High-dimensional uncertainty quantification

for radio interferometric imaging

Jason McEwen [www.jasonmcewen.org](http://jasonmcewen.org) [@jasonmcewen](https://twitter.com/jasonmcewen)

Mullard Space Science Laboratory (MSSL) University College London (UCL)

with Xiaohao Cai (MSSL) and Marcelo Pereyra (HWU)

Cai, Pereyra & McEwen (2017a): [arXiv:1711.04818](https://arxiv.org/abs/1711.04818) Cai, Pereyra & McEwen (2017b): [arXiv:1711.04819](https://arxiv.org/abs/1711.04819)

Workshop on Uncertainty Quantification and Computational Imaging, International Centre for Mathematical Sciences (ICMS), Edinburgh April 2018

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 QQ

Radio telescopes are big!

"Just checking."

有

B ∍ 299

÷. ă

Radio telescopes are big!

つへへ

Radio interferometric telescopes Very Large Array (VLA) in New Mexico

つへへ

Next-generation of radio interferometry rapidly approaching

- Next-generation of radio interferometric telescopes will provide orders of magnitude improvement in sensitivity.
- Unlock broad range of science goals.

-
- (a) Dark energy (b) General relativity (c) Cosmic magnetism
	-

イロト イ伊 ト イヨ ト イヨ トー

 Ω

- (d) Epoch of reionization (e) Exoplanets
	-

Figure: SKA science goals. [Credit: SKA Organisation]

Jason McEwen [UQ for RI imaging](#page-0-0)

Square Kilometre Array (SKA)

Jason McEwen [UQ for RI imaging](#page-0-0)

 \leftarrow

∢ †ি

つへへ

The SKA poses a considerable big-data challenge

Jason McEwen [UQ for RI imaging](#page-0-0)

E

 $2Q$

The SKA poses a considerable big-data challenge

Jason McEwen [UQ for RI imaging](#page-0-0)

 $2Q$

Outline

1 [Radio interferometric imaging](#page-11-0)

² [Proximal MCMC sampling and uncertainty quantification](#page-26-0)

³ [MAP estimation and uncertainty quantification](#page-86-0)

イロト イ母 ト イヨト イヨト ニヨー の女の

Outline

¹ [Radio interferometric imaging](#page-11-0)

² [Proximal MCMC sampling and uncertainty quantification](#page-26-0)

³ [MAP estimation and uncertainty quantification](#page-86-0)

イロト イ母 ト イヨト イヨト ニヨー の女の

Radio interferometric telescopes acquire "Fourier" measurements

K ロ ト イ ト イ ヨ ト イ

E

 \mathbb{B} is

 299

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
\boxed{y = \mathbf{\Phi} x + n},
$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

• Measurement operator, e.g.
$$
\phi = GFA
$$
, may incorporate:

- primary beam A of the telescope;
- Fourier transform F:
- \bullet convolutional de-gridding G to interpolate to continuous uv -coordinates;
- direction-dependent effects (DDEs). . .

イロト イ押 トイヨ トイヨ トー

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
y=\Phi x+n\bigg],
$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- **Measurement operator, e.g.** $\phi = GFA$, may incorporate:
	- primary beam A of the telescope;
	- Fourier transform F:
	- \bullet convolutional de-gridding **G** to interpolate to continuous uv -coordinates;
	- direction-dependent effects (DDEs). . .

イロト イ団 トメ 差 トメ 差 トー

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$
y=\mathbf{\Phi}x+n\bigg],
$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- **Measurement operator, e.g.** $\phi = GFA$, may incorporate:
	- primary beam A of the telescope;
	- Fourier transform F:
	- \bullet convolutional de-gridding G to interpolate to continuous uv -coordinates:
	- direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ

Sparse regularisation Synthesis and analysis frameworks

• Sparse synthesis regularisation problem:

$$
\boxed{\boldsymbol{x}_{\text{synthesis}} = \boldsymbol{\Psi} \times \argmin_{\boldsymbol{\alpha}} \Big[\big\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \big\|_2^2 + \lambda \, \big\| \boldsymbol{\alpha} \big\|_1 \Big]}
$$

Synthesis framework

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ

 Ω

where consider sparsifying (e.g. wavelet) representation of image: $x = \Psi \alpha$.

- Different to synthesising signals.
- Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

$$
x_{\text{analysis}} = \underset{\mathbf{w}}{\arg\min} \Big[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_2^2 + \lambda \left\| \mathbf{\Psi}^{\dagger} \mathbf{x} \right\|_1 \Big]
$$

(For orthogonal bases the two approaches are identical but otherwise very different.)

Sparse regularisation Synthesis and analysis frameworks

• Sparse synthesis regularisation problem:

$$
\mathbf{x}_{\text{synthesis}} = \mathbf{\Psi} \times \arg\min_{\alpha} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{\Psi} \alpha \right\|_2^2 + \lambda \left\| \alpha \right\|_1 \right]
$$

Synthesis framework

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ

 Ω

where consider sparsifying (e.g. wavelet) representation of image: $x = \Psi \alpha$.

Typically sparsity assumption justified by analysing example signals in transformed domain.

- Different to synthesising signals.
- Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

$$
x_{\text{analysis}} = \underset{\mathbf{x}}{\arg\min} \Big[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_2^2 + \lambda \left\| \mathbf{\Psi}^{\dagger} \mathbf{x} \right\|_1 \Big]
$$

(For orthogonal bases the two approaches are identical but otherwise very different.)

Sparse regularisation Synthesis and analysis frameworks

• Sparse synthesis regularisation problem:

$$
\mathbf{x}_{\text{synthesis}} = \mathbf{\Psi} \times \arg\min_{\alpha} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{\Psi} \alpha \right\|_2^2 + \lambda \left\| \alpha \right\|_1 \right]
$$

Synthesis framework

イロト イ押 トイヨ トイヨ トーヨー

 QQ

where consider sparsifying (e.g. wavelet) representation of image: $x = \Psi \alpha$.

- Typically sparsity assumption justified by analysing example signals in transformed domain.
- Different to synthesising signals.
- Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

$$
x_{\text{analysis}} = \underset{\mathbf{x}}{\arg\min} \left[\left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_2^2 + \lambda \left\| \mathbf{\Psi}^\dagger \mathbf{x} \right\|_1 \right]
$$

(For orthogonal bases the two approaches are identical but otherwise very different.)

Sparse regularisation SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$
\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \ldots, \boldsymbol{\Psi}_q \end{bmatrix}
$$

with following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight \Rightarrow concatenation of 9 bases.

• Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

$$
\min_{\boldsymbol{x}\in\mathbb{R}^N}\|\mathbf{W}\mathbf{\Psi}^{\dagger}\boldsymbol{x}\|_1\quad\text{ subject to }\quad\|\boldsymbol{y}-\mathbf{\Phi}\boldsymbol{x}\|_2\leq\epsilon\quad\text{ and }\quad\boldsymbol{x}\geq0\;\left|\underset{\boldsymbol{\alpha}}{\overset{\text{def}}{\sim}}\right.
$$

イロメ イ押メ イヨメ イヨメー

Sparse regularisation SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$
\mathbf{\Psi} = \begin{bmatrix} \mathbf{\Psi}_1, \mathbf{\Psi}_2, \ldots, \mathbf{\Psi}_q \end{bmatrix}
$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight \Rightarrow concatenation of 9 bases.

• Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

$$
\min_{\boldsymbol x \in \mathbb{R}^N} \| \mathsf{W} \boldsymbol{\Psi}^{\dagger} \boldsymbol x \|_1 \quad \text{ subject to } \quad \| \boldsymbol y - \boldsymbol \Phi \boldsymbol x \|_2 \leq \epsilon \quad \text{ and } \quad \boldsymbol x \geq 0 \;\; \text{as} \; \newline \hspace*{1.5cm} \text{and} \; \text{as} \; \newline \text{and} \; \text{as} \; \newline \text{and} \; \text{as} \; \newline \text{with} \; \text{the} \; \
$$

メロメ イタメ メミメ スミメー

 QQ

Sparse regularisation SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$
\mathbf{\Psi}=\left[\mathbf{\Psi}_1,\mathbf{\Psi}_2,\ldots,\mathbf{\Psi}_q\right]
$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight \Rightarrow concatenation of 9 bases.

• Promote average sparsity by solving the constrained reweighted ℓ_1 analysis problem:

$$
\min_{\boldsymbol{x}\in\mathbb{R}^N}\|\mathsf{W}\boldsymbol{\Psi}^{\dagger}\boldsymbol{x}\|_1\quad\text{ subject to }\quad\|\boldsymbol{y}-\boldsymbol{\Phi}\boldsymbol{x}\|_2\leq\epsilon\quad\text{ and }\quad\boldsymbol{x}\geq0\;\left|\mathop{\infty}\limits_{\boldsymbol{\zeta}\in\mathbb{R}}\right.
$$

イロメ イ押メ イヨメ イヨメー

Public open-source codes

Next-generation radio interferometric imaging

Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

SOPT code <http://basp-group.github.io/sopt/>

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 Ω

Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered

イロト イ押ト イヨト イヨト

 299

G

PURIFY reconstruction VLA observation of 3C129

(a) CLEAN (uniform)

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

イロト イ押ト イヨト イヨト

÷. OQ

PURIFY reconstruction VLA observation of 3C129

(a) CLEAN (uniform)

(b) PURIFY

イロト イ押 トイヨ トイヨト

 299

E

Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

K ロ > K @ > K 할 > K 할 > 1 할 > 1 9 Q Q*

Outline

¹ [Radio interferometric imaging](#page-11-0)

² [Proximal MCMC sampling and uncertainty quantification](#page-26-0)

³ [MAP estimation and uncertainty quantification](#page-86-0)

÷. Ω

MCMC sampling and uncertainty quantification

 Ω

MCMC sampling the full posterior distribution

• Sample full posterior distribution $P(x | y)$.

MCMC methods for high-dimensional problems (like interferometric imaging):

- Gibbs sampling (sample from conditional distributions)
- Hamiltonian MC (HMC) sampling (exploit gradients)
- Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

which shown to be highly effective.

重

 QQ

MCMC sampling the full posterior distribution

- Sample full posterior distribution $P(x | y)$.
- MCMC methods for high-dimensional problems (like interferometric imaging):
	- Gibbs sampling (sample from conditional distributions)
	- Hamiltonian MC (HMC) sampling (exploit gradients)
	- Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

which shown to be highly effective.

イロメ イ押メ イヨメ イヨメー

 Ω

MCMC sampling the full posterior distribution

- Sample full posterior distribution $P(x | y)$.
- MCMC methods for high-dimensional problems (like interferometric imaging):
	- Gibbs sampling (sample from conditional distributions)
	- Hamiltonian MC (HMC) sampling (exploit gradients)
	- Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparsity-promoting priors, which shown to be highly effective.

重

 $2Q$

MCMC sampling with gradients Langevin dynamics

Consider posteriors of the following form:

$$
P(\mathbf{x} \mid \mathbf{y}) = \boxed{\pi(\mathbf{x})} \propto \exp(-\boxed{g(\mathbf{x})}
$$

Posterior

- If $q(x)$ differentiable can adopt MALA (Langevin dynamics).
- **Based on Langevin diffusion process** $\mathcal{L}(t)$, with π as stationary distribution:

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0
$$

イロト イ伊 ト イヨ ト イヨ トー

 \equiv Ω

MCMC sampling with gradients Langevin dynamics

Consider posteriors of the following form:

$$
P(\mathbf{x} \mid \mathbf{y}) = \boxed{\pi(\mathbf{x})} \propto \exp(-\boxed{g(\mathbf{x})}
$$

Posterior

- If $g(x)$ differentiable can adopt MALA (Langevin dynamics).
- **Based on Langevin diffusion process** $\mathcal{L}(t)$, with π as stationary distribution:

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0
$$

KOL KALLA SILKEL A SAN

MCMC sampling with gradients Langevin dynamics

• Consider posteriors of the following form:

$$
P(\mathbf{x} \mid \mathbf{y}) = \boxed{\pi(\mathbf{x})} \propto \exp(-\boxed{g(\mathbf{x})}
$$

Posterior

- If $g(x)$ differentiable can adopt MALA (Langevin dynamics).
- **Based on Langevin diffusion process** $\mathcal{L}(t)$ **, with** π **as stationary distribution:**

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0
$$

where W is Brownian motion.

KOL KALLA SILKEL A SAN

MCMC sampling with gradients Langevin dynamics

• Consider posteriors of the following form:

$$
P(\mathbf{x} \mid \mathbf{y}) = \boxed{\pi(\mathbf{x})} \propto \exp(-\boxed{g(\mathbf{x})}
$$

Posterior

- If $g(x)$ differentiable can adopt MALA (Langevin dynamics).
- **•** Based on Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution:

$$
d\mathcal{L}(t) = \frac{1}{2} \left(\frac{\nabla \log \pi(\mathcal{L}(t))}{\text{Gradient}} dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0
$$

where W is Brownian motion.

 290

Proximal MALA Moreau approximation

• Moreau approximation of $f(x) \propto \exp(-g(x))$:

$$
f_{\lambda}^{\mathsf{MA}}(\boldsymbol{x}) = \sup_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) \exp\left(-\frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}\right)
$$

Important properties of $f_\lambda^{\sf MA}(\bm x)$:

1 As
$$
\lambda \to 0
$$
, $f_{\lambda}^{\text{MA}}(x) \to f(x)$

$$
\text{O} \quad \nabla \log f_\lambda^{\text{MA}}(\bm{x}) = (\text{prox}_g^\lambda(\bm{x}) - \bm{x})/\lambda
$$

$2Q$

Proximal MALA Moreau approximation

• Moreau approximation of $f(x) \propto \exp(-g(x))$:

$$
f_{\lambda}^{\mathsf{MA}}(\boldsymbol{x}) = \sup_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) \exp\left(-\frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}\right)
$$

Important properties of $f_{\lambda}^{\textsf{MA}}(\boldsymbol{x})$:

9 As
$$
\lambda \to 0
$$
, $f_{\lambda}^{\text{MA}}(x) \to f(x)$

$$
\mathbf{Q} \quad \nabla \log f_{\lambda}^{\mathbf{MA}}(\boldsymbol{x}) = (\text{prox}_{g}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda
$$

 4 ロ) 4 何) 4 ミ) 4 4)

つひへ

Proximal MALA MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp\left(-\underbrace{\boldsymbol{g}(\boldsymbol{x})}_{\odot}\right) \sum_{c=1}^{\infty}$

• Langevin diffusion process $\mathcal{L}(t)$, with π as stationary distribution (\mathcal{W} Brownian motion):

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

• Euler discretisation and apply Moreau approximation to π :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \overline{\nabla \log \pi (l^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.
$$

$$
\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\text{prox}_{\alpha}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda
$$

 QQ

Proximal MALA MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp\left(-\underbrace{\boldsymbol{g}(\boldsymbol{x})}_{\odot}\right) \sum_{c=1}^{\infty}$
- **Langevin diffusion process** $\mathcal{L}(t)$ **, with** π **as stationary distribution (***W* **Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

