{+0.35}_{-0.36}$ obtained.

Detecting dark energy Constraining cosmological models

- Use positive detection of the ISW effect to constrain parameters of cosmological models:
	- **Energy density** Ω_{Λ} **.**
	- Equation of state parameter *w* relating pressure and density of cosmological fluid modelling dark energy, *i.e.* $p = w\rho$.

Figure: Likelihood for dark energy parameters.

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

 QQ

Outline

[Dark energy](#page-17-0)

ISW effect

- [Continuous wavelets on the sphere](#page-22-0)
- [Detecting dark energy](#page-36-0)

[Cosmic strings](#page-40-0)

- **•** [String physics](#page-41-0)
- **•** [Scale-discretised wavelets on the sphere](#page-47-0)
- **•** [String estimation](#page-60-0)

[Radio interferometry](#page-82-0)

- [Interferometric imaging](#page-83-0)
- [Compressive sensing](#page-91-0)
- **•** [Imaging with CS](#page-112-0)

[Large-scale structure](#page-130-0)

- **[Wavelets on ball](#page-131-0)**
- **[Cosmic voids](#page-141-0)**

Cosmic strings

- Symmetry breaking phase transitions in the early Universe \rightarrow topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken \rightarrow line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have $\begin{array}{c} \bullet \\ \bullet \end{array}$

The detection of cosmic strings would open a new window into the physics of the Universe!

イロメ イ団メ イヨメ イヨメー

Cosmic strings

- Symmetry breaking phase transitions in the early Universe \rightarrow topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken \rightarrow line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang *et al.* (1991).]

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 Ω

The detection of cosmic strings would open a new window into the physics of the Universe!

Cosmic strings

- Symmetry breaking phase transitions in the early Universe \rightarrow topological defects.
- Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is broken \rightarrow line-like discontinuities in the fabric of the Universe.
- We have not yet observed cosmic strings but we have observed string-like topological defects in other media.

Figure: Optical microscope photograph of a thin film of freely suspended nematic liquid crystal after a temperature quench. [Credit: Chuang *et al.* (1991).]

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 Ω

The detection of cosmic strings would open a new window into the physics of the Universe!

Observational signatures of cosmic strings Conical Spacetime

- Spacetime about a cosmic string is conical, with a three-dimensional wedge removed (Vilenkin 1981).
- Strings moving transverse to the line of sight induce line-like discontinuities in the CMB (Kaiser & Stebbins 1984).
- The amplitude of the induced contribution scales with the string tension *G*µ.

Figure: Spacetime around a cosmic string. [Credit: Kaiser & Stebbins 1984, DAMTP.]

イロメ イ母メ イヨメ イヨメ

Observational signatures of cosmic strings CMB contribution

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal *s* embedded in the CMB *c*, with observations *d* given by

$$
\begin{bmatrix} d(\theta, \varphi) \\ \mathsf{observation} \end{bmatrix} = \begin{bmatrix} c(\theta, \varphi) \\ \mathsf{CMB} \end{bmatrix} + \begin{bmatrix} G\mu \cdot s(\theta, \varphi) \\ \mathsf{strings} \end{bmatrix}
$$

Figure: Cosmic string simulations.

temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions in corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these [spo](#page-44-0)ts [are](#page-46-0)

Observational signatures of cosmic strings CMB contribution

- Make contact between theory and data using high-resolution simulations.
- Search for a weak string signal *s* embedded in the CMB *c*, with observations *d* given by

Figure: Cosmic string simulations.

temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions in corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these [spo](#page-45-0)ts [are](#page-47-0)

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- *Exact reconstruction with directional wavelets on the sphere* Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [*cf.* McEwen *et al.* (2006), Sanz *et al.* (2006)].
	- Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$

$$
\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m}.
$$

• Admissible wavelets constructed to satisfy

$$
\underbrace{\sqrt{|\Phi_{\ell 0}|^2}}_{\text{scaling function}} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \underbrace{\left(|\Psi_{\ell m}^j|^2\right)}_{\text{wavelet}} = 1 \ , \quad \forall \ell \ .
$$

イロメ イ団メ イモメ イモメー

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- *Exact reconstruction with directional wavelets on the sphere* Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [*cf.* McEwen *et al.* (2006), Sanz *et al.* (2006)].
	- Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$

$$
\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} .
$$

• Admissible wavelets constructed to satisfy

$$
\underbrace{\sqrt{|\Phi_{\ell 0}|^2}}_{\text{scaling function}} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \underbrace{\left(|\Psi_{\ell m}^j|^2\right)}_{\text{wavelet}} = 1 \ , \quad \forall \ell \ .
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 \Rightarrow

 QQQ

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- *Exact reconstruction with directional wavelets on the sphere* Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [*cf.* McEwen *et al.* (2006), Sanz *et al.* (2006)].

Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$
\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} .
$$

• Admissible wavelets constructed to satisfy

$$
\underbrace{\boxed{|\Phi_{\ell 0}|^2}}_{\text{scaling function}} + \sum_{j=0}^{J} \sum_{m=-\ell}^{\ell} \underbrace{\boxed{|\Psi_{\ell m}^j|^2}}_{\text{wavelet}} = 1 \ , \quad \forall \ell \ .
$$

イロト イ母 トイラ トイラトー

Wavelet construction

Exact reconstruction not feasible in practice with continuous wavelets!

- *Exact reconstruction with directional wavelets on the sphere* Wiaux, McEwen, Vandergheynst, Blanc (2008)
- Dilation performed in harmonic space [*cf.* McEwen *et al.* (2006), Sanz *et al.* (2006)].

Scale-discretised wavelet $\Psi^j \in L^2(\mathbb{S}^2, d\Omega)$ defined in harmonic space:

$$
\Psi^j_{\ell m} \equiv \kappa^j(\ell) s_{\ell m} .
$$

Admissible wavelets constructed to satisfy a resolution of the identity:

$$
\underbrace{\left\lceil |\Phi_{\ell 0}|^2 \right\rceil}_{\text{scaling function}} + \sum_{j=0}^J \sum_{m=-\ell}^\ell \underbrace{\left\lceil |\Psi_{\ell m}^j|^2 \right\rceil}_{\text{wavelet}} = 1 \ , \quad \forall \ell \ .
$$

イロト イ母 トイラ トイラトー

イロメ イ母メ イヨメ イヨメー

 299

Þ

Scale-discretised wavelets on the sphere **Wavelets**

Figure: Scale-discretised wavelets on the sphere.

