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Exploiting sparsity
Wavelet coefficients of CMB

CMB is not sparse!
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Exploiting sparsity
CMB contribution due to cosmic strings

[Credit: Ringeval et al. (2012)]
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Exploiting sparsity
Wavelet coefficients of CMB contribution due to cosmic strings

Other cosmological signals are sparse!
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Exploiting sparsity
The correct approach
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Cosmic strings

While the CMB is not sparse, it may contain sparse contributions.

Correct way to exploit sparsity is to treat, say, the CMB as (non-sparse) noise, and exploit
sparsity of other cosmological or astrophysical signals.

Not always the approach taken in the literature.
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Cosmological observations live on spherical manifolds
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Cosmic microwave background (CMB)

Credit: WMAP
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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

A function on the sphere f ∈ L2(S2) may be represented by its spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

where the spherical harmonic coefficients are given by:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

Consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L .

For a band-limited signal, can we compute f`m exactly?

→ Sampling theorems on the sphere

Jason McEwen Sparsity



Sphere Ball Compressive Sensing Cosmological Applications Sampling Theorems Wavelets

Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

A function on the sphere f ∈ L2(S2) may be represented by its spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

where the spherical harmonic coefficients are given by:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .

Consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L .

For a band-limited signal, can we compute f`m exactly?

→ Sampling theorems on the sphere

Jason McEwen Sparsity



Sphere Ball Compressive Sensing Cosmological Applications Sampling Theorems Wavelets

Driscoll & Healy (DH) sampling theorem

Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994).

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

Figure: Sample positions of the DH sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

A new sampling theorem on the sphere (McEwen & Wiaux 2011).

⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.

Reduced the Nyquist rate on the sphere by a factor of two.

Figure: Sample positions of the MW sampling theorem.
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McEwen & Wiaux (MW) sampling theorem

New sampling theorem follows by associating the sphere with the torus through a periodic
extension.

Similar in flavour to making a periodic extension in θ of a function f on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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Numerical accuracy
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Figure: Numerical accuracy (MW=red; DH=green; GL=blue)
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Computation time
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Figure: Computation time (MW=red; DH=green; GL=blue)
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Code to compute (spin) spherical harmonic transforms

SSHT code: Spin spherical harmonic transforms
A novel sampling theorem on the sphere
McEwen & Wiaux (2011)

Code available from: http://www.jasonmcewen.org/

Jason McEwen Sparsity
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (Credit: http://www.wavelet.org/tutorial/)
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ω = (θ, ϕ) ∈ S2

, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .
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Figure: Stereographic projection.
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Continuous wavelet analysis

Wavelets on the sphere constructed from rotations and dilations of a mother spherical wavelet
Ψ:

{Ψa,ρ ≡ R(ρ)D(a)Ψ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Ψ(a, ρ) = 〈f ,Ψa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, McEwen & Vielva 2007)
Factoring of rotations: McEwen et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/

Jason McEwen Sparsity
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Continuous wavelet synthesis (reconstruction)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Ψ(a, ρ) [R(ρ)L̂ΨΨa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Ψ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Ψa)`m |

2
<∞, ∀` ∈ N

where (Ψa)`m are the spherical harmonic coefficients of Ψa(ω).

Continuous wavelets used effectively in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; McEwen et al. 2005, 2006, 2008)
ISW (e.g. Vielva et al. 2005, McEwen et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!

Jason McEwen Sparsity
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Scale-discretised wavelets on the sphere

Exact reconstruction not feasible in practice with continuous wavelets!

Wiaux, McEwen, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code
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Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following McEwen et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.
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Scale-discretised wavelets on the sphere

Figure: Spherical scale-discretised wavelets.

Construct directional and steerable wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Scale-discretised wavelet transform of the Earth

(a) Undecimated (b) Multi-resolution

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Codes to compute scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, McEwen, Vandergheynst, Blanc (2008)

Fortran

Parallelised

Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, McEwen, Vandergheynst, Wiaux (2012)

C, Matlab, IDL, Java

Support only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

All codes available from: http://www.jasonmcewen.org/

Jason McEwen Sparsity
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Galaxy surveys

Credit: SDSS
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Sampling theorem on the ball
Fourier-Bessel functions are the canonical orthogonal basis on the sphere→ but do not admit
a sampling theorem.

Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).

Define the radial basis functions by

Kp(r) ≡
√

p!

(p + 2)!

e−r/2τ

√
τ 3

L(2)
p

(
r
τ

)
,

where L(2)
p is the p-th generalised Laguerre polynomial of order two.

Define the Fourier-Laguerre basis functions by Z`mp(r) = Kp(r)Y`m(ω).
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Developed a new Fourier-Laguerre transform and the first sampling theorem on the ball
(Leistedt & McEwen 2012).

Define the radial basis functions by

Kp(r) ≡
√

p!

(p + 2)!

e−r/2τ

√
τ 3

L(2)
p

(
r
τ

)
,

where L(2)
p is the p-th generalised Laguerre polynomial of order two.

Define the Fourier-Laguerre basis functions by Z`mp(r) = Kp(r)Y`m(ω).
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Sampling theorem on the ball

For a band-limited signal, we can compute the Fourier-Laguerre transform exactly.

Compute Fourier-Bessel coefficients exactly from Fourier-Laguerre coefficients.
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Sampling theorem on the ball

Fast algorithms to compute the Fourier-Laguerre transform.10
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Code to compute the Fourier-Laguerre transform

FLAG code: Fourier-Laguerre transforms
Exact wavelets on the ball
Leistedt & McEwen (2012)

All codes available from: http://www.jasonmcewen.org/

Jason McEwen Sparsity
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Translation and convolution on the radial line

We construct translation and convolution operators on the radial line by analogy with the
infinite line.

For the standard orthogonal basis φω(x) = eiωx translation of the basis functions defined by
the shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ

∗
ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Define convolution on the radial line of by

(f ? h)(r) ≡ 〈f |Trh〉 =

∫
R+

dss2f (s) (Trh) (s),

from which it follows that radial convolution in harmonic space is given by the product

(f ? h)p = 〈f ? h|Kp〉 = fphp .
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Translation and convolution on the radial line

Translation corresponds to convolution with the Dirac delta:

(f ? δs)(r) =

∞∑
p=0

fpKp(s)Kp(r) = (Tsf )(r) .

Angular aperture of localised functions (and flaglets) is invariant under radial translation.

(a) Translated by r = 0.2 (b) Translated by r = 0.3 (c) Translated by r = 0.4

Figure: Slices of an axisymmetric flaglet wavelet plotted on the ball of radius R = 0.5.
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Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Exact wavelets on the ball (Leistedt & McEwen 2012).

Define translation and convolution operators on the radial
line.

Dilation performed in harmonic space.

Scale-discretised wavelet Ψ ∈ L2(B3) is defined in
harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the identity:

4π
2`+ 1

(
|Φ`0p|2 +

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.
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Scale-discretised wavelets on the ball

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Scale-discretised wavelets on the ball

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) ≡ (f ?Ψ

jj′
)(r) = 〈f |TrRωΨ

jj′ 〉 .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (r) =

∫
B3

d3r′WΦ
(r′)(TrRωΦ)(r′) +

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj′
(r′)(TrRωΨ

jj′
)(r′) .
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Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Code for scale-discretised wavelets on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & McEwen (2012)

C, Matlab, IDL, Java

Exact (Fourier-LAGuerre) wavelets on the ball – coined flaglets!

Code available from: http://www.jasonmcewen.org/

Jason McEwen Sparsity
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Outline

1 Harmonic analysis on the sphere
Sampling theorems
Wavelets

2 Harmonic analysis on the ball
Sampling theorems
Wavelets

3 Compressive Sensing
Synthesis-based
Analysis-based
Bayesian perspective
Sparsity averaging
Sphere

4 Cosmological applications
CMB inpainting
Cosmic strings
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing

Linear operator (algebra) representation of signal decomposition (into atoms of a dictionary):

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0+

 |Ψ1
|

α1+· · · → x = Ψα

Linear operator (algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

• Sparse signal: All but K coordinates are zero

• Model: union of K-dimensional subspaces
aligned w/ coordinate axes
(highly nonlinear!)