• Euler discretisation and apply Moreau approximation to π :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \underbrace{\nabla \log \pi(l^{(m)})}_{\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\text{prox}_{\alpha}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda} + \sqrt{\delta} \boldsymbol{w}^{(m)}.
$$

 QQ

Proximal MALA MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp\left(-\underbrace{\boldsymbol{g}(\boldsymbol{x})}_{\odot}\right) \sum_{c=1}^{\infty}$
- **Langevin diffusion process** $\mathcal{L}(t)$ **, with** π **as stationary distribution (***W* **Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

• Euler discretisation and apply Moreau approximation to π :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \underbrace{\nabla \log \pi(l^{(m)})}_{\nabla \log \pi_\lambda(\boldsymbol{x})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.
$$

イロメ イ押メ イヨメ イヨメー

 QQ

Proximal MALA MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (Px-MALA) Pereyra (2016a)

- Consider log-convex posteriors: $P(\boldsymbol{x} \mid \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp\left(-\underbrace{\boldsymbol{g}(\boldsymbol{x})}_{\odot}\right) \sum_{c=1}^{\infty}$
- **Langevin diffusion process** $\mathcal{L}(t)$ **, with** π **as stationary distribution (***W* **Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

• Euler discretisation and apply Moreau approximation to π :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \underbrace{\nabla \log \pi(l^{(m)})}_{\nabla \log \pi_\lambda(\boldsymbol{x})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.
$$

Computing proximity operators for the analysis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\underline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\underline{\bar{f}_2(x) = \|\mathbf{y} - \Phi x\|_2^2/2\sigma^2}$.

Must solve an optimisation problem for each iteration!

$$
\text{prox}_{\tilde{g}}^{\delta/2}(\boldsymbol{x}) = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\text{argmin}} \left\{ \mu \| \boldsymbol{\Psi}^{\dagger} \boldsymbol{u} \|_1 + \frac{\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u} \|_2^2}{2 \sigma^2} + \frac{\| \boldsymbol{u} - \boldsymbol{x} \|_2^2}{\delta} \right\} \ .
$$

- Taylor expansion at point \bm{x} : $\|\bm{y}-\bm{\Phi u}\|_2^2 \approx \|\bm{y}-\bm{\Phi x}\|_2^2 + 2(\bm{u}-\bm{x})^\top \bm{\Phi}^\dagger (\bm{\Phi x}-\bm{y}).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\bar{g}}^{\delta/2}(x) \approx \mathrm{prox}_{\bar{f}_1}^{\delta/2}\left(x - \delta \Phi^\dagger(\Phi x - y)/2\sigma^2\right)
$$

Analytic approximation:

$$
\operatorname{prox}_{\bar{g}}^{\delta/2}(x) \approx \bar{v} + \Psi\left(\operatorname{soft}_{\mu\delta/2}(\Psi^{\dagger}\bar{v}) - \Psi^{\dagger}\bar{v})\right), \text{ where } \bar{v} = x - \delta\Phi^{\dagger}(\Phi x - y)/2\sigma^2.
$$

Computing proximity operators for the analysis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\underline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\underline{\bar{f}_2(x) = \|\mathbf{y} - \Phi x\|_2^2/2\sigma^2}$.
EXECUTE:

Must solve an optimisation problem for each iteration!

$$
\text{prox}_{\tilde{g}}^{\delta/2}(\boldsymbol{x}) = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\text{argmin}} \left\{ \mu \|\boldsymbol{\Psi}^{\dagger} \boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|_2^2}{\delta} \right\}.
$$

- Taylor expansion at point \bm{x} : $\|\bm{y}-\bm{\Phi u}\|_2^2 \approx \|\bm{y}-\bm{\Phi x}\|_2^2 + 2(\bm{u}-\bm{x})^\top \bm{\Phi}^\dagger (\bm{\Phi x}-\bm{y}).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\bar{g}}^{\delta/2}(x) \approx \mathrm{prox}_{\bar{f}_1}^{\delta/2}\left(x - \delta \Phi^\dagger(\Phi x - y)/2\sigma^2\right)
$$

Analytic approximation:

$$
\operatorname{prox}_{\bar{g}}^{\delta/2}(x) \approx \bar{v} + \Psi\left(\operatorname{soft}_{\mu\delta/2}(\Psi^{\dagger}\bar{v}) - \Psi^{\dagger}\bar{v})\right), \text{ where } \bar{v} = x - \delta\Phi^{\dagger}(\Phi x - y)/2\sigma^2.
$$

Computing proximity operators for the analysis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\underline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\underline{\bar{f}_2(x) = \|\mathbf{y} - \Phi x\|_2^2/2\sigma^2}$.
EXECUTE:

Must solve an optimisation problem for each iteration!

$$
\text{prox}_{\tilde{g}}^{\delta/2}(\boldsymbol{x}) = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\text{argmin}} \left\{ \mu \|\boldsymbol{\Psi}^{\dagger} \boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|_2^2}{\delta} \right\} \right\}.
$$

- Taylor expansion at point \bm{x} : $\|\bm{y}-\bm{\Phi u}\|_2^2 \approx \|\bm{y}-\bm{\Phi x}\|_2^2 + 2(\bm{u}-\bm{x})^\top \bm{\Phi}^\dagger (\bm{\Phi x}-\bm{y}).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \mathrm{prox}_{\bar{f}_1}^{\delta/2} \left(\boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}) / 2 \sigma^2 \right) .
$$

Single forward-backward iteration

Analytic approximation:

$$
\operatorname{prox}_{\bar{g}}^{\delta/2}(x) \approx \bar{v} + \Psi\left(\operatorname{soft}_{\mu\delta/2}(\Psi^{\dagger}\bar{v}) - \Psi^{\dagger}\bar{v})\right)\Bigg|, \text{ where } \bar{v} = x - \delta\Phi^{\dagger}(\Phi x - y)/2\sigma^2.
$$

Computing proximity operators for the analysis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\underline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\underline{\bar{f}_2(x) = \|\mathbf{y} - \Phi x\|_2^2/2\sigma^2}$.

Must solve an optimisation problem for each iteration!

$$
\text{prox}_{\tilde{g}}^{\delta/2}(\boldsymbol{x}) = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\text{argmin}} \left\{ \mu \|\boldsymbol{\Psi}^{\dagger} \boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|_2^2}{\delta} \right\} \right\}.
$$

- Taylor expansion at point \bm{x} : $\|\bm{y}-\bm{\Phi u}\|_2^2 \approx \|\bm{y}-\bm{\Phi x}\|_2^2 + 2(\bm{u}-\bm{x})^\top \bm{\Phi}^\dagger (\bm{\Phi x}-\bm{y}).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\bar{g}}^{\delta/2}(\boldsymbol{x}) \approx \mathrm{prox}_{\bar{f}_1}^{\delta/2} \left(\boldsymbol{x} - \delta \boldsymbol{\Phi}^{\dagger} (\boldsymbol{\Phi} \boldsymbol{x} - \boldsymbol{y}) / 2 \sigma^2 \right) .
$$

Single forward-backward iteration

Analytic approximation:

$$
\boxed{\text{prox}_{\bar{g}}^{\delta/2}(x) \approx \bar{v} + \Psi\left(\text{soft}_{\mu\delta/2}(\Psi^{\dagger}\bar{v}) - \Psi^{\dagger}\bar{v})\right)}, \text{ where } \bar{v} = x - \delta\Phi^{\dagger}(\Phi x - y)/2\sigma^2.}
$$
\nAson MeEven, we have