Forward and inverse transform (*i.e.* analysis and synthesis)

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$
\boxed{W^{\Psi^j}(\rho) = \langle f, \mathcal{R}_{\rho} \Psi^j \rangle}_{\text{projection}} = \int_{\mathbb{S}^2} d\Omega(\omega) f(\omega) (\mathcal{R}_{\rho} \Psi^j)^*(\omega) .
$$

The original function may be recovered exactly in practice from the wavelet (and scaling) \bullet

$$
f(\omega) = \n\begin{bmatrix}\n2\pi \int_{\mathbb{S}^2} d\Omega(\omega') W^{\Phi}(\omega') (\mathcal{R}_{\omega'} L^d \Phi)(\omega) \\
\text{scaling function contribution} \\
\text{finite sum}\n\end{bmatrix}\n+\n\begin{bmatrix}\nJ \\
\sum_{j=0}^J \left[\int_{\text{SO}(3)} d\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_{\rho} L^d \Psi^j)(\omega) \right. \\
\text{where } \omega \in \mathbb{S}^3.\n\end{bmatrix}
$$

イロメ イ団メ イモメ イモメー

Forward and inverse transform (*i.e.* analysis and synthesis)

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

$$
\boxed{W^{\Psi^j}(\rho) = \langle f, \mathcal{R}_{\rho} \Psi^j \rangle}_{\text{projection}} = \int_{\mathbb{S}^2} d\Omega(\omega) f(\omega) (\mathcal{R}_{\rho} \Psi^j)^*(\omega).
$$

• The original function may be recovered exactly in practice from the wavelet (and scaling) coefficients:

$$
f(\omega) = \underbrace{2\pi \int_{\mathbb{S}^2} d\Omega(\omega') W^{\Phi}(\omega') (\mathcal{R}_{\omega'} L^d \Phi)(\omega)}_{\text{scaling function contribution}} + \underbrace{\left[\sum_{j=0}^J \underbrace{\int_{\text{SO}(3)} d\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_{\rho} L^d \Psi^j)(\omega)}_{\text{wavelet contribution}}\right]}_{\text{wavelet contribution}}
$$

イロト 不優 トイミト 不思う

 B Ω

.

KOD KARD KED KEL YOUR

Scale-discretised wavelets on the sphere

Exact and efficient computation

Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$
W^{\Psi^{j}}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} (W^{\Psi^{j}})_{mn}^{\ell} D_{mn}^{\ell*}(\rho) , \quad \text{where } (W^{\Psi^{j}})_{mn}^{\ell} = \frac{8\pi^2}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*}
$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen *et al.* 2007).

 \bullet Wavelet synthesis can be posed as an forward Wigner transform on $SO(3)$:

$$
f(\omega) \sim \sum_{j=0}^J \int_{\text{SO}(3)} \text{d}\varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_{\rho} L^{\text{d}} \Psi^j)(\omega) = \sum_{j=0}^J \sum_{\ell mn} \frac{2\ell+1}{8\pi^2} \left(W^{\Psi^j} \right)_{mn}^{\ell} \Psi^j_{\ell n} Y_{\ell m}(\omega) ,
$$

$$
\left(\left(W^{\Psi^j} \right)^{\ell}_{mn} = \left\langle W^{\Psi^j}, \, D^{\ell *}_{mn} \right\rangle = \int_{SO(3)} d\varrho(\rho) W^{\Psi^j}(\rho) D^{\ell}_{mn}(\rho) ,
$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen *et al.* 2008) and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

.

KOD KARD KED KEL YOUR

Scale-discretised wavelets on the sphere

- Exact and efficient computation
	- Wavelet analysis can be posed as an inverse Wigner transform on SO(3):

$$
W^{\Psi^{j}}(\rho) = \sum_{\ell=0}^{L-1} \sum_{m=-\ell}^{\ell} \sum_{n=-\ell}^{\ell} \frac{2\ell+1}{8\pi^2} (W^{\Psi^{j}})_{mn}^{\ell} D_{mn}^{\ell*}(\rho) , \quad \text{where } (W^{\Psi^{j}})_{mn}^{\ell} = \frac{8\pi^2}{2\ell+1} f_{\ell m} \Psi_{\ell n}^{j*}
$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wandelt & Gorski 2001, McEwen *et al.* 2007).

Wavelet synthesis can be posed as an forward Wigner transform on SO(3):

$$
f(\omega) \sim \sum_{j=0}^J \int_{\mathrm{SO}(3)} \,\mathrm{d} \varrho(\rho) W^{\Psi^j}(\rho) (\mathcal{R}_\rho L^{\mathrm{d}} \Psi^j)(\omega) = \sum_{j=0}^J \sum_{\ell m n} \frac{2\ell+1}{8\pi^2} \big(W^{\Psi^j} \big)_{mn}^\ell \Psi^j_{\ell n} Y_{\ell m}(\omega) ,
$$

where

$$
\left(\left(W^{\Psi^j} \right)^{\ell}_{mn} = \langle W^{\Psi^j}, \, D^{\ell *}_{mn} \rangle = \int_{\mathrm{SO}(3)} \, \mathrm{d} \varrho(\rho) W^{\Psi^j}(\rho) D^{\ell}_{mn}(\rho) \ ,
$$

which can be computed efficiently via a factoring of rotations (Risbo 1996, Wiaux, McEwen *et al.* 2008) and exactly by employing the Driscoll & Healy (1994) or McEwen & Wiaux (2011) sampling theorem.

Exact and efficient computation

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

Þ

Exact and efficient computation

Figure: Computation time.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重 OQ

S2DW code <http://www.s2dw.org>

Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)

• Fortran

- **•** Parallelised
- Supports directional and steerable wavelets

S2LET code <http://www.s2let.org>

S2LET: A code to perform fast wavelet analysis on the sphere Leistedt, McEwen, Vandergheynst, Wiaux (2012)

- C, Matlab, IDL, Java
- Supports only axisymmetric wavelets at present
- Future extensions planned (directional and steerable wavelets, faster algos, spin wavelets)

Scale-discretised wavelets on the sphere Illustration

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

 $2Q$

Figure: Scale-discretised wavelet transform of a topography map of the Earth.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Motivation for using wavelets to detect cosmic strings

Denote the wavelet coefficients of the data *d* by

$$
W_{j\rho}^d = \langle d, \Psi_{j\rho} \rangle
$$

for scale $j \in \mathbb{Z}^+$ and position $\rho \in SO(3)$.

• Consider an even azimuthal band-limit $N = 4$ to yield wavelet with odd azimuthal symmetry.