Geometrical Situation

sparse
signal

nonzero
entries

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Restricted isometry property (RIP):

(1− δ2K)‖x1 − x2‖2
2 ≤ ‖Φx1 − Φx2‖2

2 ≤ (1 + δ2K)‖x! − x2‖2
2 ,

for K-sparse x.

Measurement must preserve geometry of sets of sparse vectors.

Stable Embedding
• An information preserving projection      preserves 

the geometry of the set of sparse signals

• How to do this?    Ensure

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing

The solutions of the `0 and `1 problems are often the same.

Geometry of `2 and `1 problems.[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.

S

(a) (b) (c)

S

S

HH

S

S

[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.

(a)

(b) (c)

Scene

Photodiode

DMD
Array RNG

A/D
Bitstream

Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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Analysis-based approach

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

Typically sparsity assumption is justified by analysing example signals in terms of atoms of the
dictionary.

But this is different to synthesising signals from atoms.

⇒ Analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x
‖Ωx‖1 such that ‖y− Φx‖2 ≤ ε .

Contrast with synthesis-based approach:

x? = Ψ · arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

For orthogonal bases Ω = Ψ† and the two approaches are identical.
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Analysis-based approach

For the case of redundant dictionaries, the analysis- and synthesis-based approaches are
very different (Elad et al. 2007, Nam et al. 2012).

The Analysis (Co-)Sparse Model: Definition,        
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad 
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   The Analysis Model – Bayesian View 
d 

p 

Ω
Analysis Dictionary z

x

 Analysis signals, just like synthesis ones,                                                               
can be generated in a systematic way: 

 
 

 

 

 

 

 
 

 Bottom line: an analysis signal x satisfies:  

 

= Synthesis Signals  Analysis Signals 

Support: Choose the           
support T (|T|=k)          
at random  

Choose the co-
support  (||=   )  
at random 

Coef. : Choose T at 
random  

Choose a random 
vector v 

Generate: Synthesize by: 
      DTT=x 

Orhto v w.r.t. :  
    
†x vI Ω Ω

s.t. x 0   Ω

Again, leads to a union of subspaces.

But very different geometry to synthesis-based approach.
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Analysis-based approach

For a given redundancy, the size and number of subspaces is very different between the
analysis- and synthesis-approaches (Nam et al. 2012).

The Analysis (Co-)Sparse Model: Definition,        
Pursuit, Dictionary-Learning and Beyond                     
By: Michael Elad 

31 

   The Analysis Model – Count of Subspaces 

 Example: p=n=2d: 

 Synthesis: k=1 (one atom) – there are 2d subspaces of dimensionality 1. 

 Analysis:   =d-1 leads to         >>O(2d) subspaces of dimensionality 1. 
 

 In the general case, for d=40 and                                                                                                   
p=n=80, this graph shows the                                                                                                
count of the number of subspaces.                                                                                             
As can be seen, the two models                                                                                                  
are substantially different, the analysis                                                                                 
model is much richer in low-dim.,                                                                                                        
and the two complete each other. 
 

 The analysis model tends to lead to                      
a richer UoS. Are these good news?  
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Comparison of analysis- and synthesis-based approaches

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].

Synthesis-based approach is more general, while analysis-based approach more restrictive.

The more restrictive analysis-based approach may make it more robust to noise.

The greater descriptive power of the synthesis-based approach may provide better signal
representations.
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A Bayesian perspective (synthesis-based approach)

Consider the inverse problem:
y = ΦΨα + n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y− ΦΨα‖2

2/(2σ2
)
)
.

Consider the Laplacian prior:
P(α) ∝ exp

(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate is then

x?MAP-S = Ψ · arg max
α

P(α | y) = Ψ · arg min
α
‖y− ΦΨα‖2

2 + λ‖α‖1 ,

with λ = 2βσ2.

One possible Bayesian interpretation.