\n
$$
\frac{\text{UQ for R1 imaging}}{\text{UQ for R1 imaging}}
$$

Computing proximity operators for the synthesis case

• Recall posterior:
$$
\pi(\boldsymbol{x}) \propto \exp(-g(\boldsymbol{x})).
$$

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

Must solve an optimisation problem for each iteration!

$$
\operatorname{prox}_{\hat{g}}^{\delta/2}(a) = \operatorname*{argmin}_{u \in \mathbb{R}^L} \left\{ \mu \|u\|_1 + \frac{\|y - \Phi \Psi u\|_2^2}{2\sigma^2} + \frac{\|u - a\|_2^2}{\delta} \right\} \ .
$$

Taylor expansion at point $a: \|y-\Phi \Psi u\|_2^2 \approx \|y-\Phi \Psi a\|_2^2 + 2(u-a)^\top \Psi^\dagger \Phi^\dagger (\Phi \Psi a - y).$

Then proximity operator approximated by \bullet

$$
\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{prox}_{\hat{f}_1}^{\delta/2}\left(a - \delta \Psi^{\dagger} \Phi^{\dagger}(\Phi \Psi a - y)/2\sigma^2\right)
$$

Analytic approximation:

 $\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{soft}_{\mu \delta/2} \left(a - \delta \Psi^\dagger \Phi^\dagger(\Phi \Psi a - y)/2\sigma^2 \right) \; \bigg| \,.$

Computing proximity operators for the synthesis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

Must solve an optimisation problem for each iteration!

$$
\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^L} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\}.
$$

- Taylor expansion at point $a: \|y-\Phi \Psi u\|_2^2 \approx \|y-\Phi \Psi a\|_2^2 + 2(u-a)^\top \Psi^\dagger \Phi^\dagger (\Phi \Psi a y).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{prox}_{\hat{f}_1}^{\delta/2}\left(a - \delta \Psi^{\dagger} \Phi^{\dagger} (\Phi \Psi a - y)/2\sigma^2 \right)
$$

Analytic approximation:

 $\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{soft}_{\mu \delta/2} \left(a - \delta \Psi^\dagger \Phi^\dagger(\Phi \Psi a - y)/2\sigma^2 \right) \; \bigg| \,.$

Computing proximity operators for the synthesis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

Must solve an optimisation problem for each iteration!

$$
\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) = \underset{\boldsymbol{u} \in \mathbb{R}^L}{\operatorname{argmin}} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\}.
$$

- Taylor expansion at point \bm{a} : $\|\bm{y}-\bm{\Phi}\bm{\Psi}\bm{u}\|_2^2 \approx \|\bm{y}-\bm{\Phi}\bm{\Psi}\bm{a}\|_2^2 + 2(\bm{u}-\bm{a})^\top\bm{\Psi}^\dagger\bm{\Phi}^\dagger(\bm{\Phi}\bm{\Psi}\bm{a}-\bm{y}).$
- Then proximity operator approximated by

$$
\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{prox}_{\hat{f}_1}^{\delta/2} \left(a - \delta \Psi^{\dagger} \Phi^{\dagger} (\Phi \Psi a - y)/2\sigma^2 \right) .
$$

Single forward-backward iteration

つひへ

Analytic approximation:

$$
\mathrm{prox}_{\hat{g}}^{\delta/2}(a) \approx \mathrm{soft}_{\mu\delta/2}\left(a - \delta \Psi^{\dagger} \Phi^{\dagger}(\Phi \Psi a - y)/2\sigma^2\right)\right).
$$

Computing proximity operators for the synthesis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

Must solve an optimisation problem for each iteration!

$$
\operatorname{prox}_{\hat{g}}^{\delta/2}(\boldsymbol{a}) = \underset{\boldsymbol{u} \in \mathbb{R}^L}{\operatorname{argmin}} \left\{ \mu \|\boldsymbol{u}\|_1 + \frac{\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2}{2\sigma^2} + \frac{\|\boldsymbol{u} - \boldsymbol{a}\|_2^2}{\delta} \right\}.
$$

- Taylor expansion at point \bm{a} : $\|\bm{y}-\bm{\Phi}\bm{\Psi}\bm{u}\|_2^2 \approx \|\bm{y}-\bm{\Phi}\bm{\Psi}\bm{a}\|_2^2 + 2(\bm{u}-\bm{a})^\top\bm{\Psi}^\dagger\bm{\Phi}^\dagger(\bm{\Phi}\bm{\Psi}\bm{a}-\bm{y}).$
- Then proximity operator approximated by

$$
\text{prox}_{\hat{g}}^{\delta/2}(a) \approx \text{prox}_{\hat{f}_1}^{\delta/2} \left(a - \delta \Psi^{\dagger} \Phi^{\dagger} (\Phi \Psi a - \mathbf{y}) / 2\sigma^2 \right) .
$$

Single forward-backward iteration

Analytic approximation:

 $\mathrm{prox}_{\hat{g}}^{\delta/2}(\bm{a}) \approx \mathrm{soft}_{\mu \delta/2} \left(\bm{a} - \delta \bm{\Psi}^{\dagger} \bm{\Phi}^{\dagger} (\bm{\Phi} \bm{\Psi} \bm{a} - \bm{y})/2 \sigma^2 \right) \; \bigg| \,.$ Jason McEwen [UQ for RI imaging](#page-0-0)

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

 290

MYULA Moreau-Yosida approximation

 \bullet Moreau-Yosida approximation (Moreau envelope) of f :

$$
\boxed{f_{\lambda}^{\textsf{MY}}(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}}
$$

Important properties of $f_{\lambda}^{\mathsf{MY}}(\boldsymbol{x})$:

As
$$
\lambda \to 0
$$
, $f_{\lambda}^{\mathbf{MY}}(x) \to f(x)$

$$
\textcolor{blue}{\mathbf{O}} \quad \nabla f^{\textsf{MY}}_{\lambda}(\textcolor{red}{x}) = (\textcolor{red}{x}-\text{prox}_f^{\lambda}(\textcolor{red}{x}))/\lambda
$$

Figure: Illustration of Moreau-Yosida envelope of $|x|$ for varying λ [Credit: Stack exchange (ubpdqn)]

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

 290

MYULA Moreau-Yosida approximation

 \bullet Moreau-Yosida approximation (Moreau envelope) of f :

$$
\boxed{f_{\lambda}^{\textsf{MY}}(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^N} f(\boldsymbol{u}) + \frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}}
$$

Important properties of $f_{\lambda}^{\textsf{MY}}(\boldsymbol{x})$:

9 As
$$
\lambda \to 0
$$
, $f_{\lambda}^{\text{MY}}(x) \to f(x)$

$$
\mathbf{Q} \quad \nabla f_{\lambda}^{\mathbf{M}\mathbf{Y}}(\boldsymbol{x}) = (\boldsymbol{x} - \text{prox}_{f}^{\lambda}(\boldsymbol{x}))/\lambda
$$

Figure: Illustration of Moreau-Yosida envelope of $|x|$ for varying λ [Credit: Stack exchange (ubpdqn)]

 4 ロ) 4 6) 4 \pm) 4 \pm)

 \equiv

 QQ

MYULA MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA) Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: $P(\bm{x} \mid \bm{y}) = \pi(\bm{x}) \propto \exp(-g(\bm{x})),$ where

$$
g(\boldsymbol{x}) = \boxed{f_1(\boldsymbol{x}) \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ 0 \end{bmatrix} + \begin{bmatrix} f_2(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\lambda}{2} \\ 0 \end{bmatrix}}_{\mathcal{S}}.
$$