Figure: Example wavelet matched to the expected string contribution.

Motivation for using wavelets to detect cosmic strings

 \bullet Wavelet transform yields a sparse representation of the string signal \rightarrow hope to effectively separate the CMB and string signal in wavelet space.

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).

イロメ イ母メ イヨメ イヨメ

Wavelet-Bayesian approach to estimate the string tension and map:

$$
\underbrace{d(\theta,\varphi)}_{\text{observation}} = \underbrace{c(\theta,\varphi)}_{\text{CMB}} + \underbrace{G\mu \cdot s(\theta,\varphi)}_{\text{strings}}.
$$

• Need to determine statistical description of the CMB and string signals in wavelet space.

- Calculate analytically the probability distribution of the CMB in wavelet space. \bullet
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map

$$
\mathrm{P}^s_j(W^s_{j\rho}\,|\,G\mu)=\frac{\upsilon_j}{2G\mu\nu_j\Gamma(\upsilon_j^{-1})}\,\mathrm{e}^{\left(-\left|\frac{W^s_{j\rho}}{G\mu\nu_j}\right|^{U_j}\right)}\,,
$$

with scale parameter ν_i and shape parameter ν_i .

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Wavelet-Bayesian approach to estimate the string tension and map:

$$
\left[\frac{d(\theta,\varphi)}{\text{observation}}\right] = \left[\frac{c(\theta,\varphi)}{\text{CMB}}\right] + \left[\frac{G\mu \cdot s(\theta,\varphi)}{\text{strings}}\right].
$$

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map

$$
\mathrm{P}^s_j(W^s_{j\rho}\,|\,G\mu)=\frac{\upsilon_j}{2G\mu\nu_j\Gamma(\upsilon_j^{-1})}\,\mathrm{e}^{\left(-\left|\frac{W^s_{j\rho}}{G\mu\nu_j}\right|^{U_j}\right)}\,,
$$

with scale parameter ν_i and shape parameter ν_i .

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

• Wavelet-Bayesian approach to estimate the string tension and map:

$$
\left[\frac{d(\theta,\varphi)}{\text{observation}}\right] = \left[\frac{c(\theta,\varphi)}{\text{CMB}} + \left[\frac{G\mu \cdot s(\theta,\varphi)}{\text{strings}}\right].
$$

- Need to determine statistical description of the CMB and string signals in wavelet space.
- Calculate analytically the probability distribution of the CMB in wavelet space.
- Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map (*cf.* Wiaux *et al.* 2009):

$$
\mathrm{P}^s_j(W^s_{j\rho}\,|\,G\mu)=\frac{\upsilon_j}{2G\mu\nu_j\Gamma(\upsilon_j^{-1})}\,\mathrm{e}^{\left(-\left|\frac{W^s_{j\rho}}{G\mu\nu_j}\right|^{\upsilon_j}\right)}\;,
$$

with scale parameter ν_i and shape parameter ν_i .

Figure: GGD

 QQ

イロト イ母 トイラ トイラトー

• Distributions in close agreement.

 299

• Distributions in close agreement.

 $2Q$

• Distributions in close agreement.

 $2Q$

• Distributions in close agreement.

 $2Q$

- Distributions in close agreement.
- Accurately characterised statistics of string signals in wavelet space.

Spherical wavelet-Bayesian string tension estimation

- **Perform Bayesian string tension estimation in wavelet space.**
- **•** For each wavelet coefficient the likelihood is given by

$$
P(W_{j\rho}^d | G\mu) = P(W_{j\rho}^s + W_{j\rho}^c | G\mu) = \int_{\mathbb{R}} dW_{j\rho}^s P_j^c(W_{j\rho}^d - W_{j\rho}^s) P_j^s(W_{j\rho}^s | G\mu).
$$

The overall likelihood of the data is given by $\begin{array}{c} \bullet \\ \bullet \end{array}$

$$
P(W^d | G\mu) = \prod_{j,\rho} P(W_{j\rho}^d | G\mu) ,
$$

where we have assumed independence for numerical tractability.

Spherical wavelet-Bayesian string tension estimation

- **Perform Bayesian string tension estimation in wavelet space.**
- For each wavelet coefficient the likelihood is given by

$$
\mathrm{P}(W^d_{j\rho} \,|\, G\mu) = \mathrm{P}(W^s_{j\rho} + W^c_{j\rho} \,|\, G\mu) = \int_{\mathbb{R}} \mathrm{d} W^s_{j\rho} \; \mathrm{P}^c_j (W^d_{j\rho} - W^s_{j\rho}) \; \mathrm{P}^s_j (W^s_{j\rho} \,|\, G\mu) \; .
$$

The overall likelihood of the data is given by $\qquad \qquad \bullet$

$$
P(W^d | G\mu) = \prod_{j,\rho} P(W_{j\rho}^d | G\mu) ,
$$

where we have assumed independence for numerical tractability.

K ロメ K 御 メ K 唐 メ K 唐 メー
- **Perform Bayesian string tension estimation in wavelet space.**
- For each wavelet coefficient the likelihood is given by

$$
\mathrm{P}(W^d_{j\rho} \,|\, G\mu) = \mathrm{P}(W^s_{j\rho} + W^c_{j\rho} \,|\, G\mu) = \int_{\mathbb{R}} \mathrm{d} W^s_{j\rho} \; \mathrm{P}^c_j (W^d_{j\rho} - W^s_{j\rho}) \; \mathrm{P}^s_j (W^s_{j\rho} \,|\, G\mu) \; .
$$

The overall likelihood of the data is given by \bullet

$$
P(W^d | G\mu) = \prod_{j,\rho} P(W_{j\rho}^d | G\mu) ,
$$

where we have assumed independence for numerical tractability.

イロメ イ団メ イヨメ イヨメー

 QQ

Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$
P(G\mu \mid W^d) = \frac{P(W^d \mid G\mu) P(G\mu)}{P(W^d)} \propto P(W^d \mid G\mu) P(G\mu).
$$

Figure: Posterior distribution of the string tension (true $G\mu = 3 \times 10^{-6}$).

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 \equiv Ω

Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$
\mathrm{P}(G\mu \mid W^d) = \frac{\mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu)}{\mathrm{P}(W^d)} \propto \mathrm{P}(W^d \mid G\mu) \, \mathrm{P}(G\mu) \; .
$$

Figure: Posterior distribution of the string tension (true $G\mu = 2 \times 10^{-6}$).