Recall also that the signal may not be distributed according to the prior but rather `0-sparse, in
which case solving the `1 problem finds the correct `0-sparse solution.
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Other Bayesian interpretations (synthesis-based approach)

Other Bayesian interpretations of the synthesis-based approach are also possible (Gribonval
2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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A Bayesian perspective (analysis-based approach)

For the analysis-based approach, the MAP estimate is then

x?MAP-A = arg max
x

P(x | y) = arg min
x
‖y− Φx‖2

2 + λ‖Ωx‖1 .

Identical to the synthesis-based approach if Ω = Ψ† .

But for redundant dictionaries, the analysis-based MAP estimate is

x?MAP-A = Ω
† · arg min

γ∈column space Ω
‖y− ΦΩ

†
γ‖2

2 + λ‖γ‖1 .

Analysis- and synthesis-based approaches are quite different.

Gain insight into the geometrical nature of problems (Elad et al. 2007, Nam et al. 2012).
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Sparsity averaging and reweighting

Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases:
Dirac, i.e. pixel basis
Haar wavelets (promotes gradient sparsity)
Daubechies wavelet bases two to eight.

⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨ
T x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous problem as the
inverse weights→ approximate the `0 problem.
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SARA for radio interferometric imaging
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Figure: Reconstruction example of 30Dor from 30% of visibilities.
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SARA for radio interferometric imaging
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Figure: Reconstruction fidelity vs visibility coverage for 30Dor.
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SARA for natural imaging

(a) Original (b) Daubechies 8 (c) SARA

Figure: Lena reconstruction from 30% of Fourier measurements.
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SARA for natural imaging
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Figure: Reconstruction fidelity vs measurement ratio for Lena.
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SARA for natural imaging

(a) Original (b) Daubechies 8 (c) SARA

Figure: Cameraman reconstruction from 30% of Fourier measurements.
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SARA for natural imaging
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Sparse reconstruction on the sphere and ball

We have been extending these ideas to the sphere and ball.

Figure: Ground truth at L = 128.
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Sparse reconstruction on the sphere and ball

We have been extending these ideas to the sphere and ball.

Figure: Measurements at L = 128 for M/2L2 = 1/8.
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Sparse reconstruction on the sphere and ball

We have been extending these ideas to the sphere and ball.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L2 = 1/8 (SNRI = 20dB).
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Outline

1 Harmonic analysis on the sphere
Sampling theorems
Wavelets

2 Harmonic analysis on the ball
Sampling theorems
Wavelets

3 Compressive Sensing
Synthesis-based
Analysis-based
Bayesian perspective
Sparsity averaging
Sphere

4 Cosmological applications
CMB inpainting
Cosmic strings
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CMB inpainting

Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

Model observations by y = Φx = ΦΛx̂ where Λ represents the inverse spherical harmonic

transform and x̂ harmonic coefficients.

Inpainting problem solved in harmonic space (Starck et al. 2012):

x̂? = arg min
x̂
‖x̂‖1 such that y = ΦΛx̂ .

Imposes sparsity of the spherical harmonic coefficients of the CMB!

Jason McEwen Sparsity



Sphere Ball Compressive Sensing Cosmological Applications CMB Inpainting Cosmic Strings

CMB inpainting

Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

Model observations by y = Φx = ΦΛx̂ where Λ represents the inverse spherical harmonic

transform and x̂ harmonic coefficients.

Inpainting problem solved in harmonic space (Starck et al. 2012):

x̂? = arg min
x̂
‖x̂‖1 such that y = ΦΛx̂ .

Imposes sparsity of the spherical harmonic coefficients of the CMB!

Jason McEwen Sparsity



Sphere Ball Compressive Sensing Cosmological Applications CMB Inpainting Cosmic Strings

CMB inpainting

Incomplete observations of the CMB on the full-sky due to Galactic contamination.

(a) Galactic contamination (b) Excise galaxy

Model observations by y = Φx = ΦΛx̂ where Λ represents the inverse spherical harmonic

transform and x̂ harmonic coefficients.

Inpainting problem solved in harmonic space (Starck et al. 2012):

x̂? = arg min
x̂
‖x̂‖1 such that y = ΦΛx̂ .