• Langevin diffusion process $\mathcal{L}(t)$ **, with** π **as stationary distribution (W Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

 \bullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \overline{\nabla \log \pi(l^{(m)})} + \sqrt{\delta} w^{(m)}.
$$

$$
\nabla \log \pi(x) \approx (\text{prox}_{f_1}^{\lambda}(x) - x)/\lambda - \nabla f_2(x).
$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ϵ requires:
	- Worst case: order $N^5\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
	- Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

 $A(D) \times A(D) \times A(D) \times A(D)$

 \equiv

 QQ

MYULA MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA) Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: $P(\bm{x} \mid \bm{y}) = \pi(\bm{x}) \propto \exp(-g(\bm{x})),$ where

$$
g(\boldsymbol{x}) = \boxed{f_1(\boldsymbol{x}) \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ 0 \end{bmatrix} + \begin{bmatrix} f_2(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{bmatrix}}_{\mathcal{F}}.
$$

Langevin diffusion process $\mathcal{L}(t)$ **, with** π **as stationary distribution (W Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

 \bullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$
l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \left[\nabla \log \pi(l^{(m)}) \right] + \sqrt{\delta} w^{(m)}.
$$

$$
\nabla \log \pi(x) \approx (\text{prox}_{f_1}^{\lambda}(x) - x)/\lambda - \nabla f_2(x).
$$

- \bullet No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
	- Worst case: order $N^5\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
	- Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

イロト イ押 トイヨ トイヨ トー

 \equiv

 QQ

MYULA MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA) Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: $P(\bm{x} \mid \bm{y}) = \pi(\bm{x}) \propto \exp(-g(\bm{x})),$ where

$$
g(\boldsymbol{x}) = \boxed{f_1(\boldsymbol{x}) \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ 0 \end{bmatrix} + \begin{bmatrix} f_2(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{bmatrix}}_{\mathcal{F}}.
$$

Langevin diffusion process $\mathcal{L}(t)$ **, with** π **as stationary distribution (W Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

 \bullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$
\mathbf{l}^{(m+1)} = \mathbf{l}^{(m)} + \frac{\delta}{2} \underbrace{\nabla \log \pi(\mathbf{l}^{(m)})}_{\nabla \log \pi(x)} + \sqrt{\delta} \mathbf{w}^{(m)}.
$$

$$
\nabla \log \pi(x) \approx (\text{prox}_{f_1}^{\lambda}(x) - x)/\lambda - \nabla f_2(x)
$$

 \bullet No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made

- Worst case: order $N^5\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
- Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

イロト イ団 トメ ミト イモト

 \equiv

 $2Q$

MYULA MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA) Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: $P(\bm{x} \mid \bm{y}) = \pi(\bm{x}) \propto \exp(-g(\bm{x})),$ where

$$
g(\boldsymbol{x}) = \boxed{f_1(\boldsymbol{x}) \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ 0 \end{bmatrix} + \begin{bmatrix} f_2(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \end{bmatrix} \begin{bmatrix} \frac{\lambda}{2} \\ \frac{\lambda}{2} \\ \frac{\lambda}{2} \end{bmatrix}}_{\mathcal{F}}.
$$

Langevin diffusion process $\mathcal{L}(t)$ **, with** π **as stationary distribution (W Brownian motion):**

$$
d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.
$$

 \bullet Euler discretisation and apply Moreau-Yosida approximation to f_1 :

$$
\mathbf{l}^{(m+1)} = \mathbf{l}^{(m)} + \frac{\delta}{2} \underbrace{\nabla \log \pi(\mathbf{l}^{(m)})}_{\nabla \log \pi(x)} + \sqrt{\delta} \mathbf{w}^{(m)}.
$$

$$
\nabla \log \pi(x) \approx (\text{prox}_{f_1}^{\lambda}(x) - x)/\lambda - \nabla f_2(x)
$$

- No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made arbitrarily small. To achieve precision target ϵ requires:
	- Worst case: order $N^5\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.
	- Strong convexity worst case: order $N\log(N)\log^2(\epsilon^{-1})\epsilon^{-2}$ iterations.

K ロ ト K 伺 ト K ヨ ト K ヨ ト ニヨ

 2990

MYULA

Computing proximity operators for the analysis case

Recall posterior: $\pi(\bm{x}) \propto \exp\bigl(-g(\bm{x})\bigr).$

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\overline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\overline{\bar{f}_2(x) = \|y - \Phi x\|_2^2/2\sigma^2}$.
EXECUTE:

 \bullet Only need to compute proximity operator of f_1 , which can be computed analytically

$$
\left[\operatorname{prox}_{\tilde{f}_1}^{\delta/2}(\boldsymbol{x}) = \boldsymbol{x} + \Psi\left(\operatorname{soft}_{\mu\delta/2}(\Psi^\dagger \boldsymbol{x}) - \Psi^\dagger \boldsymbol{x})\right)\right]
$$

KID KARA KELA EL ARO

MYULA

Computing proximity operators for the analysis case

Recall posterior: $\pi(\bm{x}) \propto \exp\bigl(-g(\bm{x})\bigr).$

• Let
$$
\bar{g}(x) = \bar{f}_1(x) + \bar{f}_2(x)
$$
, where $\overline{\bar{f}_1(x) = \mu \|\Psi^{\dagger}x\|_1}$ and $\overline{\bar{f}_2(x) = \|y - \Phi x\|_2^2/2\sigma^2}$.
EXECUTE:

 \bullet Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$
\left[\operatorname{prox}_{\tilde{f}_1}^{\delta/2}(\boldsymbol{x}) = \boldsymbol{x} + \boldsymbol{\Psi}\left(\operatorname{soft}_{\mu\delta/2}(\boldsymbol{\Psi}^{\dagger}\boldsymbol{x}) - \boldsymbol{\Psi}^{\dagger}\boldsymbol{x})\right)\right].
$$

イロト イ押 トイモ トイモト

 2990

G

MYULA

Computing proximity operators for the synthesis case

Recall posterior: $\pi(\bm{x}) \propto \exp\bigl(-g(\bm{x})\bigr).$

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

 \bullet Only need to compute proximity operator of f_1 , which can be computed analytically

$$
\mathrm{prox}_{\hat{f}_1}^{\delta/2}(a) = \mathrm{soft}_{\mu\delta/2}(a) \Bigg].
$$

イロト イ押 トイヨ トイヨ トー

 OQ ă.

MYULA

Computing proximity operators for the synthesis case

• Recall posterior:
$$
\pi(x) \propto \exp(-g(x))
$$
.

