Compressed sensing for radio interferometric imaging on wide fields of view

Jason McEwen

http://lts2www.epfl.ch/~mcewen/

BASP research node

Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

CALIM 2010 :: Dwingeloo, Netherlands

Outline

- Radio interferometry
- Wide fields of view
 - Spread spectrum
 - Band-limited signals
 - Projection operators
 - Inverse problem
- Gaussian simulations
- Galactic dust
- Summary

Radio interferometry

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$V(\boldsymbol{b}_{\lambda}) = \int_{S^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) \mathrm{e}^{-\mathrm{i}2\pi \boldsymbol{b}_{\lambda} \cdot \boldsymbol{\sigma}} \, \mathrm{d}\Omega \ .$$

Expressed in the usual local coordinate system

$$y(u, w) = \int_{D^2} A(l) x_p(l) e^{-i2\pi [u \cdot l + w \cdot (n(l) - 1)]} \frac{d^2 u}{n(l)}$$
$$= \int_{D^2} A(l) x_p(l) C^{(w)}(||l||) e^{-i2\pi u \cdot l} \frac{d^2 l}{n(l)}$$

where l = (l, m), $||l||^2 + n^2(l) = 1$ and the chirp $C^{(w)}(||l||)$ is given by

$$C^{(w)}(||l||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||l||^2}\right)}$$
.

ullet Typically small field-of-view (FOV) assumptions are made with ${
m d}\Omega={
m d}^2l/n(l)\simeq {
m d}^2l$ and

•
$$||l||^4 w \ll 1 \implies C^{(w)}(||l||) \simeq e^{i\pi w ||l||^2}$$
 (Wiaux *et al.* 2009 [6])

Radio interferometry

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$V(\boldsymbol{b}_{\lambda}) = \int_{\mathbb{S}^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) e^{-i2\pi \boldsymbol{b}_{\lambda} \cdot \boldsymbol{\sigma}} d\Omega.$$

Expressed in the usual local coordinate system

$$y(\mathbf{u}, w) = \int_{D^2} A(l) x_p(l) e^{-i2\pi [\mathbf{u} \cdot l + w (n(l) - 1)]} \frac{d^2 l}{n(l)}$$
$$= \int_{D^2} A(l) x_p(l) C^{(w)}(||l||) e^{-i2\pi \mathbf{u} \cdot l} \frac{d^2 l}{n(l)},$$

where $\mathbf{l} = (l, m)$, $||\mathbf{l}||^2 + n^2(\mathbf{l}) = 1$ and the chirp $C^{(w)}(||\mathbf{l}||)$ is given by

$$C^{(w)}(||\boldsymbol{l}||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||\boldsymbol{l}||^2}\right)}$$
.

ullet Typically small field-of-view (FOV) assumptions are made with $d\Omega=\mathrm{d}^2l/n(l)\simeq\mathrm{d}^2l$ and

•
$$||I||^2 w \ll 1 \Rightarrow C^{(w)}(||I||) \simeq 1$$

• $||I||^4 w \ll 1 \Rightarrow C^{(w)}(||I||) \simeq e^{i\pi w} ||I||^2$ (Wiaux *et al.* 2009 [6])

Radio interferometry

The complex visibility measured by an interferometer is given by the coordinate free definition

$$V(\boldsymbol{b}_{\lambda}) = \int_{\mathbb{S}^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) e^{-i2\pi \boldsymbol{b}_{\lambda} \cdot \boldsymbol{\sigma}} d\Omega.$$

Expressed in the usual local coordinate system

$$y(\mathbf{u}, w) = \int_{D^2} A(l) x_p(l) e^{-i2\pi [\mathbf{u} \cdot l + w (n(l) - 1)]} \frac{d^2 l}{n(l)}$$
$$= \int_{D^2} A(l) x_p(l) C^{(w)}(||\mathbf{l}||) e^{-i2\pi \mathbf{u} \cdot l} \frac{d^2 l}{n(l)},$$

where $\mathbf{l} = (l, m)$, $||\mathbf{l}||^2 + n^2(\mathbf{l}) = 1$ and the chirp $C^{(w)}(||\mathbf{l}||)$ is given by

$$C^{(w)}(||\boldsymbol{l}||) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||\boldsymbol{l}||^2}\right)}$$
.