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Compute the string tension posterior $P(G\mu \mid W^d)$ by Bayes theorem:

$$
P(G\mu \mid W^d) = \frac{P(W^d \mid G\mu) P(G\mu)}{P(W^d)} \propto P(W^d \mid G\mu) P(G\mu).
$$

Figure: Posterior distribution of the string tension (true $G\mu = 1 \times 10^{-6}$).

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

イロト イ押 トイラ トイラト

 QQ

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M*^s* to the alternative model M*^c* that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$
E^{s} = P(W^{d} | M^{s}) = \int_{\mathbb{R}} d(G\mu) P(W^{d} | G\mu) P(G\mu).
$$

The Bayesian evidence of the CMB model is given by \bullet

$$
E^c = P(W^d | \mathbf{M}^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).
$$

• Compute the Bayes factor to determine the preferred model:

$$
\Delta \ln E = \ln (E^s/E^c) .
$$

Jason McEwen [CosmoInformatics](#page-0-0)

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M*^s* to the alternative model M*^c* that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$
Es = P(Wd | Ms) = \int_{\mathbb{R}} d(G\mu) P(Wd | G\mu) P(G\mu).
$$

The Bayesian evidence of the CMB model is given by \bullet

$$
E^c = P(W^d | M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).
$$

• Compute the Bayes factor to determine the preferred model:

 $\Delta \ln E = \ln(E^s/E^c)$.

Jason McEwen [CosmoInformatics](#page-0-0)

イロメ イ団メ イヨメ イヨメー

 QQ

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M*^s* to the alternative model M*^c* that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$
E^{s} = \mathrm{P}(W^{d} | \mathbf{M}^{s}) = \int_{\mathbb{R}} d(G\mu) \mathrm{P}(W^{d} | G\mu) \mathrm{P}(G\mu).
$$

• The Bayesian evidence of the CMB model is given by

$$
E^c = P(W^d | M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).
$$

• Compute the Bayes factor to determine the preferred model:

$$
\Delta \ln E = \ln (E^s/E^c) .
$$

イロト イ押 トイラ トイラト

 QQ

Bayesian evidence for strings

- Compute Bayesian evidences to compare the string model M*^s* to the alternative model M*^c* that the observed data is comprised of just a CMB contribution.
- The Bayesian evidence of the string model is given by

$$
Es = P(Wd | Ms) = \int_{\mathbb{R}} d(G\mu) P(Wd | G\mu) P(G\mu).
$$

• The Bayesian evidence of the CMB model is given by

$$
E^c = P(W^d | M^c) = \prod_{j,\rho} P_j^c(W_{j\rho}^d).
$$

Compute the Bayes factor to determine the preferred model:

$$
\Delta \ln E = \ln (E^s/E^c) .
$$

Table: Tension estimates and log-evidence differences for simulations.

 Ω

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $\mathrm{P}(W^s_{j\rho}\mid W^d).$
- Estimate the wavelet coefficients of the string map from the mean of the posterior

$$
\overline{W}_{j\rho}^s = \int_{\mathbb{R}} \mathrm{d}W_{j\rho}^s W_{j\rho}^s P(W_{j\rho}^s \mid W^d)
$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

イロメ イ団メ イモメ イモメー

G.

 QQ

Recovering string maps

- Inference of the wavelet coefficients of the underlying string map encoded in posterior probability distribution $\mathrm{P}(W^s_{j\rho}\mid W^d).$
- Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

$$
\overline{W}_{j\rho}^s = \int_{\mathbb{R}} \mathrm{d}W_{j\rho}^s \ W_{j\rho}^s \ \mathrm{P}(W_{j\rho}^s \mid W^d)
$$

- Recover the string map from its wavelets (possible since the scale-discretised wavelet transform on the sphere supports exact reconstruction).
- Work in progress...

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 Ω

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

 QQ

Outline

- [Dark energy](#page-17-0)
	- **ISW** effect
	- [Continuous wavelets on the sphere](#page-22-0)
	- [Detecting dark energy](#page-36-0)
- [Cosmic strings](#page-40-0)
	- [String physics](#page-41-0)
	- [Scale-discretised wavelets on the sphere](#page-47-0)
	- [String estimation](#page-60-0)

[Radio interferometry](#page-82-0)

- [Interferometric imaging](#page-83-0)
- **[Compressive sensing](#page-91-0)**
- **•** [Imaging with CS](#page-112-0)
- [Large-scale structure](#page-130-0)
	- **[Wavelets on ball](#page-131-0)**
	- **[Cosmic voids](#page-141-0)**

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) construction scheduled to begin in 2018.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- $\begin{array}{c} \bullet \\ \bullet \end{array}$ required to ensure the next-generation of interferometric telescopes reach their full

Figure: Artist impression of SKA dishes. [Credit: SKA **Organisation**

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) construction scheduled to begin in 2018.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA **Organisation**

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$
y(u, w) = \int_{D^2} A(l) x(l) C(||l||_2) e^{-i2\pi u \cdot l} \frac{d^2l}{n(l)},
$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$
C(||\mathbf{I}||_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||\mathbf{I}||^2}\right)} \cdot \frac{1}{w \cdot \text{modulation}}.
$$

Various assumptions are often made regarding the size of the field-of-view (FoV): $\hfill \Box$

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$
y(u, w) = \int_{D^2} A(l) x(l) C(||l||_2) e^{-i2\pi u \cdot l} \frac{d^2l}{n(l)},
$$

visibilities

where the *w*-modulation $C(||I||_2)$ is given by

$$
C(||I||_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||I||^2}\right)} \cdot \frac{1}{w \cdot \text{modulation}}.
$$

Various assumptions are often made regarding the size of the field-of-view (FoV):

Small-field with k*l*k 2 *w* 1 ⇒ *C*(k*l*k2) ' 1 Small-field with k*l*k Wide-field ⇒ *C*(k*l*k2) = e Jason McEwen [CosmoInformatics](#page-0-0)

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$
y(u, w) = \int_{D^2} A(l) x(l) C(||l||_2) e^{-i2\pi u \cdot l} \frac{d^2l}{n(l)},
$$

visibilities

where the *w*-modulation $C(||I||_2)$ is given by

$$
C(||\mathbf{I}||_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||\mathbf{I}||^2}\right)} \cdot \frac{1}{w \cdot \text{modulation}}.
$$

Various assumptions are often made regarding the size of the field-of-view (FoV):