• Let
$$
\hat{g}(x(a)) = \hat{f}_1(a) + \hat{f}_2(a)
$$
, where $\hat{f}_1(a) = \mu \|a\|_1$ and $\hat{f}_2(a) = \|y - \Phi \Psi a\|_2^2 / 2\sigma^2$.
Prior

• Only need to compute proximity operator of f_1 , which can be computed analytically without any approximation:

$$
\operatorname{prox}_{\hat{f}_1}^{\delta/2}(\boldsymbol{a}) = \operatorname{soft}_{\mu\delta/2}(\boldsymbol{a})\right].
$$

 4 ロ) 4 何) 4 ミ) 4 4)

÷,

 299

Numerical experiments MYULA with analysis model

(a) Ground truth

Figure: Cygnus A

 4 ロ) 4 何) 4 ミ) 4 4)

 299

G

Numerical experiments MYULA with analysis model

- (a) Ground truth (b) Dirty image
	- - Figure: Cygnus A

 4 ロ } 4 6 } 4 \pm } 4 \pm }

 299

ă

Numerical experiments MYULA with analysis model

Figure: Cygnus A

K ロ ト K 何 ト K ミ ト

 299

Ξ÷ E

Numerical experiments MYULA with analysis model

-
- (a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length
	- Figure: Cygnus A

Numerical experiments MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

K ロ ト K 何 ト K ミ ト

 $2Q$

∍

Figure: HII region of M31

Numerical experiments MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

K ロ ト K 何 ト K ミ ト

 299

÷,

Figure: W28 Supernova remnant

Numerical experiments MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

K ロ ⊁ K 伊 ⊁ K

 \Rightarrow \rightarrow ÷, 299

Figure: 3C288

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 → 9 Q @

Numerical experiments Computation time

Image	Method	Analysis	CPU time (min) Synthesis
Cygnus A	P_{X} -MAI A	2274	1762
	MYULA	1056	942
M31	P_{X} -MAI A	1307	944
	MYULA	618	581
W28	P_{X} -MAI A	1122	879
	MYULA	646	598
3C ₂₈₈	Px-MALA	1144	881
	MYULA	607	538

Table: CPU time in minutes for Proximal MCMC sampling

 Ω

Hypothesis testing Method

Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).

 \bullet Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

-
-
- -
	-

 Ω

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

 Ω

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

 Ω

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

```
Hypothesis testing of physical structure
```
- \textbf{D} Remove structure of interest from recovered image $\boldsymbol{x}^\star.$
- \bullet Inpaint background (noise) into region, yielding surrogate image $x'.$
- \bullet Test whether $\boldsymbol{x}' \in C_{\alpha}$:
	-
	-

イロト イ団 ト イミト イモト

重

 QQ

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

Hypothesis testing of physical structure

 \textbf{D} Remove structure of interest from recovered image $\boldsymbol{x}^\star.$

 \bullet Inpaint background (noise) into region, yielding surrogate image $x'.$

- \bullet Test whether $\boldsymbol{x}' \in C_{\alpha}$:
	- If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence
	- If $\boldsymbol{x}' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical
◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ │ ヨ

 QQ

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

Hypothesis testing of physical structure

 \textbf{D} Remove structure of interest from recovered image $\boldsymbol{x}^\star.$

- \bullet Inpaint background (noise) into region, yielding surrogate image $x'.$
- \bullet Test whether $\boldsymbol{x}' \in C_{\alpha}$:
	- If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1 - \alpha)\%$, *i.e.* structure most likely physical.
	- If $\boldsymbol{x}' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical

KOL KALLA SILKEL A SAN

Hypothesis testing Method

- Perform hypothesis tests of image structure using Bayesian credible regions (Pereyra 2016b).
- Let C_{α} denote the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$

Hypothesis testing of physical structure

 \textbf{D} Remove structure of interest from recovered image $\boldsymbol{x}^\star.$

- \bullet Inpaint background (noise) into region, yielding surrogate image $x'.$
- \bullet Test whether $\boldsymbol{x}' \in C_{\alpha}$:
	- If $x' \notin C_{\alpha}$ then reject hypothesis that structure is an artifact with confidence $(1 - \alpha)\%$, *i.e.* structure most likely physical.
	- If $\boldsymbol{x}' \in C_{\alpha}$ uncertainly too high to draw strong conclusions about the physical nature of the structure.

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

E

 299

Hypothesis testing Numerical experiments

(a) Recovered image

Figure: HII region of M31

K ロ ト イ 伊 ト イ ヨ ト

 299

 \Rightarrow E

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31

 (0.12×10^{-14})

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: HII region of M31

1. Reject null hypothesis ⇒ structure physical

Ξ÷

 2990

 4 ロ } 4 6 } 4 \pm } 4 \pm }

÷,

 299

Hypothesis testing Numerical experiments

(a) Recovered image

Figure: Cygnus A

K ロ ト 4 何 ト 4 ミ ト 4

 \Rightarrow E 299

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Cygnus A

Jason McEwen [UQ for RI imaging](#page-0-0)

[RI Imaging](#page-11-0) [Proximal MCMC](#page-26-0) [MAP Estimation](#page-86-0) | [Px-MALA](#page-35-0) [MYULA](#page-49-0) [Experiments](#page-59-0) [Hypothesis testing](#page-67-0)

4 **D + 4 _C** +

 \mathcal{A} . Ξ÷.

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Cygnus A

1. Cannot reject null hypothesis

⇒ cannot make strong statistical statement about origin of structure

Ξ÷

 $2Q$

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

 299

ă

Hypothesis testing Numerical experiments

(a) Recovered image

Figure: Supernova remnant W28

K ロ ⊁ K 伊 ⊁ K

÷,

÷, **IR**

 299

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28

[RI Imaging](#page-11-0) [Proximal MCMC](#page-26-0) [MAP Estimation](#page-86-0) | [Px-MALA](#page-35-0) [MYULA](#page-49-0) [Experiments](#page-59-0) [Hypothesis testing](#page-67-0)

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: Supernova remnant W28

1. Reject null hypothesis

 \Rightarrow structure physical

÷,

 $2Q$

4 ロ ト イ *同* ト

 \mathcal{A} ÷,

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

÷,

 299

Hypothesis testing Numerical experiments

(a) Recovered image

Figure: 3C288

K ロ ト 4 何 ト 4 ミ ト 4

 \Rightarrow ă 299

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288

Hypothesis testing Numerical experiments

(a) Recovered image (b) Surrogate with region removed

Figure: 3C288

1. Reject null hypothesis ⇒ structure physical

2. Cannot reject null hypothesis

⇒ cannot make strong statistical statement about origin of structure

Ξ÷

 $2Q$

4 ロ ト - 4 伺 ト - 4 ヨ ト

イロト イ母 ト イミト イミト ニヨー の女の

Outline

¹ [Radio interferometric imaging](#page-11-0)

² [Proximal MCMC sampling and uncertainty quantification](#page-26-0)

³ [MAP estimation and uncertainty quantification](#page-86-0)

イロト イ押ト イヨト イヨト

 \equiv Ω

Proximal MCMC sampling and uncertainty quantification

 $A(D) \times A(D) \times A(D) \times A(D)$

つひへ

Approximate Bayesian credible regions for MAP estimation

- Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
- \bullet Recall C_{α} denotes the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : q(x) \leq \gamma_{\alpha}\}.$
- Analytic approximation of γ_{α} :

$$
\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)
$$

- \bullet Define approximate HPD regions by $\tilde{C}_{\alpha} = \{x : q(x) \leq \tilde{\gamma}_{\alpha}\}.$
- Compute x^* by sparse regularisation, then estimate local Bayesian credible intervals and perform hypothesis testing using approximate HPD regions.

◆ ロ → → イ理 → → モ ヨ → → 三重

 Ω

Approximate Bayesian credible regions for MAP estimation

- Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
- Recall C_{α} denotes the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$
- Analytic approximation of γ_{α} :

$$
\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)
$$

where $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)/N}$ and $\alpha \in (4 \exp(-N/3), 1)$ (Pereyra 2016b).

- **•** Define approximate HPD regions by $\tilde{C}_{\alpha} = \{x : g(x) \leq \tilde{\gamma}_{\alpha}\}.$
- Compute x^* by sparse regularisation, then estimate local Bayesian credible intervals and perform hypothesis testing using approximate HPD regions.

K ロ X K @ X K 할 X K 할 X T 할 X YO Q @

Approximate Bayesian credible regions for MAP estimation

- Combine uncertainty quantification with fast sparse regularisation to scale to big-data.
- Recall C_{α} denotes the highest posterior density (HPD) Bayesian credible region with confidence level $(1 - \alpha)$ % defined by posterior iso-contour: $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}.$
- Analytic approximation of γ_{α} :

$$
\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)
$$

where $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)/N}$ and $\alpha \in (4 \exp(-N/3), 1)$ (Pereyra 2016b).

