Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust	Summary

Intrinsic advantages of the *w* component and spherical imaging for wide-field radio interferometry

Jason McEwen¹ & Yves Wiaux²

¹ http://www.jasonmcewen.org
² http://people.epfl.ch/wiaux

Presented by Anna Scaife

BASP research node

Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

URSI GASS 2011 :: Istanbul

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust OO	Summary O
Outline				

Spherical radio interferometric imaging

- Intrinsic advantages
- Gaussian simulations

Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust	Summary	
•••					
Radio interferometric imaging					

Interferometric imaging:

recover an image from noisy and incomplete Fourier measurements.

Resulting ill-posed inverse problem is described by

 $y = \Phi x + n ,$

with:

- incomplete Fourier measurements taken by the interferometer y;
- linear measurement operator Φ;
- underlying image x;
- noise n.

• Measurement operator Φ incorporates:

- primary beam of the telescope;
- w component modulation responsible for the spread spectrum phenomenon;
- Fourier transform;
- masking which encodes the incomplete measurements taken by the interferometer.

Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust	Summary	
•••					
Radio interferometric imaging					

Interferometric imaging:

recover an image from noisy and incomplete Fourier measurements.

Resulting ill-posed inverse problem is described by

 $y = \Phi x + n ,$

with:

- incomplete Fourier measurements taken by the interferometer y;
- linear measurement operator Φ;
- underlying image x;
- noise n.

- primary beam of the telescope;
- w component modulation responsible for the spread spectrum phenomenon;
- Fourier transform;
- masking which encodes the incomplete measurements taken by the interferometer.

	o 	0000		0		
Radio interferometric imaging with compressed sensing						

● Solved by applying a **prior on sparsity** of the signal in a sparsifying basis Ψ or in the magnitude of its gradient.

Image is recovered by solving:

Basis Pursuit denoising problem

 $oldsymbol{lpha}^{\star} = rgmin \|oldsymbol{lpha}\|_1 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi \Psi oldsymbol{lpha}\|_2 \leq \epsilon \, ,$

where the image is synthesising by $x^* = \Psi \alpha^*$;

• Total Variation (TV) denoising problem

 $x^{\star} = \operatorname*{arg\,min}_{x} \|x\|_{\mathrm{TV}}$ such that $\|y - \Phi x\|_{2} \leq \epsilon$.

- ℓ_1 -norm $\|\cdot\|_1$ is given by the sum of the absolute values of the signal.
- TV norm $\|\cdot\|_{TV}$ is given by the ℓ_1 -norm of the gradient of the signal.
- Tolerance ϵ is related to an estimate of the noise variance.

000	0	0000	00	0		
Radio interferometric imaging with compressed sensing						

- Solved by applying a **prior on sparsity** of the signal in a sparsifying basis Ψ or in the magnitude of its gradient.
- Image is recovered by solving:
 - Basis Pursuit denoising problem

 $\boldsymbol{\alpha}^{\star} = \argmin_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_1 \; \text{ such that } \; \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_2 \leq \epsilon \; ,$

where the image is synthesising by $x^{\star} = \Psi \alpha^{\star}$;

• Total Variation (TV) denoising problem

 $oldsymbol{x}^{\star} = \operatorname*{arg\,min}_{oldsymbol{x}} \|oldsymbol{x}\|_{\mathrm{TV}} \,\,\, \mathrm{such} \,\, \mathrm{that} \,\,\, \|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon \,\,.$

- ℓ_1 -norm $\|\cdot\|_1$ is given by the sum of the absolute values of the signal.
- TV norm $\|\cdot\|_{TV}$ is given by the ℓ_1 -norm of the gradient of the signal.
- Tolerance ϵ is related to an estimate of the noise variance.

000	0	0000	00	0		
Radio interferometric imaging with compressed sensing						

- Solved by applying a **prior on sparsity** of the signal in a sparsifying basis Ψ or in the magnitude of its gradient.
- Image is recovered by solving:
 - Basis Pursuit denoising problem

 $oldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{oldsymbol{lpha}} \| lpha \|_1 \, \, ext{such that} \, \, \| \mathbf{y} - \Phi \Psi oldsymbol{lpha} \|_2 \leq \epsilon \, ,$

where the image is synthesising by $x^* = \Psi \alpha^*$;

• Total Variation (TV) denoising problem

 $oldsymbol{x}^{\star} = \operatorname*{arg\,min}_{oldsymbol{x}} \|oldsymbol{x}\|_{\mathrm{TV}} \,\,\, \mathrm{such} \,\, \mathrm{that} \,\,\, \|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon \,\,.$

- ℓ_1 -norm $\|\cdot\|_1$ is given by the sum of the absolute values of the signal.
- TV norm $\|\cdot\|_{TV}$ is given by the ℓ_1 -norm of the gradient of the signal.
- Tolerance ϵ is related to an estimate of the noise variance.

Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust			
000						
Spherical radio interferometric imaging						

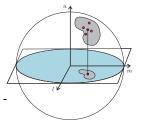
 Extend the standard compressed sensing imaging framework to wide fields by considering interferometric images directly on the sphere, rather than the equatorial plane.

• Augment the usual interferometric measurement operator with an initial projection P from the sphere to the plane, *i.e.*

 $y = \Phi_s x_s + n$, where $\Phi_s = \Phi P$.

 Projection incorporates convolutional gridding on the sphere to afford use of FFTs (cf. gridding of continuous to discrete visibilities).

- Careful attention given to sampling densities to ensure accurate representation of band-limited signals:
 - Small FoV \Rightarrow $L \simeq 2\pi B$
 - Wide FoV $\Rightarrow L_{FoV} \simeq 2\pi \cos(\theta_{FoV}/2)B_{FOV}$
- Spherical interferometric images recovered by solving the BP or TV denoising problems, replacing measurement operator Φ with its spherical equivalent Φ_s .



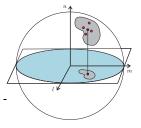
Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O		
Spherical radio interferometric imaging						

- Extend the standard compressed sensing imaging framework to wide fields by considering interferometric images directly on the sphere, rather than the equatorial plane.
- Augment the usual interferometric measurement operator with an initial projection P from the sphere to the plane, *i.e.*

 $y = \Phi_s x_s + n$, where $\Phi_s = \Phi P$.

- Projection incorporates convolutional gridding on the sphere to afford use of FFTs (cf. gridding of continuous to discrete visibilities).
- Careful attention given to sampling densities to ensure accurate representation of band-limited signals:
 - Small FoV $\Rightarrow L \simeq 2\pi B$
 - Wide FoV $\Rightarrow L_{\rm FoV} \simeq 2\pi \cos(\theta_{\rm FoV}/2)B_{\rm FOV}$
- Spherical interferometric images recovered by solving the BP or TV denoising problems, replacing measurement operator Φ with its spherical equivalent Φ_s .

Figure: Projection operator.



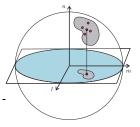
Spherical interferometric imaging ○○●	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O		
Spherical radio interferometric imaging						

- Extend the standard compressed sensing imaging framework to wide fields by considering interferometric images directly on the sphere, rather than the equatorial plane.
- Augment the usual interferometric measurement operator with an initial projection P from the sphere to the plane, *i.e.*

 $y = \Phi_s x_s + n$, where $\Phi_s = \Phi P$.

- Projection incorporates convolutional gridding on the sphere to afford use of FFTs (cf. gridding of continuous to discrete visibilities).
- Careful attention given to sampling densities to ensure accurate representation of band-limited signals:
 - Small FoV $\Rightarrow L \simeq 2\pi B$
 - Wide FoV $\Rightarrow L_{\rm FoV} \simeq 2\pi \cos(\theta_{\rm FoV}/2)B_{\rm FOV}$
- Spherical interferometric images recovered by solving the BP or TV denoising problems, replacing measurement operator Φ with its spherical equivalent Φ_s .

Figure: Projection operator.



Spherical interferometric imaging ○○●	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O		
Spherical radio interferometric imaging						

- Extend the standard compressed sensing imaging framework to wide fields by considering interferometric images directly on the sphere, rather than the equatorial plane.
- Augment the usual interferometric measurement operator with an initial projection P from the sphere to the plane, *i.e.*

 $y = \Phi_s x_s + n$, where $\Phi_s = \Phi P$.

- Projection incorporates convolutional gridding on the sphere to afford use of FFTs (cf. gridding of continuous to discrete visibilities).
- Careful attention given to sampling densities to ensure accurate representation of band-limited signals:
 - Small FoV $\Rightarrow L \simeq 2\pi B$
 - Wide FoV $\Rightarrow L_{FoV} \simeq 2\pi \cos(\theta_{FoV}/2)B_{FOV}$
- Spherical interferometric images recovered by solving the BP or TV denoising problems, replacing measurement operator Φ with its spherical equivalent Φ_s .

Figure: Projection operator.

Spherical interferometric imaging	Intrinsic advantages ●	Gaussian simulations	Galactic dust	Summary O
Intrinsic advantages				

- Performance of compressed sensing reconstruction driven by sparsity and coherence.
- Enhance both sparsity and coherence in the wide-field spherical imaging framework.
- By recovering interferometric images on the sphere, distorting projections are eliminated and the number of samples required to represent a band-limited signal is reduced
 → sparsity enhanced → fidelity of reconstructed image improved.
- Spread spectrum (SS) phenomenon is enhanced on wide fields.
 - The *w* component induces the SS modulation, spreading spectrum of the signal.
 - Fourier measurements: coherence is max modulus of FT of sparsity basis vectors.
 - Spreading spectrum increases incoherence between sensing and sparsity bases.
 - Wider FoV → high frequency content in w component modulation → more effective SS phenomenon → fidelity of reconstructed image improved.

Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust	Summary O
Intrinsic advantages				

- Performance of compressed sensing reconstruction driven by sparsity and coherence.
- Enhance both sparsity and coherence in the wide-field spherical imaging framework.
- By recovering interferometric images on the sphere, distorting projections are eliminated and the number of samples required to represent a band-limited signal is reduced → sparsity enhanced → fidelity of reconstructed image improved.
- Spread spectrum (SS) phenomenon is enhanced on wide fields.
 - The *w* component induces the SS modulation, spreading spectrum of the signal.
 - Fourier measurements: coherence is max modulus of FT of sparsity basis vectors.
 - Spreading spectrum increases incoherence between sensing and sparsity bases.
 - Wider FoV → high frequency content in w component modulation → more effective SS phenomenon → fidelity of reconstructed image improved.

Spherical interferometric imaging	Intrinsic advantages	Gaussian simulations	Galactic dust	Summary O
Intrinsic advantages				

- Performance of compressed sensing reconstruction driven by sparsity and coherence.
- Enhance both sparsity and coherence in the wide-field spherical imaging framework.
- By recovering interferometric images on the sphere, distorting projections are eliminated and the number of samples required to represent a band-limited signal is reduced → sparsity enhanced → fidelity of reconstructed image improved.
- Spread spectrum (SS) phenomenon is enhanced on wide fields.
 - The w component induces the SS modulation, spreading spectrum of the signal.
 - Fourier measurements: coherence is max modulus of FT of sparsity basis vectors.
 - Spreading spectrum increases incoherence between sensing and sparsity bases.
 - Wider FoV → high frequency content in *w* component modulation → more effective SS phenomenon → fidelity of reconstructed image improved.

(b) No small-field assumption

Figure: Real part and imaginary part of SS modulation for FoV $\theta_{FoV} = 90^{\circ}$.

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O
Reconstruction of s	imulated Gauss	sian maps		

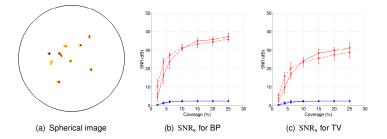


Figure: Reconstruction performance for $\sigma_{\rm S} = 0.01$ (blue = plane; red = sphere; solid = no SS; dashed = SS).

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O
Reconstruction of si	mulated Gauss	ian mans		

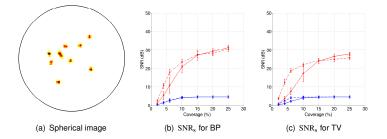


Figure: Reconstruction performance for $\sigma_{\rm S} = 0.02$ (blue = plane; red = sphere; solid = no SS; dashed = SS).

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O
Reconstruction of si	mulated Gauss	ian mans		

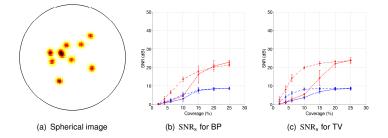


Figure: Reconstruction performance for $\sigma_S = 0.04$ (blue = plane; red = sphere; solid = no SS; dashed = SS).