\n- Small-field with
$$
||I||^2 w \ll 1
$$
 \Rightarrow $C(||I||_2) \simeq 1$
\n- Small-field with $||I||^4 w \ll 1$ \Rightarrow $C(||I||_2) \simeq e^{i\pi w} ||I||^2$
\n- Wide-field \Rightarrow $C(||I||_2) = e^{i2\pi w \left(1 - \sqrt{1 - ||I||^2}\right)}$
\n- 3.4850 McEwen *Combinotromatics* \Rightarrow $$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 QQ

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
y = \Phi x + n \quad ,
$$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
	- primary beam A of the telescope:
	- *w*-modulation modulation C;
	- Fourier transform **F**:
	- masking M which encodes the incomplete measurements taken by the interferometer.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 QQQ

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
y = \Phi x + n \quad ,
$$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
	- **•** primary beam **A** of the telescope:
	- *w*-modulation modulation C:
	- Fourier transform **F**:
	- \bullet masking M which encodes the incomplete measurements taken by the interferometer.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 QQ

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
y = \Phi x + n \quad ,
$$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
	- **•** primary beam **A** of the telescope:
	- *w*-modulation modulation C:
	- Fourier transform **F**:
	- **masking M which encodes the incomplete measurements taken by the interferometer.**

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Compressive sensing

"Nothing short of revolutionary."

– National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho

イロン イ団ン イヨン イヨン 一番

 -990

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Compressive sensing

- \bullet Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform). \bullet
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Compressive sensing

- \bullet Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

Compressive sensing

- \bullet Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

Figure: Single pixel camera

イロト イ母 トイラ トイラトー

 QQ

Compressive sensing

- \bullet Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

Figure: Single pixel camera

イロメ イ母メ イヨメ イヨメ

 QQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 QQ

An introduction to compressive sensing Operator description

Linear operator (linear algebra) representation of signal decomposition:

$$
x(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \rightarrow x = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \rightarrow \begin{pmatrix} x = \Psi \alpha_{1} \\ x = \Psi \alpha_{2} \end{pmatrix}
$$

Linear operator (linear algebra) representation of measurement:

$$
y_i = \langle x, \Phi_j \rangle \quad \rightarrow \quad y = \begin{pmatrix} -\Phi_0 - \\ -\Phi_1 - \\ \vdots \end{pmatrix} x \quad \rightarrow \quad \begin{bmatrix} y = \Phi x \\ y = \Phi x \end{bmatrix}
$$

• Putting it together: $y = \Phi x = \Phi \Psi \alpha$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

An introduction to compressive sensing Operator description

Linear operator (linear algebra) representation of signal decomposition:

$$
x(t) = \sum_i \alpha_i \Psi_i(t) \quad \rightarrow \quad \mathbf{x} = \sum_i \Psi_i \alpha_i = \begin{pmatrix} | & | \\ \Psi_0 & | \\ | & | \end{pmatrix} \alpha_0 + \begin{pmatrix} | & | \\ \Psi_1 & | \\ | & | \end{pmatrix} \alpha_1 + \cdots \quad \rightarrow \quad \begin{pmatrix} \mathbf{x} = \Psi \alpha_0 \\ \mathbf{x} = \mathbf{x} = \mathbf{x} \end{pmatrix}
$$

$$
x=\Psi\alpha
$$

 QQ

Linear operator (linear algebra) representation of measurement:

$$
y_i = \langle x, \Phi_j \rangle \rightarrow y = \begin{pmatrix} -\Phi_0 \\ -\Phi_1 \\ \vdots \end{pmatrix} x \rightarrow \begin{bmatrix} y = \Phi x \\ y = \Phi x \end{bmatrix}
$$

• Putting it together: $y = \Phi x = \Phi \Psi \alpha$

An introduction to compressive sensing Operator description

Linear operator (linear algebra) representation of signal decomposition:

$$
x(t) = \sum_i \alpha_i \Psi_i(t) \quad \rightarrow \quad \mathbf{x} = \sum_i \Psi_i \alpha_i = \begin{pmatrix} | \\ \Psi_0 \\ | \end{pmatrix} \alpha_0 + \begin{pmatrix} | \\ \Psi_1 \\ | \end{pmatrix} \alpha_1 + \cdots \quad \rightarrow \quad \mathbf{x} = \Psi \alpha
$$

Linear operator (linear algebra) representation of measurement:

 $v = \Phi x = \Phi \Psi \alpha$

$$
y_i = \langle x, \Phi_j \rangle \rightarrow y = \begin{pmatrix} -\Phi_0 - \\ -\Phi_1 - \\ \vdots \end{pmatrix} x \rightarrow \begin{pmatrix} y = \Phi x \\ y = \Phi x \end{pmatrix}
$$

• Putting it together:

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

• Ill-posed inverse problem:

$$
y = \Phi x + n = \Phi \Psi \alpha + n.
$$

• Recall norms given by:

$$
\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)
$$

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ_0 optimisation problem:

$$
\alpha^* = \underset{\alpha}{\arg\min} ||\alpha||_0 \text{ such that } ||y - \Phi \Psi \alpha||_2 \le \epsilon \;,
$$

where the signal is synthesising by $x^\star = \Psi \boldsymbol{\alpha}^\star.$

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex): ö

$$
\boxed{\alpha^* = \underset{\alpha}{\arg\min} ||\alpha||_1 \text{ such that } ||y - \Phi \Psi \alpha||_2 \le \epsilon},
$$

1/²

An introduction to compressive sensing

Promoting sparsity via ℓ_1 minimisation

• Ill-posed inverse problem:

$$
y = \Phi x + n = \Phi \Psi \alpha + n.
$$

• Recall norms given by:

$$
\|\alpha\|_0 = \text{no. non-zero elements}
$$
 $\|\alpha\|_1 = \sum_i |\alpha_i|$ $\|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^2$

 \bullet Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ , *i.e.* solve the following ℓ_0 optimisation problem:

$$
\alpha^* = \underset{\alpha}{\arg\min} ||\alpha||_0 \text{ such that } ||y - \Phi \Psi \alpha||_2 \le \epsilon \;,
$$

where the signal is synthesising by $x^\star = \Psi \boldsymbol{\alpha}^\star.$

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex): ö

$$
\alpha^* = \underset{\alpha}{\arg\min} ||\alpha||_1 \text{ such that } ||y - \Phi \Psi \alpha||_2 \le \epsilon
$$

An introduction to compressive sensing

Promoting sparsity via ℓ_1 minimisation

• Ill-posed inverse problem:

$$
y = \Phi x + n = \Phi \Psi \alpha + n.
$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements $\|\alpha\|_0$

$$
||u||_1 = \sum_i |\alpha_i| \qquad ||\alpha||_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}
$$

