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Radio interferometric imaging

@ Interferometric imaging:
recover an image from noisy and incomplete Fourier measurements.

@ Resulting ill-posed inverse problem is described by
y=®x+n,
with:
@ incomplete Fourier measurements taken by the interferometer y;
@ linear measurement operator @;
@ underlying image x;
@ noise n.
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Radio interferometric imaging

@ Interferometric imaging:
recover an image from noisy and incomplete Fourier measurements.

@ Resulting ill-posed inverse problem is described by
y=®x+n,
with:
@ incomplete Fourier measurements taken by the interferometer y;
@ linear measurement operator @;
@ underlying image x;
@ noise n.

@ Measurement operator ® incorporates:
e primary beam of the telescope;
e w component modulation responsible for the spread spectrum phenomenon;
o Fourier transform;
@ masking which encodes the incomplete measurements taken by the interferometer.
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Radio interferometric imaging with compressed sensing

@ Solved by applying a prior on sparsity of the signal in a sparsifying basis ¥ or in the
magnitude of its gradient.
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Radio interferometric imaging with compressed sensing

@ Solved by applying a prior on sparsity of the signal in a sparsifying basis ¥ or in the
magnitude of its gradient.

@ Image is recovered by solving:
@ Basis Pursuit denoising problem
o = argmin||||; suchthat ||y — Ve, < e,
«
where the image is synthesising by x* = Ta*;
o Total Variation (TV) denoising problem

x* = argmin||x||tv such that |ly — ®x|» < e.
X
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Radio interferometric imaging with compressed sensing

@ Solved by applying a prior on sparsity of the signal in a sparsifying basis ¥ or in the
magnitude of its gradient.

@ Image is recovered by solving:
@ Basis Pursuit denoising problem
o = argmin||||; suchthat ||y — Ve, < e,
«
where the image is synthesising by x* = Ta*;
o Total Variation (TV) denoising problem

x* = argmin||x||tv such that |ly — ®x|» < e.
X

@ /;-norm || - ||; is given by the sum of the absolute values of the signal.
@ TV norm || - |ltv is given by the ¢;-norm of the gradient of the signal.

@ Tolerance ¢ is related to an estimate of the noise variance.
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Spherical radio interferometric imaging

@ Extend the standard compressed sensing imaging framework to wide fields by considering
interferometric images directly on the sphere, rather than the equatorial plane.
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Spherical radio interferometric imaging

@ Extend the standard compressed sensing imaging framework to wide fields by considering
interferometric images directly on the sphere, rather than the equatorial plane.

@ Augment the usual interferometric measurement operator with an initial projection P from the
sphere to the plane, i.e.

y=®x,+n, where P, =>P.

@ Projection incorporates convolutional gridding on the sphere to "
afford use of FFTs B
(cf. gridding of continuous to discrete visibilities). SJe
4

Figure: Projection operator.
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Spherical radio interferometric imaging

@ Extend the standard compressed sensing imaging framework to wide fields by considering
interferometric images directly on the sphere, rather than the equatorial plane.

@ Augment the usual interferometric measurement operator with an initial projection P from the
sphere to the plane, i.e.

y=®x,+n, where P, =>P.

@ Projection incorporates convolutional gridding on the sphere to "
afford use of FFTs B
(cf. gridding of continuous to discrete visibilities). e
@ Careful attention given to sampling densities to ensure accurate
representation of band-limited signals: N/
e SmallFoV = L ~27B D "
e Wide FoV = Lgoy =~ 27 cos(Orov /2)Brov 4

Figure: Projection operator.
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Spherical radio interferometric imaging

@ Extend the standard compressed sensing imaging framework to wide fields by considering
interferometric images directly on the sphere, rather than the equatorial plane.

@ Augment the usual interferometric measurement operator with an initial projection P from the
sphere to the plane, i.e.

y=®x,+n, where P, =>P.

@ Projection incorporates convolutional gridding on the sphere to "
afford use of FFTs B
(cf. gridding of continuous to discrete visibilities). e
@ Careful attention given to sampling densities to ensure accurate
representation of band-limited signals: N/
e SmallFoV = L ~27B D "
e Wide FoV = Lgoy =~ 27 cos(Orov /2)Brov 4

@ Spherical interferometric images recovered by solving the BP
or TV denoising problems, replacing measurement operator ®
with its spherical equivalent ®,.
Figure: Projection operator.
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Intrinsic advantages

@ Performance of compressed sensing reconstruction driven by sparsity and coherence.

@ Enhance both sparsity and coherence in the wide-field spherical imaging framework.
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Intrinsic advantages

@ Performance of compressed sensing reconstruction driven by sparsity and coherence.
@ Enhance both sparsity and coherence in the wide-field spherical imaging framework.

