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Bayesian Interpretations Proximal MCMC Bayesian Credibility

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Bayesian evolution
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Bayesian inference

Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

Bayes to the rescue:

P(x |y,M) =
P(y |x,M) P(x |M)

P(y |M)

Bayes Theorem

Bayes theorem in words:

posterior =
likelihood× prior

evidence

How do we perform Bayesian inference in practice?

⇒ maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)
(and many others)
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Bayes in practice
MAP and MCMC sampling

Figure: Probability distribution to explore in 2D
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Bayes in practice
MAP and MCMC sampling

Figure: Maximum a-posteriori (MAP) estimate
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Bayes in practice
MAP and MCMC sampling

Figure: Markov Chain Monte Carlo (MCMC) sampling
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Bayes in practice
MAP and MCMC sampling

Figure: Markov Chain Monte Carlo (MCMC) sampling
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MAP estimation and regularisation
Hint: they’re the same thing!

Many interferometric imaging approaches are based on regularisation
(i.e. minimising an objective function comprised of a data-fidelity penalty and a
regularisation penalty).

Consider the MAP estimation problem. . .
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MAP estimation and regularisation
Hint: they’re the same thing!

Start with Bayes Theorem (ignore normalising evidence):

P(x |y) ∝ P(y |x)P(x) , i.e. posterior ∝ likelihood× prior

Define likelihood (assuming Gaussian noise) and prior:

P(y |x) ∝ exp
(
−
∥∥y −Φx

∥∥2
2
/(2σ2)

)
Likelihood

P(x) ∝ exp
(
−R(x)

)
Prior

Consider log-posterior:

log P(x |y) = −
∥∥y −Φx

∥∥2
2
/(2σ2)−R(x) + const.

MAP estimator:

xmap = argmax
x

[
log P(y |x)

]
= argmin

x

[ ∥∥y −Φx
∥∥2
2

Data fidelity

+ λ R(x)

Regulariser

]
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CLEAN and MEM as MAP estimators

CLEAN

Consider the sparse prior: P(x) ∝ exp
(
−β

∥∥x∥∥
0

)
.

Corresponding MAP estimator is:

xclean = argmin
x

[∥∥y −Φx
∥∥2
2
+ λ

∥∥x∥∥
0

]

(Laplace prior P(x) ∝ exp
(
−β

∥∥x∥∥
1

)
is good proxy; Wiaux et al. 2009)

MEM

Consider the entropic prior: P(x) ∝ exp
(
−β x† logx

)
.

Corresponding MAP estimator is:

xmem = argmin
x

[∥∥y −Φx
∥∥2
2
+ λ x† logx

]

(In practice some differences: CLEAN does not solve MAP problem exactly;
MEM considered in RI imposes additional constraints.)
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Compressive sensing
Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

x =
∑
i

Ψiαi =

 |Ψ0

|

α0 +

 |Ψ1

|

α1 + · · · ⇒ x = Ψα

Recover (wavelet) coefficients α of image x.

Consider the Laplacian prior on coefficients: P(α) ∝ exp
(
−β

∥∥α∥∥
1

)
.

Sparse synthesis regularisation problem:

xsynthesis = Ψ× argmin
α

[∥∥y −ΦΨα
∥∥2
2
+ λ

∥∥α∥∥
1

]
Synthesis framework
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Compressive sensing
More sophisticated approaches

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
Constrained vs unconstrained problems.

Re-weighted versions and the SARA algorithm (Carrillo, McEwen, Wiaux 2012).

Sparse analysis regularisation problem:

xanalysis = argmin
x

[∥∥y −Φx
∥∥2
2
+ λ

∥∥Ψ†x
∥∥
1

]
Analysis framework

Analysis problem viewed from a synthesis perspective:

xanalysis = Ψ× argmin
γ∈column space(Ψ†)

[∥∥y −ΦΨ†γ
∥∥2
2
+ λ

∥∥γ∥∥
1

]
Analysis as synthesis
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Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Alternative is to sample full posterior distribution P(x |y).

Provides uncertainly (error) information.

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

Assume isotropic Gaussian process prior characterised by power spectrum C`.

Sample from conditional distributions:

x
i+1 ← P(x |Ci`,y) and C

i+1
` ← P(C` |xi+1

) .

Require MCMC approach to support sparse priors, which shown to be highly effective.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Alternative is to sample full posterior distribution P(x |y).

Provides uncertainly (error) information.

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

Assume isotropic Gaussian process prior characterised by power spectrum C`.

Sample from conditional distributions:

x
i+1 ← P(x |Ci`,y) and C

i+1
` ← P(C` |xi+1

) .

Require MCMC approach to support sparse priors, which shown to be highly effective.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Alternative is to sample full posterior distribution P(x |y).

Provides uncertainly (error) information.

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

Assume isotropic Gaussian process prior characterised by power spectrum C`.

Sample from conditional distributions:

x
i+1 ← P(x |Ci`,y) and C

i+1
` ← P(C` |xi+1

) .

Require MCMC approach to support sparse priors, which shown to be highly effective.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Alternative is to sample full posterior distribution P(x |y).

Provides uncertainly (error) information.

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

Assume isotropic Gaussian process prior characterised by power spectrum C`.

Sample from conditional distributions:

x
i+1 ← P(x |Ci`,y) and C

i+1
` ← P(C` |xi+1

) .

Require MCMC approach to support sparse priors, which shown to be highly effective.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Outline

1 Bayesian interpretations of interferometric imaging techniques

2 Proximal MCMC sampling

3 Sparse regularisation with Bayesian credible regions

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

MCMC sampling with gradients
Langevin dynamics

Work done by Xiaohao Cai in collaboration with Marcelo Pereyra.