- **•** Define approximate HPD regions by $\tilde{C}_{\alpha} = \{x : g(x) \leq \tilde{\gamma}_{\alpha}\}.$
- Compute x^* by sparse regularisation, then estimate local Bayesian credible intervals and perform hypothesis testing using approximate HPD regions.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

÷.

 $2Q$

MAP estimation and uncertainty quantification

イロト 不優 ト 不重 ト 不重 トー

 Ω

Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction (Cai, Pereyra & McEwen 2017b)

Let Ω define the area (or pixel) over which to compute the credible interval $(\tilde{\xi}$ −, $\tilde{\xi}_+$) and ζ be an index vector describing Ω (*i.e.* $\zeta_i = 1$ if $i \in \Omega$ and 0 otherwise).

Given $\tilde{\gamma}_\alpha$ and \boldsymbol{x}^\star , compute the credible interval by

$$
\begin{aligned} \tilde{\xi}_- &= \min_{\xi} \left\{ \xi \: | \: g_{\pmb{y}}(\pmb{x}') \leq \tilde{\gamma}_\alpha, \: \forall \xi \in [-\infty, +\infty) \right\}, \\ \tilde{\xi}_+ &= \max_{\xi} \left\{ \xi \: | \: g_{\pmb{y}}(\pmb{x}') \leq \tilde{\gamma}_\alpha, \: \forall \xi \in [-\infty, +\infty) \right\}, \end{aligned}
$$

where

$$
\mathbf{x}' = \mathbf{x}^{\star}(\mathcal{I} - \zeta) + \xi \zeta.
$$

 \mathcal{A}

÷, **B** ÷, $2Q$

4 ロ ト イ *同* ト

Numerical experiments

(a) point estimators (b) local credible interval (c) local credible interval
(and size 10×10 pixels) (and size 20×20 pixels) (grid size 20×20 pixels)

MAP

(a) point estimators (b) local credible interval (c) local credible interval
(and size 10×10 pixels) (and size 20×20 pixels) (grid size 20×20 pixels)

4 ロ ト 4 何 ト

 \mathcal{A} . ÷, **B** ÷, $2Q$

MAP

-
- (a) point estimators (b) local credible interval (c) local credible interval
(and size 10×10 pixels) (and size 20×20 pixels)

(grid size 20×20 pixels)

 \mathbf{d} ÷,

IR ∍ $2Q$

K ロ ▶ K 伊 ▶

MAP

(a) point estimators (b) local credible interval (c) local credible interval
(and size 10×10 pixels) (and size 20×20 pixels)

(grid size 20×20 pixels)

K ロ ⊁ K 伊 ⊁ K

重

IR ∍ $2Q$

MAP

(a) point estimators (b) local credible interval (c) local credible interval
(and size 10×10 pixels) (and size 20×20 pixels)

(grid size 20×20 pixels)

K ロ ト K 何 ト K ミ ト

 $2Q$

∍

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

K ロ ト K 何 ト K ミ ト

Ξ÷

 $2Q$

 $AB + AB$

Ξ÷

 $2Q$

Numerical experiments

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

4 0 8

MAP

Px-MALA

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

K ロ ト K 何 ト K ミ ト

Ξ÷

 $2Q$

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

4 ロ ト イ *同* ト

 \mathcal{A} . Ξ÷. E E

 $2Q$

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

 \leftarrow \leftarrow \leftarrow \mathcal{A} ÷, **B** ÷, $2Q$

4. 00 16

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

 \leftarrow \leftarrow \leftarrow \mathcal{A} . ÷,

IR

4. 0. 3.

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

4 **D + 4 P +**

 \mathcal{A} . Ξ÷. Ξ÷ E $2Q$

Px-MALA

MAP

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

 (0.12×10^{-14})

Ξ÷

 $2Q$

Px-MALA

MAP

(a) point estimators (b) local credible interval (c) local credible interval
(grid size 10×10 pixels) (grid size 20×20 pixels) (grid size 10×10 pixels)

K ロ ト K 何 ト K ミ ト

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Hypothesis testing Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

([∗] Can correctly detect physical structure if use median point estimator.) **KOD KARD KED KED E VOOR**

9 Sparsity-promoting priors shown to be highly effective and scalable to big-data.

- PURIFY code provides robust framework for imaging interferometric observations
- SOPT code for distributed sparse regularisation (<http://basp-group.github.io/sopt/>).

² Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:

- Recover Bayesian credible intervals.
- Perform hypothesis testing to test whether structure physical.

³ MAP estimation (sparse regularisation) with approximate uncertainty quantification:

- Recover Bayesian credible intervals.
- Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)$

- **9** Sparsity-promoting priors shown to be highly effective and scalable to big-data.
	- PURIFY code provides robust framework for imaging interferometric observations (<http://basp-group.github.io/purify/>).
	- SOPT code for distributed sparse regularisation (<http://basp-group.github.io/sopt/>).
- ² Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
	- Recover Bayesian credible intervals.
	- Perform hypothesis testing to test whether structure physical.
- ³ MAP estimation (sparse regularisation) with approximate uncertainty quantification:
	- Recover Bayesian credible intervals.
	- Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)$

- **1** Sparsity-promoting priors shown to be highly effective and scalable to big-data.
	- PURIFY code provides robust framework for imaging interferometric observations (<http://basp-group.github.io/purify/>).
	- SOPT code for distributed sparse regularisation (<http://basp-group.github.io/sopt/>).
- ² Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
	- **Recover Bayesian credible intervals.**
	- Perform hypothesis testing to test whether structure physical.
- ³ MAP estimation (sparse regularisation) with approximate uncertainty quantification:
	- Recover Bayesian credible intervals.
	- Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)$

- **1** Sparsity-promoting priors shown to be highly effective and scalable to big-data.
	- PURIFY code provides robust framework for imaging interferometric observations (<http://basp-group.github.io/purify/>).
	- SOPT code for distributed sparse regularisation (<http://basp-group.github.io/sopt/>).
- ² Proximal MCMC sampling can support sparsity-promoting priors in full Bayesian framework:
	- **Recover Bayesian credible intervals.**
	- Perform hypothesis testing to test whether structure physical.
- ² MAP estimation (sparse regularisation) with approximate uncertainty quantification:
	- **Recover Bayesian credible intervals.**
	- Perform hypothesis testing to test whether structure physical.

Scalable to big-data (computational time saving $\sim 10^5)$

Extra Slides

[Analysis vs synthesis](#page-114-0) | [Bayesian interpretations](#page-118-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 → 9 Q @

[Distribution and parallelisation](#page-122-0) **PURIFY** reconstructions

Extra Slides Analysis vs synthesis

イロト イ押ト イヨト イヨト

 \equiv -990

Analysis vs synthesis

- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- Different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$
x^* = \underset{x}{\arg\min} \|\Omega x\|_1 \text{ subject to } \|y - \Phi x\|_2 \le \epsilon.
$$

Contrast with synthesis-based approach:

$$
x^* = \Psi \cdot \underset{\alpha}{\text{arg min}} \|\alpha\|_1 \text{ subject to } \|y - \Phi\Psi\alpha\|_2 \le \epsilon.
$$

synthesis

イロメ イ押メ イヨメ イヨメー

E

 Ω

• For orthogonal bases $\Omega = \Psi^{\dagger}$ and the two approaches are identical.

Analysis vs synthesis Comparison

Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].