 QQ

 \bullet Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ , *i.e.* solve the following ℓ_0 optimisation problem:

$$
\boldsymbol{\alpha}^{\star} = \underset{\boldsymbol{\alpha}}{\arg\min} ||\boldsymbol{\alpha}||_0 \text{ such that } ||\mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{\alpha}||_2 \leq \epsilon \ ,
$$

where the signal is synthesising by $x^\star = \Psi \alpha^\star.$

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

 $\boldsymbol{\alpha}^\star = \arg \min \lVert \alpha \rVert_1 \,\, \text{such that} \,\, \lVert \boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha} \rVert_2 \leq \epsilon \,\, \bigg| \,.$ \rightarrow \pm \rightarrow

An introduction to compressive sensing

Promoting sparsity via ℓ_1 minimisation

• Ill-posed inverse problem:

$$
y = \Phi x + n = \Phi \Psi \alpha + n.
$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements $\|\alpha\|_0$

$$
||x||_1 = \sum_i |\alpha_i| \qquad ||\alpha||_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}
$$

 \bullet Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ , *i.e.* solve the following ℓ_0 optimisation problem:

$$
\boldsymbol{\alpha}^{\star} = \underset{\boldsymbol{\alpha}}{\arg\min} ||\boldsymbol{\alpha}||_0 \text{ such that } ||\mathbf{y} - \boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{\alpha}||_2 \leq \epsilon \ ,
$$

where the signal is synthesising by $x^\star = \Psi \alpha^\star.$

• Solving this problem is difficult (combinatorial).

Instead, solve the ℓ_1 optimisation problem (convex):

$$
\boxed{\alpha^* = \underset{\alpha}{\arg\min} \|\alpha\|_1 \text{ such that } \|y - \Phi\Psi\alpha\|_2 \le \epsilon}_{\text{ason McEven}}.
$$

An introduction to compressive sensing

Promoting sparsity via ℓ_1 minimisation

• Ill-posed inverse problem:

$$
y = \Phi x + n = \Phi \Psi \alpha + n.
$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements $\|\alpha\|_0$

$$
||x||_1 = \sum_i |\alpha_i| \qquad ||\alpha||_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}
$$

 \bullet Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ , *i.e.* solve the following ℓ_0 optimisation problem:

$$
\alpha^* = \underset{\alpha}{\arg\min} ||\alpha||_0 \text{ such that } ||y - \Phi \Psi \alpha||_2 \le \epsilon \ ,
$$

where the signal is synthesising by $x^\star = \Psi \alpha^\star.$

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

 $\alpha^* = \underset{\alpha}{\arg \min} ||\alpha||_1$ such that $||y - \Phi \Psi \alpha||_2 \leq \epsilon$.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

- Solutions of the ℓ_0 and ℓ_1 problems are often the same.
- Restricted isometry property (RIP):

 $(1 - \delta_K) ||\boldsymbol{\alpha}||_2^2 \le ||\Theta \boldsymbol{\alpha}||_2^2 \le (1 + \delta_K) ||\boldsymbol{\alpha}||_2^2$,

for *K*-sparse α , where $\Theta = \Phi \Psi$.

Figure: Geometry of (a) ℓ_0 (b) ℓ_2 and (c) ℓ_1 problems. [Credit: Baraniuk (2007)]

イロメ イ団メ イヨメ イヨメー

 QQQ

An introduction to compressive sensing **Coherence**

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N \, \big| \, ,$

where *K* is the sparsity and *N* the dimensionality.

The coherence between the measurement and sparsity basis is given by $\mathcal{L}^{\text{in}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{L}^{\text{out}}(\mathcal{$

$$
\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle| \bigg].
$$

イロメ イ団メ イモメ イモメー

 QQ

An introduction to compressive sensing **Coherence**

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \geq c\mu^2 K \log N$,

where *K* is the sparsity and *N* the dimensionality.

The coherence between the measurement and sparsity basis is given by

$$
\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle| \bigg].
$$

 QQ

An introduction to compressive sensing **Coherence**

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \geq c\mu^2 K \log N$,

where *K* is the sparsity and *N* the dimensionality.

The coherence between the measurement and sparsity basis is given by

QQQ

An introduction to compressive sensing **Coherence**

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \geq c\mu^2 K \log N$,

where *K* is the sparsity and *N* the dimensionality.

The coherence between the measurement and sparsity basis is given by

e Robust to noise.

イロト イ押 トイラ トイラト

 QQ

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (*e.g.* analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$
\alpha^\star = \underset{\boldsymbol{\alpha}}{\arg\min} \ \|\boldsymbol{\alpha}\|_1 \ \ \text{such that} \ \ \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \|_2 \leq \epsilon \,.
$$

where we synthesise the signal from its recovered wavelet coefficients by $x^\star = \Psi \alpha^\star.$

Analysis-based framework:

$$
x^* = \underset{x}{\arg\min} \ \|\Psi^T x\|_1 \text{ such that } \|y - \Phi x\|_2 \le \epsilon \ ,
$$

where the signal x^* is recovered directly.

Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & α Wiaux 2013)

$$
\Psi = [\Psi_1, \Psi_2, \cdots, \Psi_q].
$$

K ロ ト K 伺 ト K ヨ ト K ヨ ト

 QQ

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (*e.g.* analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$
\alpha^{\star} = \underset{\mathbf{\alpha}}{\arg\min} \|\alpha\|_1 \text{ such that } \|y - \Phi\Psi\alpha\|_2 \leq \epsilon \,.
$$

where we synthesise the signal from its recovered wavelet coefficients by $x^\star = \Psi \alpha^\star.$

Analysis-based framework:

$$
x^* = \underset{x}{\arg\min} \ \|\Psi^T x\|_1 \text{ such that } \|y - \Phi x\|_2 \le \epsilon \ ,
$$

where the signal x^* is recovered directly.

Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & Wiaux 2013)

$$
\Psi = [\Psi_1, \Psi_2, \cdots, \Psi_q].
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

 QQ

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (*e.g.* analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$
\boldsymbol{\alpha}^\star = \underset{\boldsymbol{\alpha}}{\arg\min} \ \|\boldsymbol{\alpha}\|_1 \ \ \text{such that} \ \ \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \|_2 \leq \epsilon \,.
$$

where we synthesise the signal from its recovered wavelet coefficients by $x^\star = \Psi \alpha^\star.$

Analysis-based framework:

$$
x^* = \underset{x}{\arg\min} \ \|\Psi^T x\|_1 \text{ such that } \|y - \Phi x\|_2 \le \epsilon \ ,
$$

where the signal x^* is recovered directly.

Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & Wiaux 2013)

$$
\Psi = [\Psi_1, \Psi_2, \cdots, \Psi_q].
$$

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

$$
y = \Phi x + n
$$
 with $\Phi = MFCA$,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ .

Basis pursuit (BP) denoising problem \bullet

 $\boldsymbol{\alpha}^\star = \arg \min \|\boldsymbol{\alpha}\|_1$ such that $\|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_2 \leq \epsilon$,

where the image is synthesised by $x^\star = \Psi \alpha^\star.$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

$$
y = \Phi x + n
$$
 with $\Phi = MFCA$,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ .

• Basis pursuit (BP) denoising problem

 $\boldsymbol{\alpha}^* = \underset{\boldsymbol{\alpha}}{\arg \min} ||\boldsymbol{\alpha}||_1$ such that $||\mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}||_2 \leq \epsilon$,

where the image is synthesised by $x^\star = \Psi \alpha^\star.$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 QQ

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity);

⇒ concatenation of 9 bases

• Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

イロメ イ団メ イモメ イモメー

 Ω

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
	- ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$
\min_{\bar{x} \in \mathbb{R}^N} \|W\Psi^T \bar{x}\|_1 \quad \text{ subject to } \quad \|y - \Phi \bar{x}\|_2 \le \epsilon \quad \text{ and } \quad \bar{x} \ge 0,
$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

 \bullet Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

イロン イ団ン イヨン イヨン 一番

 QQQ

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
	- ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\mathbf{x}} \in \mathbb{R}^N} \|W\Psi^T \bar{\mathbf{x}}\|_1$ subject to $\|\mathbf{y} - \Phi \bar{\mathbf{x}}\|_2 \leq \epsilon$ and $\bar{\mathbf{x}} \geq 0$,

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

 \bullet Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

KONKRAKS KRAU

 QQ

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
	- ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$
\min_{\bar{\pmb{x}} \in \mathbb{R}^N} \|W\Psi^T \bar{\pmb{x}}\|_1 \quad \text{ subject to } \quad \|\pmb{y} - \Phi \bar{\pmb{x}}\|_2 \leq \epsilon \quad \text{and} \quad \bar{\pmb{x}} \geq 0\,,
$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

 \bullet Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

画

 QQ

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$
\Phi = \mathbf{F}^c
$$

• But this is impracticably slow!

- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

$$
\boxed{\ \Phi = \mathbf{G}\,\mathbf{F}\,\mathbf{D}\,\mathbf{Z} \ \mathbf{,}}
$$

- convolutional gridding operator G;
- fast Fourier transform F:
- normalisation operator **D** to undo the convolution gridding;
- zero-padding operator **Z** to upsample the discrete visibility sp[ace](#page-117-0).

 QQ

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$
\Phi = \mathbf{F}^{\mathrm{c}}.
$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

- convolutional gridding operator G:
- fast Fourier transform F:
- normalisation operator **D** to undo the convolution gridding:
- zero-padding operator Z to upsample the discrete visibility sp[ace](#page-118-0).

 QQ

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$
\Phi = \mathbf{F}^c
$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

 $\Phi = G F D Z$

where we incorporate:

- convolutional gridding operator G;
- \bullet fast Fourier transform \bf{F} ;
- normalisation operator **D** to undo the convolution gridding;
- **•** zero-padding operator **Z** to upsample the discrete visibility sp[ace](#page-119-0).

 QQ

重

Supporting continuous visibilities Results on simulations

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 299

Supporting continuous visibilities Results on simulations

Figure: M31 (ground truth).

イロト イ部 トイヨ トイヨ トー

 299

Supporting continuous visibilities Results on simulations

Figure: Dirac basis ("CLEAN") \rightarrow SNR= 8.2dB.

イロメ イ団メ イモメ イモメー

 OQ 画

Supporting continuous visibilities Results on simulations

Figure: Db8 wavelets ("MS-CLEAN") \rightarrow SNR= 11.1dB.

K ロメ K 御 メ K 唐 メ K 唐 メー

 299

Supporting continuous visibilities Results on simulations

Figure: $SARA \rightarrow SNR = 13.4dB$.

Jason McEwen [CosmoInformatics](#page-0-0)

Outlook

- **.** Just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code <http://basp-group.github.io/purify/>

イロメ イ母メ イヨメ イヨメ

 Ω

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Outlook

- Just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code <http://basp-group.github.io/purify/>

イロメ イ母メ イヨメ イヨメ

 Ω

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Outlook

- **.** Just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code <http://basp-group.github.io/purify/>

イロメ イ母メ イヨメ イヨメ

 QQ

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

イロメ イ母メ イヨメ イヨメ

 QQ

Outlook

- **.** Just released the PURIFY code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

Outline

- [Dark energy](#page-17-0)
	- **ISW** effect
	- [Continuous wavelets on the sphere](#page-22-0)
	- [Detecting dark energy](#page-36-0)
- [Cosmic strings](#page-40-0)
	- [String physics](#page-41-0)
	- **[Scale-discretised wavelets on the sphere](#page-47-0)**
	- [String estimation](#page-60-0)

[Radio interferometry](#page-82-0)

- [Interferometric imaging](#page-83-0)
- [Compressive sensing](#page-91-0)
- **•** [Imaging with CS](#page-112-0)

[Large-scale structure](#page-130-0)

- **[Wavelets on ball](#page-131-0)**
- **•** [Cosmic voids](#page-141-0)

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

 QQ

Ξ

Observations on the 3D ball

∢ □ ▶ ◀ ⑦ ▶

м \blacktriangleright $2Q$

Fourier-LAGuerre wavelets (flaglets) on the ball Construction

Figure: Tiling of Fourier-Laguerre space.

- *Exact wavelets on the ball* (Leistedt & McEwen 2012).
- **Extend the idea of scale-discretised wavelets on the** sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008) to the ball.
- **•** Construct wavelets by tiling the $\ell-p$ harmonic plane.
- Scale-discretised wavelet $\Psi^{jj'} \in L^2(B^3)$ is defined in

$$
\Psi_{\ell m p}^{jj'} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \,\kappa_{\lambda} (\ell \lambda^{-j}) \kappa_{\nu} (p \nu^{-j'}) \delta_{m 0}.
$$

● Construct wavelets to satisfy a resolution of the identity:

$$
\frac{4\pi}{2\ell+1}\left(\underbrace{\left|\Phi_{\ell 0p}\right|^{2}}_{\text{scaling function}}+\sum_{j=J_{0}}^{J}\sum_{j'=J_{0}^{\prime}}^{J^{\prime}}\underbrace{\left|\Psi_{\ell 0p}^{j\prime}\right|^{2}}_{\text{wavelet}}\right)=1,\forall \ell,p.
$$

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 QQ

Jason McEwen [CosmoInformatics](#page-0-0)

Fourier-LAGuerre wavelets (flaglets) on the ball Construction

Figure: Tiling of Fourier-Laguerre space.