- Typically small field-of-view (FOV) assumptions are made with $d\Omega = d^2l/n(l) \simeq d^2l$ and
 - $||l||^2 w \ll 1 \Rightarrow C^{(w)}(||l||) \simeq 1$
 - $||I||^4 w \ll 1 \implies C^{(w)}(||I||) \simeq e^{i\pi w} ||I||^2$ (Wiaux et al. 2009 [6])

Spread spectrum phenomenon

- Modulation by the chirp spreads the spectrum of the signal.
- Recall that for Fourier measurements the compressed sensing (CS) coherence is the maximum modulus of the Fourier transform of the sparsity basis vectors: $\mu = \max_{i,j} |f_i \cdot \psi_j|$.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving the performance of CS reconstructions.

 When no small-field assumption is made the chirp modulation contains higher frequency content ⇒ improved effectiveness of chirp on wide FOV.

Spread spectrum phenomenon

- Modulation by the chirp spreads the spectrum of the signal.
- Recall that for Fourier measurements the compressed sensing (CS) coherence is the maximum modulus of the Fourier transform of the sparsity basis vectors: $\mu = \max_{i,j} |f_i \cdot \psi_j|$.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving the performance of CS reconstructions.

(a) Assuming $||I||^4 w \ll 1$ (b) No small-field assumption Figure: Real part and imaginary part of chirp modulation for FOV $\theta_{\rm FOV}=90^\circ$.

 When no small-field assumption is made the chirp modulation contains higher frequency content ⇒ improved effectiveness of chirp on wide FOV.

- Consider signal on the sphere and project onto tangent plane defined by usual l = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2)B_{\rm FOV}$ where L and B are band-limits on the sphere and lane respectively.
- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N₋ /N₋ increases rapidly
 - ⇒ signal less sparse on plane:
 - ⇒ superiority of sphere.

- Consider signal on the sphere and project onto tangent plane defined by usual *l* = (*l*, *m*) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \simeq 2\pi B$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2) B_{\rm FOV}$

where ${\it L}$ and ${\it B}$ are band-limits on the sphere and plane respectively.

- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly
 ⇒ signal less sparse on plane;
 ⇒ superiority of sphere

- Consider signal on the sphere and project onto tangent plane defined by usual I = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \sim 2\pi R$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2)B_{\rm FOV}$ where L and B are band-limits on the sphere and plane respectively.
- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly
 ⇒ signal less sparse on plane;
 ⇒ superiority of sphere

Figure: Ratio of number of samples on the plane to the sphere $(N_{\rm p}/N_{\rm s})$. Plotted for $L=cN_{\rm side}$, with c=3 (blue); $c=\sqrt{3}\,\pi/2$ (black): c=2 (red).

- Consider signal on the sphere and project onto tangent plane defined by usual I = (l, m) coordinates.
- Ensure a band-limited signal on the sphere is sufficiently sampled on plane when projected.
- Band-limit relations between the sphere and plane:
 - Small FOV: $L \sim 2\pi R$
 - Wide FOV: $L_{\rm FOV} \simeq 2\pi \cos(\theta_{\rm FOV}/2)B_{\rm FOV}$ where L and B are band-limits on the sphere and plane respectively.
- Band-limit relations define sampling resolutions.
- Adopt HEALPix pixelisation of the sphere [2].
- For wide FOV N_p/N_s increases rapidly
 - ⇒ signal less sparse on plane;
 - ⇒ superiority of sphere.

Figure: Ratio of number of samples on the plane to the sphere $(N_{\rm p}/N_{\rm s})$. Plotted for $L=cN_{\rm side}$, with c=3 (blue); $c=\sqrt{3}\,\pi/2$ (black); c=2 (red).

- Project onto a regular grid on the plane to reduce significantly the computational load
 of subsequent analyses through the use of FFTs.
- Regridding operation is required

 convolutional gridding

 convol
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, e.g Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |f_i \cdot \mathsf{P}\psi_j|$$

- ⇒ hampers CS reconstruction performance;
- ⇒ employ universality of chirp.

- Project onto a regular grid on the plane to reduce significantly the computational load
 of subsequent analyses through the use of FFTs.
- Regridding operation is required

 convolutional gridding

 (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, e.g Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{s} = \max_{i,j} |f_{i} \cdot \mathsf{P}\psi_{j}|,$$

 \Rightarrow hampers CS reconstruction performance

Figure: Projection of a sampled signal from the sphere to the plane.

- Project onto a regular grid on the plane to reduce significantly the computational load
 of subsequent analyses through the use of FFTs.
- Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, e.g. Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{s} = \max_{i,j} |f_{i} \cdot \mathsf{P}\psi_{j}|,$$

⇒ hampers CS reconstruction performance;
⇒ employ universality of chirp

Figure: Projection of a sampled signal from the sphere to the plane.

- Project onto a regular grid on the plane to reduce significantly the computational load
 of subsequent analyses through the use of FFTs.
- Regridding operation is required → convolutional gridding (cf. regridding performed when mapping the visibilities observed at continuous coordinates to a regular grid, also to afford the use of FFTs).
- Consider box, Gaussian and sinc kernels.
- Select Gaussian kernel due to space-frequency trade-off (other kernels could also be considered, e.g. Gaussian-sinc, spheriodal functions).
- Incoherence reduced on sphere due to projection P:

$$\mu_{\rm s} = \max_{i,j} |f_i \cdot \mathsf{P}\psi_j|,$$

- ⇒ hampers CS reconstruction performance;
- ⇒ employ universality of chirp.

Figure: Projection of a sampled signal from the sphere to the plane.

Interferometric inverse problem

• Ill-posed interferometric inverse problem:

$$\mathbf{y}=\Phi_m^{(w)}\mathbf{x}_m+\mathbf{n},$$
 where $m=\{{\rm s},{\rm p}\},$
$$\Phi_{\rm p}^{(w)}={\rm W\,M\,F\,C}^{(w)}\,{\rm A}$$
 and
$$\Phi_{\rm s}^{(w)}={\rm W\,M\,F\,C}^{(w)}\,{\rm A\,G\,P}.$$

- Consider reconstruction problems on the sphere and plane.
 - BP reconstruction with Dirac sparsity basis:

$$\min_{x_m} \|x_m\|_1$$
 such that $\|y - \Phi_m^{(w)} x_m\|_2 \le \epsilon$

TV reconstruction:

$$\min_{\mathbf{x}_m} \|\mathbf{x}_m\|_{\mathrm{TV}}$$
 such that $\|\mathbf{y} - \Phi_m^{(w)} \mathbf{x}_m\|_2 \leq 1$

Interferometric inverse problem

• III-posed interferometric inverse problem:

$$\mathbf{y}=\Phi_m^{(w)}\mathbf{x}_m+\mathbf{n},$$
 where $m=\{{\rm s},{\rm p}\},$
$$\Phi_{\rm p}^{(w)}={\rm W\,M\,F\,C}^{(w)}\,{\rm A}$$
 and
$$\Phi_{\rm s}^{(w)}={\rm W\,M\,F\,C}^{(w)}\,{\rm A\,G\,P}.$$

- Consider reconstruction problems on the sphere and plane.
 - BP reconstruction with Dirac sparsity basis:

$$\min_{oldsymbol{x}_m} \|oldsymbol{x}_m\|_1$$
 such that $\|oldsymbol{y} - \Phi_m^{(w)} oldsymbol{x}_m\|_2 \leq \epsilon$

TV reconstruction:

$$\min_{m{x}_m} \|m{x}_m\|_{\mathrm{TV}}$$
 such that $\|m{y} - \Phi_m^{(w)} m{x}_m\|_2 \leq \epsilon$

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45° .
- Chirp $w_{\rm d}=\{0,1/\sqrt{2}\}$ (corresponding to continuous $w\simeq\{0,B_{\rm FOV}\}$).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45° .
- Chirp $w_{\rm d}=\{0,1/\sqrt{2}\}$ (corresponding to continuous $w\simeq\{0,B_{\rm FOV}\}$).

