Planck workshop on non-Gaussianity

fast directional spherical wavelets

Jason McEwen, Mike Hobson, Anthony Lasenby & Daniel Mortlock

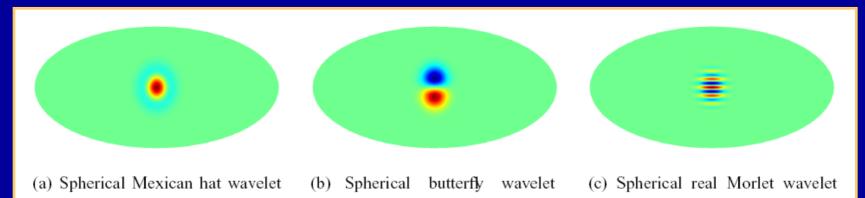
Cavendish Laboratory, Cambridge

Overview

- Spherical wavelet analysis
- Fast algorithms
- Complexity
- Typical CPU time
- Problematics
- No preliminary results yet

Spherical wavelet analysis

- Ability to probe different scales, positions and with directional wavelets – orientations
- Retain localisation information
- Full sky analysis \rightarrow Wavelet analysis on the sphere
- Spherical wavelets
 - Azimuthally symmetric
 - Directional wavelets
 - Steerable wavelets (Wiaux et al. 2005a)



Spherical wavelet analysis

- Non-Gaussianity analysis
 - CSWT linear: Gaussian sky → Gaussian coefficients
 - Examine skewness and kurtosis of wavelet coefficients
 - Previous detections of non-Gaussianity in WMAP with symmetric and directional spherical wavelets

(Vielva et al. 2004 and McEwen et al. 2005 respectively)

Fast algorithms

• Azimuthally symmetric spherical wavelets

$$(\widehat{W^s_\psi})_{\ell m} = \sqrt{\frac{4\pi}{2\ell+1}} \, \widehat{\psi}^*_{\ell 0} \, \widehat{s}_{\ell m}$$

• Directional spherical wavelets

$$W^s_\psi(\alpha,\beta,\gamma) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \sum_{m'=-\ell}^{\ell} \left[D^\ell_{mm'}(\alpha,\beta,\gamma) \, \widehat{\psi}_{\ell m'} \right]^* \, \widehat{s}_{\ell m}$$

- Factor rotations (McEwen et al. 2005b, Wandelt & Gorski 2001)
- Separation of variables (Wiaux et al. 2005b)
- Steerable wavelets (Wiaux et al. 2005a)

 $\left[R^{\hat{z}}(\chi)\Psi\right](\omega) = \sum_{m=1}^{M} k_m(\chi)\Psi_m(\omega).$

Jason McEwen University of Cambridge

Complexity

- Resolution $L \sim I_{max} \sim \sqrt{N_{pix}}$ •
- Azimuthal resolution M (typically $M \ll L$) \bullet
- Asymptotic complexity: •
 - Naïve
 - Azimuthally symmetric:
 - Directional:
 - Directional and steerable:

 $O(L^3 M)$ (Infinite azimuthal resolution)

 $O(L^4 M)$

 $O(L^3)$

 $O(L^3)$

CPU time

• Typical execution time

TABLE II

TYPICAL EXECUTION TIME (MINUTES:SECONDS) FOR EACH ALGORITHM RUN ON AN INTEL P4-M 3GHz LAPTOP WITH 512MB OF MEMORY.

Resolution		Algorithm execution time		
$N_{\rm side}$	$N_{\rm pix}$	Direct	Fast isotropic	Fast anisotropic
32	12,288	3:25:37	0:00.06	0:00.10
64	49,152	54:31.75	0:00.38	0:00.74
256	786,432	_	0:28.00	0:52.55
512	3,257,292	_	3:43.69	7:57.75
1024	12,582,912	_	28:23.85	71:31.68

Problematics

- CPU requirements
 - ~1 CPU hr per scale
 - 5 scales, 3 orientations $\rightarrow \sim 10$ CPU hours per analysis
 - 300 Gaussian simulations + 300 non-Gaussian simulations
 → ~6000 CPU hours (10 processors → 600 hours~25 days)
- Storage
 - ~500MB per wavelet coefficient file (5 scales, 3 orientations)
 - → compute summary statistics, then delete wavelet coefficients
- Pre-processing
 - Generate extended coefficient masks requires wavelet transforms plus morphological operations (latter is extremely slow) → require simpler techniques for generating extended mask

Consolation:

• Linear \rightarrow can do cases with foregrounds for minimal extra effort

Summary

- Powerful technique to probe for non-Gaussianity due to scale and spatial localisation – but may not be optimal for f_{NL} type non-Gaussianity
- Computationally intensive, especially directional analysis
- Large storage requirements
- Preliminary results forthcoming