Consider posteriors of the following form (and more compact notation):

P(x |y) = π(x)

Posterior

∝ exp
[
− g(x)

Convex

]

If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

Langevin dynamics model molecular dynamics (includes friction and occasional high
velocity collisions that perturb the system).

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = argmin
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = argmin
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = argmin
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = argmin
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = argmin
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = argmin
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximal MCMC
Moreau approximation

Follow Pereyra (2016a) and consider Moreau approximation of π:

πλ(x) = sup
u∈RN

π(u) exp
(
−
‖u− x‖2

2λ

)

Important properties of πλ(x):

1 As λ→ 0, πλ(x)→ π(x)

2 ∇ log πλ(x) = (proxλg (x)− x)/λ ∈ ∂ log π
(
proxλg (x)

)

Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]
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Proximal MCMC
P-MALA

Discretise Langevin differential equation using forward Euler approximation:

l(m+1) = l(m) +
δ

2
∇ log π(l(m)) +

√
δw(m),

where δ controls the discrete-time increment and w(m) is (unit) Gaussian distributed.

Apply Moreau approximation and compute gradient by prox:

l(m+1) = prox
δ/2
g (l(m)) +

√
δw(m).

(After adding a Metropolis-Hastings accept-reject step, get P-MALA with l(m) → π.)

Must compute prox
δ/2
g (·): develop analytic expression that can be computed rapidly.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximal MCMC
P-MALA

Discretise Langevin differential equation using forward Euler approximation:

l(m+1) = l(m) +
δ

2
∇ log π(l(m))

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw(m),

where δ controls the discrete-time increment and w(m) is (unit) Gaussian distributed.

Apply Moreau approximation and compute gradient by prox:

l(m+1) = prox
δ/2
g (l(m)) +

√
δw(m).

(After adding a Metropolis-Hastings accept-reject step, get P-MALA with l(m) → π.)

Must compute prox
δ/2
g (·): develop analytic expression that can be computed rapidly.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximal MCMC
P-MALA

Discretise Langevin differential equation using forward Euler approximation:

l(m+1) = l(m) +
δ

2
∇ log π(l(m))

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw(m),

where δ controls the discrete-time increment and w(m) is (unit) Gaussian distributed.

Apply Moreau approximation and compute gradient by prox:

l(m+1) = prox
δ/2
g (l(m)) +

√
δw(m).

(After adding a Metropolis-Hastings accept-reject step, get P-MALA with l(m) → π.)

Must compute prox
δ/2
g (·): develop analytic expression that can be computed rapidly.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximal MCMC
P-MALA

Discretise Langevin differential equation using forward Euler approximation:

l(m+1) = l(m) +
δ

2
∇ log π(l(m))

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw(m),

where δ controls the discrete-time increment and w(m) is (unit) Gaussian distributed.

Apply Moreau approximation and compute gradient by prox:

l(m+1) = prox
δ/2
g (l(m)) +

√
δw(m).

(After adding a Metropolis-Hastings accept-reject step, get P-MALA with l(m) → π.)

Must compute prox
δ/2
g (·): develop analytic expression that can be computed rapidly.

Jason McEwen Statistical approaches for sparse imaging



Bayesian Interpretations Proximal MCMC Bayesian Credibility

Proximal MCMC
Preliminary results on simulations

(a) Dirty image

(b) Mean recovered image (c) Standard deviation image

Figure: HII region of M31
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Proximal MCMC
Preliminary results on simulations

(a) Dirty image

(b) Mean recovered image (c) Standard deviation image

Figure: Supernova remnant W28
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Preliminary results on simulations
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Bayesian credible regions
Computation

Combine error estimation with fast sparse regularisation (cf. compressive sensing) methods.

Let Cα denote a Bayesian credible region with confidence level (1− α)%:

P(x ∈ Cα |y) =
∫
x∈Cα

p(x|y) dx = 1− α

Define Cα by posterior iso-contour:

Cα := {x : g(x) ≤ γα}

Analytic approximation of γα derived in Pereyra (2016b):

γ̃α = gy(xmap) +N(τα + 1) ,

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1).

Compute xmap by sparse regularisation and estimate Bayesian credible regions.
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Bayesian credible regions
Preliminary results on simulations

(a) Recovered image

(b) Credible intervals for
regions of size 10× 10

(c) Credible intervals for
regions of size 20× 20

(d) Credible intervals for
regions of size 30× 30

Figure: HII region of M31
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Hypothesis testing
Method

Is structure in an image physical or an artefact?

Can we make precise statistical statements?

Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

1 Cut out region containing structure of interest from recovered image xmap.

2 Inpaint background (noise) into region, yielding surrogate image x′map.

3 Test whether x′map ∈ Cα:

If x′
map /∈ Cα then reject hypothesis that structure is an artefact with

confidence (1− α)%, i.e. structure most likely physical.

If x′
map ∈ Cα uncertainly too high to draw strong conclusions about the

physical nature of the structure.
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Hypothesis testing
Preliminary results on simulations

1

(a) Recovered image

(b) Surrogate with region removed

Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Conclusions

Sparse priors (cf. compressive sensing) shown to be highly effective
(see talks by Luke Pratley, Alex Onose, Vijay Kartik).

Also seek statistical interpretation to recover error information.

Proximal MCMC sampling can support sparse priors in full statistical framework (P-MALA).

Combine error estimation with fast sparse regularisation:

Recover Bayesian credible regions.

Perform hypothesis testing to test whether structure physical.
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