Figure: Sparsities on the sphere (red) and plane for various projection operators (other colours).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.01$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.02$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.04$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.10$ (blue – plane; red – sphere; solid – no chirp; dashed – with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.01$ (blue – plane; red – sphere; solid – no chirp; dashed –with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.02$ (blue – plane; red – sphere; solid – no chirp; dashed –with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.04$ (blue – plane; red – sphere; solid – no chirp; dashed –with chirp).

- Quantify performance on simulations of Gaussians of various sizes: $\sigma_S = \{0.01, 0.02, 0.04, 0.10\}.$
- Consider $\theta_{\text{FOV}} = 90^{\circ}$ and $N_{\text{side}} = 32$ $\Rightarrow L_{\text{FOV}} \simeq 90$; $N_{\text{s}} \simeq 1740$; $B_{\text{FOV}} \simeq 20$; $N_{\text{p}} \simeq 3360$.
- Beam FWHM = 45°.
- Chirp $w_d = \{0, 1/\sqrt{2}\}$ (corresponding to continuous $w \simeq \{0, B_{FOV}\}$).

Figure: Reconstruction performance for $\sigma_S = 0.10$ (blue – plane; red – sphere; solid – no chirp; dashed –with chirp).

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\rm side} = 128$ and consider region of $\theta_{\rm FOV} = 90^{\circ}$ centered on Galactic coordinates $(l,b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

(a) Mollweide projection of full-sky

(b) Orthographic projection of FOV

Figure: FDS map of predicted emission of diffuse interstellar Galactic dust.

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\rm side} = 128$ and consider region of $\theta_{\rm FOV} = 90^{\circ}$ centered on Galactic coordinates $(l,b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: BP reconstruction with no chirp.

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\rm side} = 128$ and consider region of $\theta_{\rm FOV} = 90^{\circ}$ centered on Galactic coordinates $(l,b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: BP reconstruction with chirp.

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\rm side} = 128$ and consider region of $\theta_{\rm FOV} = 90^{\circ}$ centered on Galactic coordinates $(l,b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: TV reconstruction with no chirp.

- Consider more realistic simulation of 94GHz FDS map of predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [1] (available form LAMBDA website: http://lambda.gsfc.nasa.gov).
- Downsample to resolution of $N_{\rm side} = 128$ and consider region of $\theta_{\rm FOV} = 90^{\circ}$ centered on Galactic coordinates $(l,b) = (210^{\circ}, -20^{\circ})$.
- Reconstruct from simulated visibilities with 25% coverage.

Figure: TV reconstruction with chirp.

Summary & future work

- Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.
- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse
- Coherence on the sphere hampered but mitigated by universality of chirp
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem.
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities).

Summary & future work

- Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.
- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse.
- Coherence on the sphere hampered but mitigated by universality of chirp.
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities)

Summary & future work

- Considered inverse interferometric problem in wide FOV setting, with no small field of view assumptions.
- Chirp modulation more effective due to higher frequency content.
- Signal on the sphere more sparse.
- Coherence on the sphere hampered but mitigated by universality of chirp.
- Quantified performance on Gaussian simulations and illustrated recovery of diffuse interstellar Galactic dust → superiority of sphere.
- Future work:
 - Alternative sparsity bases on the sphere

 (e.g. Haar wavelets [4], steerable scale discretised wavelets [5], wavelets on graphs [3])
 → consider analysis problem.
 - Solve inverse problem directly on sphere (use fast wavelet method of JDM and Scaife [4] to compute visibilities).

References

- [1] D. P. Finkbeiner, M. Davis, and D. J. Schlegel.
 Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS.
 Astrophys. J., 524:867–886. October 1999.
- [2] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann. Healpix – a framework for high resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622759–771, 2005.
- [3] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph theory. Applied Comput. Harm. Anal., in press, 2010.
- [4] J. D. McEwen and A. M. M. Scaife. Simulating full-sky interferometric observations. Mon. Not. Roy. Astron. Soc., 389(3):1163–1178, 2008.
- [5] Y. Wiaux, J. D. McEwen, P. Vandergheynst, and O. Blanc. Exact reconstruction with directional wavelets on the sphere. Mon. Not. Roy. Astron. Soc., 388(2):770–788, 2008.
- [6] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst. Spread spectrum for imaging techniques in radio interferometry. Mon. Not. Roy. Astron. Soc., 400:1029–1038, 2009.