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary O
Reconstruction of si	mulated Gauss	ian maps		

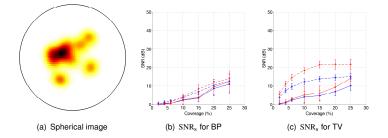


Figure: Reconstruction performance for $\sigma_S = 0.10$ (blue = plane; red = sphere; solid = no SS; dashed = SS).

Reconstruction of Ga	lactic duct mo	~		
Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust ●O	Summary O

- Consider more realistic, higher resolution simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust (Finkbeiner et al. 1999) (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Reconstruct FoV $\theta_{\rm FoV} = 90^{\circ}$ from 25% of visibilities.

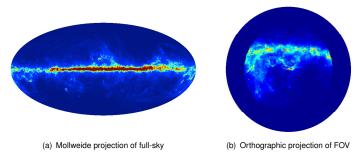
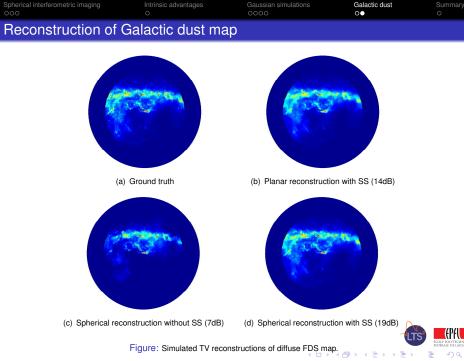



Figure: FDS map of predicted emission of diffuse interstellar Galactic dust.

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary •
Summary & future w	ork			

• Spherical radio interferometric imaging: solve inverse problem on the sphere.

- Enhances both sparsity and coherence:
 - Sparsity: eliminate distorting projections and reduce number of samples required to represent band-limited signal.
 - Coherence: spread spectrum phenomenon more effective on wide fields.
 - \rightarrow improves fidelity of recovered interferometric images.
- Current techniques idealised in order to remain as close as possible to the theoretical compressed sensing setting.
- Now that the effectiveness of these techniques has been demonstrated, it is of paramount importance to adapt them to realistic interferometric configurations.
- Consider continuous visibilities due to realistic interferometric configurations..
- Study the spread spectrum phenomenon in the presence of varying *w*.

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary •
Summary & future w	ork			

- Spherical radio interferometric imaging: solve inverse problem on the sphere.
- Enhances both sparsity and coherence:
 - **Sparsity:** eliminate distorting projections and reduce number of samples required to represent band-limited signal.
 - Coherence: spread spectrum phenomenon more effective on wide fields.
 - \rightarrow improves fidelity of recovered interferometric images.
- Current techniques idealised in order to remain as close as possible to the theoretical compressed sensing setting.
- Now that the effectiveness of these techniques has been demonstrated, it is of paramount importance to adapt them to realistic interferometric configurations.
- Consider continuous visibilities due to realistic interferometric configurations..
- Study the spread spectrum phenomenon in the presence of varying *w*.

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary •
Summary & future w	ork			

- Spherical radio interferometric imaging: solve inverse problem on the sphere.
- Enhances both sparsity and coherence:
 - **Sparsity:** eliminate distorting projections and reduce number of samples required to represent band-limited signal.
 - Coherence: spread spectrum phenomenon more effective on wide fields.
 - \rightarrow improves fidelity of recovered interferometric images.
- Current techniques idealised in order to remain as close as possible to the theoretical compressed sensing setting.
- Now that the effectiveness of these techniques has been demonstrated, it is of paramount importance to adapt them to realistic interferometric configurations.
- Consider continuous visibilities due to realistic interferometric configurations..
- Study the spread spectrum phenomenon in the presence of varying w.

Spherical interferometric imaging	Intrinsic advantages O	Gaussian simulations	Galactic dust	Summary •
Summary & future w	ork			

- Spherical radio interferometric imaging: solve inverse problem on the sphere.
- Enhances both sparsity and coherence:
 - **Sparsity:** eliminate distorting projections and reduce number of samples required to represent band-limited signal.
 - Coherence: spread spectrum phenomenon more effective on wide fields.
 - \rightarrow improves fidelity of recovered interferometric images.
- Current techniques idealised in order to remain as close as possible to the theoretical compressed sensing setting.
- Now that the effectiveness of these techniques has been demonstrated, it is of paramount importance to adapt them to realistic interferometric configurations.
- Consider continuous visibilities due to realistic interferometric configurations...
- Study the spread spectrum phenomenon in the presence of varying *w*.

