Radio interferometry in the big-data era of the Square Kilometre Array (SKA)

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

UCL Mathematical & Physical Sciences (MAPS) Faculty Research Festival April 2016

A D A A B A A B A A B A

Outline

Radio interferometry and the SKA

Interferometric imaging with compressive sensing

Scalable algorithms

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Outline

Interferometric imaging with compressive sensing

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Radio telescopes are big!

"Just checking."

◆ 臣 ▶ → ● 臣 ▶ …

Radio telescopes are big!

Radio interferometric telescopes

< ロ > < 回 > < 回 > < 回 > < 回 > <

E

Next-generation of radio interferometry rapidly approaching

- Many pathfinder radio interferometric telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Square Kilometre Array (SKA) construction scheduled to begin 2018.
- Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Next-generation of radio interferometry rapidly approaching

- Many pathfinder radio interferometric telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Square Kilometre Array (SKA) construction scheduled to begin 2018.
- Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

A D A A B A A B A A B A

Figure: SKA science goals. [Credit: SKA Organisation]

SKA sites

Jason McEwen

Radio interferometry in the big-data era of the SKA

The SKA poses a considerable big-data challenge

Top image: SPDO/Swinburne Astronomy Productions

Jason McEwen

Radio interferometry in the big-data era of the SKA

The SKA poses a considerable big-data challenge

top image: SPDU/ Swinoume Ascronomy Produccio

Jason McEwen

Radio interferometry in the big-data era of the SKA

Outline

Interferometric imaging with compressive sensing

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Radio interferometric telescopes acquire "Fourier" measurements

・ロン ・四 と ・ 回 と ・ 回 と

3

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n \quad ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = MFCA$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

・ロ・・ (日・・ 日・・ 日・・

3

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

э.

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

э.

Compressive sensing

- Developed by Candes et al. 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- Exploits the sparsity of natural signals.
- Acquisition versus imaging.

(a) Emmanuel Candes

(b) David Donoho

・ロト ・回 ト ・ヨト ・ヨト

3

Compressive sensing

- Developed by Candes et al. 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- Exploits the sparsity of natural signals.
- Acquisition versus imaging.

(a) Emmanuel Candes

(b) David Donoho

・ロン ・四 と ・ 回 と ・ 回 と

3

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \mathbf{MFCA}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\boldsymbol{\Psi}.$

• Basis Pursuit (BP) denoising problem

$$\alpha^* = \underset{\alpha}{\arg\min} \|\alpha\|_1$$
 such that $\|\mathbf{y} - \Phi \Psi \alpha\|_2 \le \epsilon$,

where the image is synthesised by $x^* = \Psi \alpha^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \mathbf{MFCA}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\boldsymbol{\Psi}.$

• Basis Pursuit (BP) denoising problem

$$\begin{bmatrix} \boldsymbol{\alpha}^{\star} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon , \\ \boldsymbol{\alpha}^{\star} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon ,$$

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{x}\in\mathbb{R}^N} \|\mathbf{W}\Psi^T\bar{x}\|_1 \quad \text{subject to} \quad \|\mathbf{y}-\Phi\bar{x}\|_2 \le \epsilon \quad \text{and} \quad \bar{x}\ge 0 \ ,$

where $\mathbf{W} \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

Solve a sequence of reweighted ℓ₁ problems using the solution of the previous problem as the inverse weights → approximate the ℓ₀ problem.

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted l₁ analysis problem:

$$\left[\min_{\bar{x} \in \mathbb{R}^N} \| \mathbf{W} \Psi^T \bar{x} \|_1 \quad \text{subject to} \quad \| \mathbf{y} - \Phi \bar{x} \|_2 \le \epsilon \quad \text{and} \quad \bar{x} \ge 0 \,, \right]$$

where $\mathbf{W} \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

Solve a sequence of reweighted ℓ₁ problems using the solution of the previous problem as the inverse weights → approximate the ℓ₀ problem.

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \,,$

where $\mathbf{W} \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

(a) Original

・ロ・・ (日・・ 日・・ 日・・

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

・ロン ・四 と ・ 回 と ・ 回 と

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

(c) "MS-CLEAN" (SNR=17.87 dB)

・ロン ・四 と ・ 回 と ・ 回 と

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

(d) BPDb8 (SNR=24.53 dB)

(e) TV (SNR=26.47 dB)

(c) "MS-CLEAN" (SNR=17.87 dB)

э

・ロト ・回ト ・ヨト ・ヨト

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F^c}.$$

• But this is impracticably slow!

- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2014).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z}$$
,

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

A D A A B A A B A A B A

э

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{\mathbf{c}}$$
.

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2014).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

э.

(b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.

∃ >

(b) M31 (ground truth)

(c) "CLEAN" (SNR= 8.2dB)

Figure: Reconstructed images from continuous visibilities.

3 N - 3

(b) M31 (ground truth)

(c) "CLEAN" (SNR= 8.2dB)

(d) "MS-CLEAN" (SNR= 11.1dB)

Figure: Reconstructed images from continuous visibilities.

3. 3

(a) Coverage

(b) M31 (ground truth)

(c) "CLEAN" (SNR= 8.2dB)

(e) SARA (SNR= 13.4dB)

≣ ▶

= 8.2dB) (d) "MS-CLEAN" (SNR= 11.1dB) (e) SARA Figure: Reconstructed images from continuous visibilities.

Jason McEwen	Radio interferometry in the big-data era of the SKA
--------------	---

Optimising telescope configurations Spread spectrum effect

- Use theory of compressive sensing to optimise telescope configurations.
- Non-coplanar baselines and wide fields → w-modulation → spread spectrum effect which reduces coherence → improves reconstruction quality (first considered by Wiaux *et al.* 2009b).
- Perform simulations to assess the effectiveness of the spread spectrum effect in the presence of varying *w* (Wolz, McEwen *et al.* 2013).

Figure: Ground truth images in logarithmic scale.

A D A A B A A B A A B A

(a) $w_d = 0 \rightarrow SNR = 5 dB$

Figure: Reconstructed images of M31 for 10% coverage.

・ロン ・四 と ・ 回 と ・ 回 と

= 990

(a) $w_d = 0 \rightarrow SNR = 5 dB$

(c) $w_d = 1 \rightarrow SNR = 19 dB$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Figure: Reconstructed images of M31 for 10% coverage.

Figure: Reconstructed images of M31 for 10% coverage.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

(a) $w_d = 0 \rightarrow SNR = 2dB$

Figure: Reconstructed images of 30Dor for 10% coverage.

・ロト ・回 ト ・ヨト ・ヨト

= 990

(a) $w_d = 0 \rightarrow SNR = 2dB$

(c) $w_d = 1 \rightarrow SNR = 15 dB$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Figure: Reconstructed images of 30Dor for 10% coverage.

Figure: Reconstructed images of 30Dor for 10% coverage.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●

Outline

Scalable algorithms

< ロ > < 回 > < 回 > < 回 > < 回 > <

= 990

Standard algorithms

Standard algorithms

CPU Raw Data

Standard algorithms

CPU Raw Data

Many Cores (CPU, GPU, Xeon Phi)

Block algorithm

 Block algorithm to split data and measurement operator (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_d} \mathbf{M}_{n_d} \end{bmatrix} \mathbf{FZ}.$$

• For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$\Psi = rac{1}{\sqrt{q}}[\Psi_1,\Psi_2,\ldots,\Psi_q].$$

• Leads to a highly distributed and parallelised algorithmic structure.

・ロン ・回 ・ ・ ヨン・

э

Block algorithm

 Block algorithm to split data and measurement operator (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_d} \mathbf{M}_{n_d} \end{bmatrix} \mathbf{FZ}.$$

• For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q].$$

• Leads to a highly distributed and parallelised algorithmic structure.

Block algorithm

 Block algorithm to split data and measurement operator (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_d} \mathbf{M}_{n_d} \end{bmatrix} \mathbf{FZ}.$$

• For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q].$$

• Leads to a highly distributed and parallelised algorithmic structure.

A D A A B A A B A A B A

Public codes

SOPT code

Sparse OPTimisation Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

PURIFY code

http://basp-group.github.io/purify/

A D A A B A A B A A B A

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration.
- State-of-the-art convex optimisation algorithms that support distribution.

Applying to observations made by real interferometric telescopes.

Developing fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.

Supported by:

∃ 9900

Jason McEwen Radio interferometry in the big-data era of the SKA