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SBI: what and why



Classical likelihood-based inference versus SBI
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Simulation-based inference (SBI)

Simulation-based inference (aka. likelihood-free inference) seeks to perform Bayesian
inference by estimating the posterior p(θ | xo,M) of parameters θ for observed data xo
using simulations only.

Key advantages:

▷ Forward modelling of complex physics, systematics, observational process.
▷ No assumptions on the form of the likelihood.
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SBI variants

Three variants:

1. Neural posterior estimation (NPE): learn surrogate of posterior
(probability distribution over parameters).

2. Neural likelihood estimation (NLE): learn surrogate of likelihood
(probability distribution over data).

▶ NLE introduced by Papamakarios et al. (2019).
▶ First applied to cosmology by Alsing et al. (2019).
▶ First applied to cosmic shear by Taylor et al. McEwen (2019).

3. Neural ratio estimation (NRE): learn surrogate of likelihood-to-evidence ratio.
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Towards Euclid SBI shear pipeline



Advantages of a field-level SBI pipeline for Euclid cosmic shear

▷ Extract informative field-level cosmological information.
▷ No assumptions regarding likelihood (no need to characterize covariances).
▷ Capture all uncertainties.
▷ Accurately model systematic effects at the field-level.

⇒More precise (tighter constraints) andmore accurate (in right place) Bayesian inference.
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Effectiveness of field-level SBI for cosmic shear

Effectiveness of field-level SBI demonstrated already in small-field planar setting.

Gatti et al. (2023) Jeffrey et al. (2024) Cheng et al. (2024)
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⇒ Tightest cosmic shear constraints to date from SBI.
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Euclid wide-field survey

Field-level SBI techniques must be extended to support wide-fields,
requiring spherical methods defined on the curved sky.
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Wide-field, field-level SBI pipeline
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Wide-field mass-mapping



Spherical Kaiser Squires mass-mapping

Spherical Kaiser Squires mass-mapping introduced by Wallis et al. McEwen (2017) to
avoid planar approximations.

Equitorial Polar

Projections of sphere to plane.
Planar projections introduce significant error in
mass-mapping.
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Enhanced spherical mass-mapping

Spherical wavelet mass-mapping
introduced by Price, McEwen et al. 2021.

Spherical AI mass-mapping techniques
in preparation…

Ground truth

Spherical Kaiser-Squires Spherical wavelet
regularization
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Wide-field compression



Wide-field compression

1. Neural compression
▶ CNNs: Convolutional neural networks (e.g. Jeffrey et al. 2024)

2. Statistical compression
▶ Scattering transforms (e.g. Cheng et al. 2024, Gatti et al. 2023)

Require spherical CNNs and spherical scattering transforms
defined on the curved sky.
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Categorization of spherical CNN frameworks
Continuous Discrete Discrete-Continuous (DISCO)

Equivariant Not Equivariant Equivariant
Not Scalable Scalable Scalable

(Cohen et al. 2018, Esteves et al. 2018,
Kondor et al. 2018, Cobb et al. 2021,
McEwen et al. 2022, …)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019, …)

(Ocampo, Price & McEwen 2023)
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Scalable and equivariant spherical CNNs

Efficient Generalized Spherical CNNs
(Cobb et al. McEwen 2021)

Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions
(Ocampo, Price & McEwen 2023)

Equivariance ⇒ state-of-the-art performance on all problems considered to date.
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Spherical scattering networks (first generation)

Scattering networks inspired by CNNs but designed rather than learned filters (Mallat 2012).

Scattering networks on the sphere
(McEwen et al. 2022)

Cascade of spherical wavelet transforms (McEwen et al. 2018) and non-linearities (modulus).
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Spherical scattering covariance (third generation)

Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset, Allys, Price, et al. McEwen 2024)

Scattering covariance statistics considered:

1. S1[λ] f = E
[
|f ⋆ ψλ|

]
.

2. S2[λ] f = E
[
|f ⋆ ψλ|2

]
.

3. S3[λ1, λ2] f = Cov
[
f ⋆ ψλ2 , |f ⋆ ψλ1 | ⋆ ψλ2

]
.

4. S4[λ1, λ2, λ3] f = Cov
[
|f ⋆ ψλ1 | ⋆ ψλ3 , |f ⋆ ψλ2 | ⋆ ψλ3

]
.

Jason McEwen 15

https://arxiv.org/abs/2407.07007
http://www.jasonmcewen.org


Emulation: Generative modelling with scattering covariances

Which field is emulated and which simulated?

Logarithm (for visualization) of weak lensing field
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Differentiable and GPU-accelerated spherical transform codes (in JAX)

s2fft: Spherical harmonic transforms
https://github.com/astro-informatics/s2fft

s2wav: Spherical wavelet transforms
https://github.com/astro-informatics/s2wav

s2scat: Spherical scattering transforms
https://github.com/astro-informatics/s2scat

s2ai: Spherical AI
Coming very soon! Contact us for early access.
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Bayesian model selection



Learned harmonic mean estimation of the Bayesian evidence

Learned harmonic mean estimator (McEwen et al. 2021)

z−1 = ρ = Ep(θ | x)

[
φ(θ)

L(θ)π(θ)

]
where φ(θ)

ML≃ φoptimal(θ) =
L(θ)π(θ)

z .

▷ Requires posterior samples only
⇝ Evidence almost for free

▷ Agnostic to sampling technique
⇝ Leverage efficient samplers
⇝ Simulation-based inference (SBI)
⇝ Variational inference

▷ Scale to high-dimensions
⇝ Normalizing flows

(Polanska et al. McEwen 2024)

harmonic: Learned harmonic mean
https://github.com/astro-informatics/harmonic
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Accelerated Bayesian inference

The future of cosmological (likelihood-based) inference
(Piras, Polanska, Spurio Mancini, Price, McEwen 2024)

37 parameter cosmic shear analysis of LCDM vs w0waCDM
▷ CAMB + PolyChord
⇝ 8 months on 48 CPU cores

▷ CosmoPower-JAX + NumPyro/NUTS + Harmonic
⇝ 2 days on 12 GPUs

157 parameter 3x2pt analysis of LCDM vs w0waCDM
▷ CAMB + PolyChord
⇝ 12 years on 48 CPUs (projected)

▷ CosmoPower-JAX + NumPyro/NUTS + Harmonic
⇝ 8 days on 24 GPUs
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Bayesian model selection for SBI

Bayesian model selection for SBI first introduced by Spurio Mancini et al. McEwen (2023).
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Summary



Summary

▷ Field-level SBI highly effective.

▷ For Euclid, require spherical methods defined on the curved sky.

Have the methods and codes needed to develop a highly effective
wide-field, field-level SBI pipeline for Euclid cosmic shear.
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Extra slides

Jason McEwen 22

http://www.jasonmcewen.org


Neural likelihood estimation

Construct training data {(θi, xi)} where parameter drawn from proposal prior θi ∼ p̃(θ |M)

and then generate simulation xi ∼ p(x | θi) ⇒ joint distribution p̃(θ, x) = p(x | θ,M)p̃(θ,M).

Learn likelihood
qψ(x | θ,M) ≃ p(x | θ,M) ,

where ψ are the parameters of the learned model.

Train by maximum likelihood, i.e. by maximising

Ep̃(θ,x)[log qψ(x | θ,M)] = −Ep̃(θ)[DKL(p(x | θ,M),qψ(x | θ,M))] + const. ,

where DKL is the Kullback-Leibler divergence.

Sample from approximate posterior by MCMC sampling.
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Conditional normalizing flow as density estimator
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