Imposes sparsity of the spherical harmonic coefficients of the CMB!

Jason McEwen Sparsity



Sphere Ball Compressive Sensing Cosmological Applications CMB Inpainting Cosmic Strings

CMB inpainting

BUT we have a very strong physical prior. . . the CMB is very close to Gaussian!

Solving the CMB inpainting problem in this manner is equivalent to assuming harmonic
coefficients are independent and Laplacian→ not a good prior.

Furthermore, for an isotropic random field, the harmonic coefficients are independent if and
only if they are Gaussian distributed.

We can see this intuitively since a rotation in harmonic space may be written

(R(α, β, γ)a)`m =
∑

n

D`mn(α, β, γ) a`n .

Sparse CMB inpainting breaks statistical isotropy!
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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Spacetime around a cosmic string. [Credit: Kaiser
& Stebbins 1984, DAMTP.]
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

Amplitude of the signal is given by the string tension Gµ.

Search for a weak string signal s embedded in the CMB c, with observations d given by

d = c + s .

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and

position ρ ∈ SO(3).

Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry.

Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, McEwen et al. 2008), where
we denote the wavelet coefficients of the data d

by Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and

position ρ ∈ SO(3).
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yield wavelet with odd azimuthal symmetry.

Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.

−400 −200 0 200 400
0

1

2

3

4

5x 10
−3

Pixel values ( µK)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

CMB
Cosmic strings

−40 −20 0 20 40
0

0.05

0.1

0.15

0.2

0.25

Wavelet coefficients ( µK)

P
ro

ba
bi

lit
y 

de
ns

ity

 

 

CMB
Cosmic strings

Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
e

(
− 1

2

(
Wc

jρ
σc

j

)2)
, where (σ

c
j )

2
= 〈Wc

jρ Wc
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

e

(
−

∣∣∣∣ Ws
jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.
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Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Spherical wavelet-Bayesian string tension estimation

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed independence.
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .
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Figure: Posterior distribution of the string tension (true Gµ = 3× 10−6).
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:
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Figure: Posterior distribution of the string tension (true Gµ = 2× 10−6).
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Spherical wavelet-Bayesian string tension estimation

Compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
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Figure: Posterior distribution of the string tension (true Gµ = 1× 10−6).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms to the alternative model Mc that
the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) .

Table: Tension estimates and log-evidence differences for simulations.

Gµ/10−6 0.7 0.8 0.9 1.0 2.0 3.0

Ĝµ/10−6 1.1 1.2 1.2 1.3 2.1 3.1
∆lnE −1.3 −1.1 −0.9 −0.7 5.5 29
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∏
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Recovering string maps

Our best inference of the underlying string map is encoded in the posterior probability
distribution P(Ws

jρ |Wd).

Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

Ws
jρ =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
)

=

∫
R

d(Gµ) P(Gµ | d) Ws
jρ(Gµ) ,

where

Ws
jρ(Gµ) =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
jρ,Gµ)

=
1

P(Wd
jρ |Gµ)

∫
R

dWs
jρ Ws

jρ Pc
j (Wd

jρ − Ws
jρ) Ps

j (Ws
jρ |Gµ) .

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

Work in progress. . .
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Conclusions

Sparsity is a powerful concept that can provide new insight and is
complementary to a Bayesian approach.

But, as all techniques, sparsity must be exploited in the correct
manner.

Just like in CosmoStats, in CosmoInformatics the Cosmo is integral.
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Using flaglets to study large-scale structure (LSS)

My flaglet decomposition of LSS provides a dual scale-spatial representation.

(a) Simulated LSS (b) Wavelet coefficients
(large scale)

(c) Wavelet coefficients
(intermediate scale)

(d) Wavelet coefficients
(fine scale)

Flaglets are a powerful analysis technique to handle systematics, noise and foregrounds.
Data analysis / systematics

Known-unknowns: Propagate with robust Bayesian statistical techniques.

Unknown-unknowns:  Mitigate with blind analysis algorithms.

LSSCMB(a) Challenges for CMB analysis

Data analysis / systematics

Known-unknowns: Propagate with robust Bayesian statistical techniques.

Unknown-unknowns:  Mitigate with blind analysis algorithms.

LSSCMB
(b) Challenges for LSS analysis
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Using flaglets to study large-scale structure (LSS)

Flaglets are a powerful analysis technique to handle systematics, noise and foregrounds.

Data analysis / systematics

Known-unknowns: Propagate with robust Bayesian statistical techniques.

Unknown-unknowns:  Mitigate with blind analysis algorithms.

LSSCMB

Data analysis / systematics

Known-unknowns: Propagate with robust Bayesian statistical techniques.

Unknown-unknowns:  Mitigate with blind analysis algorithms.

LSSCMB

THEORY THEORY + DATA DATA

Fourier-Bessel space

, Scale access
/ Global in space

Flaglet space

, Scale access
, Local in space

Map space

/ No scale access
, Local in space
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Sparse signal reconstruction on the sphere

Consider sparse reconstruction on the sphere.

More efficient sampling theorem→ implications for sparse signal reconstruction.

Improves both the dimensionality and sparsity signals in the spatial domain.

Improves the fidelity of sparse signal reconstruction.

Consider the inverse problem

y = Φx + n

where:
x ∈ RN denotes the samples of f ;
N is the number of samples on the sphere of the adopted sampling theorem;

Φ ∈ RM×N denotes the measurement operator, representing a random masking of the signal;

M noisy measurements y ∈ RM are acquired;

n ∈ RM denotes iid Gaussian noise with zero mean.
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TV inpainting on the sphere

Develop a framework for total variation (TV) inpainting on the sphere as illustrative example to
study implications of sampling theorems (McEwen et al. 2013).

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV,S2 .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV,S2 such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂′? = arg min
x̂
‖Λx̂‖TV,S2 such that ‖y− ΦΛx̂‖2 ≤ ε ,

where Λ represents the inverse spherical harmonic transform.

Solve using convex optimisation techniques adapted to the sphere
(Douglas-Rachford splitting).
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy (1994) and
the McEwen & Wiaux (2011) sampling theorems (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/2L2 = 1/4
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TV inpainting: low-resolution simulations

(a) DH spatial for M
L2 = 1

4 (b) DH harmonic for M
L2 = 1

4 (c) MW spatial for M
L2 = 1

4 (d) MW harmonic for M
L2 = 1

4

(e) DH spatial for M
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2 (f) DH harmonic for M
L2 = 1
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2 (h) MW harmonic for M
L2 = 1

2
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L2 = 1 (k) MW spatial for M
L2 = 1 (l) MW harmonic for M
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TV inpainting: low-resolution simulations
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Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

Previously limited to low-resolution simulations.

To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

Develop fast adjoints for the McEwen & Wiaux (2011) sampling theorem only.

Fast adjoint inverse spherical harmonic transform

s f̃
†
(θt, ϕp) =

{
sf (θt, ϕp) , t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

sFmm′
†

=

2L−2∑
t=0

2L−2∑
p=0

s f̃
†
(θt, ϕp) e−i(m′θt+mϕp)

sf`m
†

= (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sFmm′

†
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TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform

sGmm′
†

= (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf`m

sFmm′′
†

= 2π
L−1∑

m′=−(L−1)

sGmm′
† w(m′ − m′′)

sF̃m
†
(θt) =

1
2L− 1

L−1∑
m′=−(L−1)

sFmm′
† eim′θt

sFm
†
(θt) =

{
sF̃m
†(θt) + (−1)m+s

sF̃m
†(θ2L−2−t) , t ∈ {0, 1, . . . , L− 2}

sF̃m
†(θt) , t = L− 1

sf
†
(θt, ϕp) =

1
2L− 1

L−1∑
m=−(L−1)

sFm
†
(θt) eimϕp
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Ground truth at L = 128.
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: Measurements at L = 128 for M/2L2 = 1/8.
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TV inpainting: high-resolution simulations

Using fast adjoints we solve high-resolution TV inpainting problem with realistic data.

Figure: MW reconstruction in the harmonic domain at L = 128 for M/2L2 = 1/8 (SNRI = 20dB).
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