@ By recovering interferometric images on the sphere, distorting projections are eliminated and
the number of samples required to represent a band-limited signal is reduced
— sparsity enhanced — fidelity of reconstructed image improved.
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Intrinsic advantages

@ Performance of compressed sensing reconstruction driven by sparsity and coherence.
@ Enhance both sparsity and coherence in the wide-field spherical imaging framework.

@ By recovering interferometric images on the sphere, distorting projections are eliminated and
the number of samples required to represent a band-limited signal is reduced
— sparsity enhanced — fidelity of reconstructed image improved.

@ Spread spectrum (SS) phenomenon is enhanced on wide fields.

@ The w component induces the SS modulation, spreading spectrum of the signal.
Fourier measurements: coherence is max modulus of FT of sparsity basis vectors.
Spreading spectrum increases incoherence between sensing and sparsity bases.

Wider FoV — high frequency content in w component modulation — more
effective SS phenomenon — fidelity of reconstructed image improved.

(a) Assuming ||I||* w < 1 (b) No small-field assumption

Figure: Real part and imaginary part of SS modulation for FoV g,y = 90°. @ .(I)ﬂ-
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@ Quantify performance on simulations of Gaussian sources of various size for FOV g,y = 90°.
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Figure: Reconstruction performance for o5 = 0.01  (blue = plane; red = sphere; solid = no SS; dashed = SS).
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@ Quantify performance on simulations of Gaussian sources of various size for FOV g,y = 90°.
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Figure: Reconstruction performance for o5 = 0.02  (blue = plane; red = sphere; solid = no SS; dashed = SS).
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uction of simulated Gaussian maps

@ Quantify performance on simulations of Gaussian sources of various size for FOV g,y = 90°.
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Figure: Reconstruction performance for o5 = 0.04  (blue = plane; red = sphere; solid = no SS; dashed = SS).
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uction of simulated Gaussian maps

@ Quantify performance on simulations of Gaussian sources of various size for FOV g,y = 90°.
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Figure: Reconstruction performance for o5 = 0.10  (blue = plane; red = sphere; solid = no SS; dashed = SS).
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Galactic dust
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uction of Galactic dust map

@ Consider more realistic, higher resolution simulation of 94GHz FDS map of predicted
submillimeter and microwave emission of diffuse interstellar Galactic dust (Finkbeiner et al.
1999) (available form LAMBDA website: http://lambda.gsfc.nasa.gov).

@ Reconstruct FoV g,y = 90° from 25% of visibilities.

(a) Mollweide projection of full-sky (b) Orthographic projection of FOV

Figure: FDS map of predicted emission of diffuse interstellar Galactic dust.
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Galactic dust
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uction of Galactic dust map

(a) Ground truth (b) Planar reconstruction with SS (14dB)

(c) Spherical reconstruction without SS (7dB) (d) Spherical reconstruction with SS (19dB)
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Figure: Simulated TV reconstructions of diffuse FDS map.
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Summary & future work

@ Spherical radio interferometric imaging: solve inverse problem on the sphere.
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Summary & future work

@ Spherical radio interferometric imaging: solve inverse problem on the sphere.

@ Enhances both sparsity and coherence:

@ Sparsity: eliminate distorting projections and reduce number of samples required to
represent band-limited signal.
o Coherence: spread spectrum phenomenon more effective on wide fields.
— improves fidelity of recovered interferometric images.
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Summary & future work

@ Spherical radio interferometric imaging: solve inverse problem on the sphere.

@ Enhances both sparsity and coherence:
@ Sparsity: eliminate distorting projections and reduce number of samples required to
represent band-limited signal.
e Coherence: spread spectrum phenomenon more effective on wide fields.
— improves fidelity of recovered interferometric images.

@ Current techniques idealised in order to remain as close as possible to the theoretical
compressed sensing setting.

@ Now that the effectiveness of these techniques has been demonstrated, it is of paramount
importance to adapt them to realistic interferometric configurations.
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Summary & future work

@ Spherical radio interferometric imaging: solve inverse problem on the sphere.

@ Enhances both sparsity and coherence:
@ Sparsity: eliminate distorting projections and reduce number of samples required to
represent band-limited signal.
e Coherence: spread spectrum phenomenon more effective on wide fields.
— improves fidelity of recovered interferometric images.

@ Current techniques idealised in order to remain as close as possible to the theoretical
compressed sensing setting.

@ Now that the effectiveness of these techniques has been demonstrated, it is of paramount
importance to adapt them to realistic interferometric configurations.

@ Consider continuous visibilities due to realistic interferometric configurations..

@ Study the spread spectrum phenomenon in the presence of varying w.
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