- *Exact wavelets on the ball* (Leistedt & McEwen 2012).
- **Extend the idea of scale-discretised wavelets on the** sphere (Wiaux, McEwen, Vandergheynst, Blanc 2008) to the ball.
- **•** Construct wavelets by tiling the $\ell-p$ harmonic plane.
- Scale-discretised wavelet $\Psi^{jj'} \in L^2(B^3)$ is defined in harmonic space:

$$
\Psi_{\ell m p}^{jj'} \equiv \sqrt{\frac{2\ell+1}{4\pi}} \,\kappa_{\lambda} (\ell \lambda^{-j}) \kappa_{\nu} (p \nu^{-j'}) \delta_{m 0}.
$$

● Construct wavelets to satisfy a resolution of the identity:

$$
\frac{4\pi}{2\ell+1}\Biggl(\underbrace{\left|\Phi_{\ell 0p}\right|^2}_{\text{scaling function}}+\sum_{j=J_0}^{J}\sum_{j'=J_0'}^{J'}\Biggl[\frac{\Psi^{jj'}_{\ell 0p}}{\text{wavelet}}\Biggr]^2\Biggr)=\ 1,\forall \ell,p.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 QQ

Jason McEwen [CosmoInformatics](#page-0-0)

Fourier-LAGuerre wavelets (flaglets) on the ball **Wavelets**

 \equiv

 QQ

Fourier-LAGuerre wavelets (flaglets) on the ball **Wavelets**

Wavelets

Jason McEwen [CosmoInformatics](#page-0-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 $E = \Omega Q$

Fourier-LAGuerre wavelets (flaglets) on the ball Forward and inverse transform (*i.e.* analysis and synthesis)

The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

$$
\left[\frac{w^{\Psi^{jj'}}(r) = (f \star \langle f | \mathcal{T}_r \Psi^{jj'} \rangle_{\mathbb{B}^3}}{\text{projection}} \right] = \int_{B^3} d^3 r' f(r') (\mathcal{T}_r \Psi^{jj'}) (r') .
$$

 $\frac{1}{\sqrt{2}}$ $\frac{J'}{J}$

The original function may be synthesised exactly in practice from its wavelet (and scaling) coefficients:

$$
f(r) = \left[\int_{B^3} d^3 r' W^{\Phi}(r') (\mathcal{T}_r \Phi)(r') \right] +
$$

 $\int_{B^3} d^3 r' W^{\Psi \nu \overline{\psi}'}(r') (\mathcal{T}_{\bm{f}'} \Psi^{\nu \overline{\nu}'}) (r')$.

イロメ イ母メ イヨメ イヨメ

 Ω

Fourier-LAGuerre wavelets (flaglets) on the ball Forward and inverse transform (*i.e.* analysis and synthesis)

The Fourier-Laguerre wavelet transform is given by the usual projection onto each wavelet:

$$
\left[\frac{w^{\Psi^{jj'}}(r) = (f \star \langle f | \mathcal{T}_r \Psi^{jj'} \rangle_{\mathbb{B}^3} }{\text{projection}} \right] = \int_{B^3} d^3r' f(r') (\mathcal{T}_r \Psi^{jj'}) (r') .
$$

The original function may be synthesised exactly in practice from its wavelet (and scaling) coefficients:

$$
f(\mathbf{r}) = \underbrace{\left(\int_{B^3} d^3 \mathbf{r}' W^{\Phi}(\mathbf{r}')(\mathcal{T}\mathbf{r}\Phi)(\mathbf{r}')}_{\text{scaling function contribution}}\right) + \left[\underbrace{\sum_{j=J_0}^{J} \sum_{j'=J'_0}^{J'}}_{m,n} \underbrace{\left(\int_{B^3} d^3 \mathbf{r}' W^{\Psi^{jj'}}(\mathcal{T}\mathbf{r}\Psi^{jj'})(\mathcal{T}\mathbf{r}\Psi^{jj'})(\mathbf{r}')}_{\text{wavelet contribution}}\right)}_{\text{wavelet contribution}}
$$

finite sum

イロメ イ団メ イモメ イモメー

 QQ

Fourier-LAGuerre wavelets (flaglets) on the ball

Exact and efficient computation

10²

For a band-limited signal, we can compute Fourier-Laguerre wavelet transforms exactly.

Figure: Numerical accuracy of the flaglet transform.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 $2Q$

 -209 G.

Fourier-LAGuerre wavelets (flaglets) on the ball Exact and efficient computation $\overline{}$

Fast algorithms to compute Fourier-Laguerre wavelet transforms. net tra

Figure: Computation time of the flaglet transform.

Fourier-LAGuerre wavelets (flaglets) on the ball Codes

FLAG code <http://www.flaglets.org>

FLAG: Fourier-Laguerre trnasform on the ball Leistedt & McEwen (2012)

 \bullet C, Matlab

Analysis of large-scale structure (LSS)

Map Horizon simulation of large-scale structure (LSS) to Fourier-Laguerre sampling.

LSS fly through

メロメメ 倒 メメ ミメメ ミメー

 OQ 画

Flaglet void finding

- Find voids in the large-scale structure (LSS) of the Universe.
- Perform Alcock & Paczynski (1979) test: study void shapes to constrain the nature of dark energy (*e.g.* Sutter *et al.* 2012).

LSS voids

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q @

Summary

A rapid tour of sparsity, wavelets, compressive sensing and all that ...

. . . and their application to cosmology.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어
Summary

A rapid tour of sparsity, wavelets, compressive sensing and all that ...

... and their application to cosmology.

Application of informatics techniques like wavelets for CMB analysis well-established.

KO KARA KE KAEK LE YOKO

Summary

A rapid tour of sparsity, wavelets, compressive sensing and all that ...

... and their application to cosmology.

Application of informatics techniques like wavelets for CMB analysis well-established.

Great potential to exploit informatics techniques for analysis of LSS!

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @