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What is sparsity?

— representation of data in such a way that many data points are zero.
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— efficient characterisation of structure.
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Why is sparsity useful?

(a) Original (b) Noisy (c) Denoised

[Credit: http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/]
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How can we construct sparsifying transforms?

— many signals in nature have spatially localised, scale-dependent features.
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How can we construct sparsifying transforms?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform [Credit: http://www.wavelet.org/tutorial/]
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How can we construct sparsifying transforms?

Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/tutorial/]
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CMB in real and harmonic space

(a) Temperature anisotropies (b) Power spectrum

Figure: CMB observations [Credit: WMAP Science Team]
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Spherical harmonic transform

Spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

Spherical harmonics have global support over the entire sphere.

Figure: Spherical harmonic functions.
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Spherical harmonic transform

A function (i.e. data) on the sphere f ∈ L2(S2) may be represented by its spherical harmonic
expansion:

f (θ, ϕ) =
∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the projection onto the basis functions

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

In harmonic space we lose all spatial localisation since the spherical harmonics have global
support.

⇒Wavelets: simultaneous scale and spatial localisation.
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting [Credit: http://www.wavelet.org/tutorial/]
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ω = (θ, ϕ) ∈ S2

, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .
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Figure: Stereographic projection.
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Continuous wavelet analysis

Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
Ψ:

{Ψa,ρ ≡ R(ρ)D(a)Ψ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Ψ(a, ρ) = 〈f ,Ψa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/
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Continuous wavelet synthesis (reconstruction)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Ψ(a, ρ) [R(ρ)L̂ΨΨa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Ψ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Ψa)`m |

2
<∞, ∀` ∈ N

where (Ψa)`m are the spherical harmonic coefficients of Ψa(ω).

Continuous wavelets used effectively in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!

Jason McEwen Exploiting sparsity for CMB data analysis
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Scale-discretised wavelets on the sphere

Exact reconstruction not feasible in practice with continuous wavelets!

Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code
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ℓ

Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.

Construct directional and steerable wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.
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Scale-discretised wavelet transform of the Earth

(a) Undecimated

(b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Scale-discretised wavelet transform of the CMB

(a) CMB

(b) Wavelet coeff. (large scale) (c) Wavelet coeff. (intermediate scale) (d) Wavelet coeff. (fine scale)

Figure: Scale-discretised wavelet transform of a simulated CMB map.

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Motivation Continuous Wavelets Scale-discretised Wavelets

Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere

Wiaux, McEwen, Vandergheynst, Blanc (2008)

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere

Leistedt, McEwen, Vandergheynst, Wiaux (2012)

C, Matlab, IDL, Java

Support only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

All codes available from: http://www.jasonmcewen.org/

Jason McEwen Exploiting sparsity for CMB data analysis
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Exploiting sparsity for CMB data analysis
Wavelet coefficients of CMB

CMB is not sparse!
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Exploiting sparsity for CMB data analysis
CMB contribution due to cosmic strings

[Credit: Ringeval et al. (2012)]
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Exploiting sparsity for CMB data analysis
Wavelet coefficients of CMB contribution due to cosmic strings

Other cosmological signals are sparse!
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Exploiting sparsity for CMB data analysis
Correct approach
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While the CMB is not sparse, it may contain sparse contributions.

Correct way to exploit sparsity is to treat, say, the CMB as (non-sparse) noise, and exploit
sparsity of other cosmological or astrophysical signals.

Not always the approach taken in the literature.
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Exploiting sparsity for CMB data analysis
Correct approach
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Correct way to exploit sparsity is to treat, say, the CMB as (non-sparse) noise, and exploit
sparsity of other cosmological or astrophysical signals.

Not always the approach taken in the literature.
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CMB inpainting

Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

Model observations by y = Φx = ΦΛx̂ where Λ represents the inverse spherical harmonic

transform and x̂ harmonic coefficients.

Inpainting problem solved in harmonic space (Starck et al. 2012):

x̂? = arg min
x̂
‖x̂‖1 such that y = ΦΛx̂ .

Imposes sparsity of the spherical harmonic coefficients of the CMB!
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CMB inpainting

BUT we have a very strong physical prior. . . the CMB is very close to Gaussian!

Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian→ not a good prior.

Furthermore, for an isotropic random field, the harmonic coefficients are independent if and
only if they are Gaussian distributed.

We can see this intuitively since a rotation in harmonic space may be written

(R(α, β, γ)a)`m =
∑

n

D`mn(α, β, γ) a`n .

Sparse CMB inpainting breaks statistical isotropy!
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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP.]
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

Amplitude of the signal is given by the string tension Gµ.

Search for a weak string signal s embedded in the CMB c, with observations d given by

d = c + s .

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Using wavelets to detect cosmic strings

Ongoing work of McEwen, Feeney, Peiris, Wiaux,
Ringeval & Bouchet.

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and

position ρ ∈ SO(3).
Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
e

(
− 1

2

(
Wc

jρ
σc

j

)2)
, where (σ

c
j )

2
= 〈Wc

jρ Wc
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

e

(
−

∣∣∣∣ Ws
jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.

Jason McEwen Exploiting sparsity for CMB data analysis



Introduction Wavelets Cosmological Applications Exploiting Sparsity CMB Inpainting Cosmic Strings

Spherical wavelet-Bayesian string tension estimation

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .
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Figure: Posterior distribution of the string tension (true Gµ = 3 × 10−6).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms to the alternative model Mc that
the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) .

Table: Tension estimates and log-evidence differences for simulations.

Gµ/10−6 0.7 0.8 0.9 1.0 2.0 3.0

Ĝµ/10−6 1.1 1.2 1.2 1.3 2.1 3.1
∆lnE −1.3 −1.1 −0.9 −0.7 5.5 29
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Recovering string maps

Our best inference of the underlying string map is encoded in the posterior probability
distribution P(Ws

jρ |W
d).

Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

Ws
jρ =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
)

=

∫
R

d(Gµ) P(Gµ | d) Ws
jρ(Gµ) ,

where

Ws
jρ(Gµ) =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
jρ,Gµ)

=
1

P(Wd
jρ |Gµ)

∫
R

dWs
jρ Ws

jρ Pc
j (Wd

jρ − Ws
jρ) Ps

j (Ws
jρ |Gµ) .

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

Work in progress. . .
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Conclusions

Sparsity is a powerful concept that can provide new insight and is
complementary to a Bayesian approach.

But, as all techniques, sparsity must be exploited in the correct
manner.

Great potential for cosmology, leading to the emerging field of
CosmoInformatics.
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing

Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0+

 |Ψ1
|

α1+· · · → x = Ψα

Linear operator (algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

• Sparse signal: All but K coordinates are zero

• Model: union of K-dimensional subspaces
aligned w/ coordinate axes
(highly nonlinear!)

Geometrical Situation

sparse
signal

nonzero
entries

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Restricted isometry property (RIP):

(1− δ2K)‖x1 − x2‖2
2 ≤ ‖Φx1 − Φx2‖2

2 ≤ (1 + δ2K)‖x! − x2‖2
2 ,

for K-sparse x.

Measurement must preserve geometry of sets of sparse vectors.

Stable Embedding
• An information preserving projection      preserves 

the geometry of the set of sparse signals

• How to do this?    Ensure

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Geometry of `2 and `1 problems.[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.

S

(a) (b) (c)

S

S

HH

S

S

[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.

(a)

(b) (c)

Scene

Photodiode

DMD
Array RNG

A/D
Bitstream

Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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A Bayesian perspective

Consider the inverse problem:
y = ΦΨα + n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y− ΦΨα‖2

2/(2σ2
)
)
.

Consider the Laplacian prior:
P(α) ∝ exp

(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate is then

x?MAP-S = Ψ · arg max
α

P(α | y) = Ψ · arg min
α
‖y− ΦΨα‖2

2 + λ‖α‖1 ,

with λ = 2βσ2.

One possible Bayesian interpretation.

Recall also that the signal may not be distributed according to the prior but rather `0-sparse, in
which case solving the `1 problem finds the correct `0-sparse solution.
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Other Bayesian interpretations

Other Bayesian interpretations of the synthesis-based approach are also possible (Gribonval
2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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