Analysis vs synthesis Comparison

- Synthesis-based approach is more general, while analysis-based approach more restrictive.
- More restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).

K ロ ▶ K (同) → K ヨ → K ヨ → 『ヨ → YO Q (N)

Extra Slides

Bayesian interpretations

Jason McEwen | [UQ for RI imaging](#page-0-0)

メロメ メ都 メメ 老 メメ 老 メー

 \equiv 990

Bayesian interpretations

One Bayesian interpretation of the synthesis-based approach

• Consider the inverse problem:

$$
y=\mathsf{\Phi}\mathsf{\Psi}\alpha+n\ .
$$

Assume Gaussian noise, yielding the likelihood:

$$
\mathrm{P}(\boldsymbol{y}\,|\,\boldsymbol{\alpha}) \propto \exp\!\left(\|\boldsymbol{y}-\boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_2^2/(2\sigma^2)\right).
$$

• Consider the Laplacian prior:

$$
P(\boldsymbol{\alpha}) \propto \exp\bigl(-\beta \|\boldsymbol{\alpha}\|_1\bigr) .
$$

The maximum *a-posteriori* (MAP) estimate (with $\lambda=2\beta\sigma^2)$ is

$$
\boldsymbol{x}^{\star}_{\textsf{MAP-synthesis}} = \boldsymbol{\Psi} \cdot \argmax_{\boldsymbol{\alpha}} \mathrm{P}(\boldsymbol{\alpha} \,|\, \boldsymbol{y}) = \boldsymbol{\Psi} \cdot \argmin_{\boldsymbol{\alpha}} \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1 \,.
$$

- One possible Bayesian interpretation!
- Signal may b[e](#page-118-1) ℓ_0 ℓ_0 -sparse, t[he](#page-118-1)n [so](#page-109-0)lving ℓ_1 problem finds the c[orr](#page-120-0)e[ct](#page-119-0) ℓ_0 [-s](#page-108-0)[p](#page-109-0)[arse](#page-156-0) so[lut](#page-156-0)[ion](#page-0-0)[!](#page-156-0)

 Ω

Bayesian interpretations

Other Bayesian interpretations of the synthesis-based approach

- Other Bayesian interpretations are also possible (Gribonval 2011).
- Minimum mean square error (MMSE) estimators
	- ⊂ synthesis-based estimators with appropriate penalty function,
		- i.e. penalised least-squares (LS)
	- ⊂ MAP estimators

Bayesian interpretations

One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

$$
\boldsymbol{x}^{\star}_{\textsf{MAP-analysis}} = \boldsymbol{\Omega}^{\dagger} \cdot \underset{\boldsymbol{\gamma} \in \text{column space } \boldsymbol{\Omega}}{\arg \min} \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Omega}^{\dagger} \boldsymbol{\gamma} \|_{2}^{2} + \lambda \|\boldsymbol{\gamma}\|_{1} \,.
$$

- Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.
- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).

イロメ イ部メ イミメ イミメー

 Ω

Extra Slides

Distribution and parallelisation

KID KARA KE KERI E YA GA

Standard algorithms

CPU Raw Data

Many Cores (CPU, GPU, Xeon Phi)

Extra Slides

PURIFY reconstructions

Jason McEwen [UQ for RI imaging](#page-0-0)

KID KARA KE KERI E YA GA

PURIFY reconstruction VLA observation of 3C129

Figure: VLA visibility coverage for 3C129

 4 ロ } 4 6 } 4 \pm } 4 \pm }

 299

G

PURIFY reconstruction VLA observation of 3C129

(a) CLEAN (natural)

(b) CLEAN (uniform)

(c) PURIFY

 $2Q$

 4 ロ) 4 6) 4 \pm) 4 \pm)

0 Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of 3C129 imaged by CLEAN (natural)

Jason McEwen [UQ for RI imaging](#page-0-0)

 $\overline{}$

 \Rightarrow

PURIFY reconstruction VLA observation of 3C129 images by CLEAN (uniform)

Jason McEwen [UQ for RI imaging](#page-0-0)

 $\overline{}$

PURIFY reconstruction VLA observation of 3C129 images by PURIFY

Jason McEwen [UQ for RI imaging](#page-0-0)

PURIFY reconstruction VLA observation of 3C129

Jason McEwen [UQ for RI imaging](#page-0-0)

 $2Q$

PURIFY reconstruction VLA observation of Cygnus A

Figure: VLA visibility coverage for Cygnus A

 4 ロ } 4 6 } 4 \pm } 4 \pm }

÷,

 299

PURIFY reconstruction VLA observation of Cygnus A

(a) CLEAN (natural)

(b) CLEAN (uniform)

(c) PURIFY

 $2Q$

 4 ロ) 4 6) 4 \pm) 4 \pm)

0 Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of Cygnus A imaged by CLEAN (natural)

Jason McEwen [UQ for RI imaging](#page-0-0)

 299

÷.

PURIFY reconstruction VLA observation of Cygnus A images by CLEAN (uniform)

Jason McEwen [UQ for RI imaging](#page-0-0)

 $\overline{1}$

 \Rightarrow \equiv

PURIFY reconstruction VLA observation of Cygnus A images by PURIFY

Jason McEwen [UQ for RI imaging](#page-0-0)

 $\overline{1}$

E

PURIFY reconstruction VLA observation of Cygnus A

 290

Jason McEwen [UQ for RI imaging](#page-0-0)
PURIFY reconstruction ATCA observation of PKS J0334-39

Figure: VLA visibility coverage for PKS J0334-39

 4.013

 \leftarrow \leftarrow \leftarrow \mathcal{A} ÷, 299

Ξ÷ G

 \sim

PURIFY reconstruction ATCA observation of PKS J0334-39

(a) CLEAN (natural)

(b) CLEAN (uniform)

(c) PURIFY

E

 $2Q$

 4 ロ) 4 6) 4 \pm) 4 \pm)

 \overline{a} Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of PKS J0334-39 imaged by CLEAN (natural)

Jason McEwen [UQ for RI imaging](#page-0-0)

 \equiv

PURIFY reconstruction VLA observation of PKS J0334-39 images by CLEAN (uniform)

Jason McEwen [UQ for RI imaging](#page-0-0)

 \rightarrow \rightarrow

E

PURIFY reconstruction VLA observation of PKS J0334-39 images by PURIFY

Jason McEwen [UQ for RI imaging](#page-0-0)

E

 299

PURIFY reconstruction ATCA observation of PKS J0334-39

 $2Q$

PURIFY reconstruction ATCA observation of PKS J0116-473

Figure: ATCA visibility coverage for Cygnus A

K ロ ⊁ K 伊 ⊁ K

 \Rightarrow \rightarrow

Ξ÷ G 299

PURIFY reconstruction ATCA observation of PKS J0116-473

(a) CLEAN (natural)

(b) CLEAN (uniform)

(c) PURIFY

 $2Q$

 4 ロ) 4 6) 4 \pm) 4 \pm)

 \overline{a} Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)

PURIFY reconstruction VLA observation of PKS J0116-473 imaged by CLEAN (natural)

Jason McEwen [UQ for RI imaging](#page-0-0)

PURIFY reconstruction VLA observation of PKS J0116-473 images by CLEAN (uniform)

Jason McEwen [UQ for RI imaging](#page-0-0)

E

PURIFY reconstruction VLA observation of PKS J0116-473 images by PURIFY

Jason McEwen [UQ for RI imaging](#page-0-0)

E

PURIFY reconstruction ATCA observation of PKS J0116-473

Jason McEwen [UQ for RI imaging](#page-0-0)

PURIFY reconstructions

K ロ X (日) X (日)