Radio interferometry in the big-data era of the Square Kilometre Array (SKA)

Jason McEwen [www.jasonmcewen.org](http://jasonmcewen.org) [@jasonmcewen](https://twitter.com/jasonmcewen)

Mullard Space Science Laboratory (MSSL) University College London (UCL)

UCL Mathematical & Physical Sciences (MAPS) Faculty Research Festival April 2016

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Outline

¹ [Radio interferometry and the SKA](#page-2-0)

² [Interferometric imaging with compressive sensing](#page-13-0)

³ [Scalable algorithms](#page-42-0)

K ロ K x 行 K K を K K モ K モ W Y A C Y C

Outline

[Interferometric imaging with compressive sensing](#page-13-0)

K ロ K x 行 K K を K K モ K モ W Y A C Y C

Radio telescopes are big!

"Just checking."

重き す重き い

重

 299

Radio telescopes are big!

 299

[Radio Interferometry](#page-2-0) [Interferometric Imaging](#page-13-0) [Scalable Algorithms](#page-42-0)

Radio interferometric telescopes

K ロメ K 御 メ K 唐 メ K 唐 メー

 $2Q$

[Radio Interferometry](#page-2-0) [Interferometric Imaging](#page-13-0) [Scalable Algorithms](#page-42-0)

Next-generation of radio interferometry rapidly approaching

- **Many pathfinder radio interferometric** telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Square Kilometre Array (SKA) construction scheduled to begin 2018.

• Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA **Organisation**

K ロ ト K 伺 ト K ヨ ト K ヨ ト

[Radio Interferometry](#page-2-0) [Interferometric Imaging](#page-13-0) [Scalable Algorithms](#page-42-0)

Next-generation of radio interferometry rapidly approaching

- Many pathfinder radio interferometric telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Square Kilometre Array (SKA) construction scheduled to begin 2018.
- Broad range of science goals.

Figure: Artist impression of SKA dishes. [Credit: SKA **Organisation**

K ロ ト K 何 ト K ヨ ト K ヨ ト

 QQ

Figure: SKA science goals. [Credit: SKA Organisation]

SKA sites

The SKA poses a considerable big-data challenge

Top image: SPDO/Swinburne Astronomy Productions

The SKA poses a considerable big-data challenge

Outline

[Radio interferometry and the SKA](#page-2-0)

2 [Interferometric imaging with compressive sensing](#page-13-0)

K ロ K x 行 K K を K K モ K モ W Y A C Y C

Radio interferometric telescopes acquire "Fourier" measurements

 \leftarrow \Box

メタトメ ミトメ ミト

重

 $2Q$

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = MFCA$ may incorporate: $\begin{array}{c} \bullet \\ \bullet \end{array}$
	- **•** primary beam **A** of the telescope:
	- *w*-modulation modulation **C**;
	- Fourier transform **F**;
	- masking **M** which encodes the incomplete measurements taken by the interferometer.

イロメ イ団メ イモメ イモメー

画

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
	- primary beam **A** of the telescope;
	- *w*-modulation modulation **C**;
	- Fourier transform **F**;
	- **masking M which encodes the incomplete measurements taken by the interferometer.**

KONKRAKS KRAU

G. Ω

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n$

where *y* are the measured visibilities, Φ is the linear measurement operator, *x* is the underlying image and *n* is instrumental noise.

- Measurement operator $\Phi = M F C A$ may incorporate:
	- primary beam **A** of the telescope;
	- *w*-modulation modulation **C**;
	- Fourier transform **F**;
	- **masking M which encodes the incomplete measurements taken by the interferometer.**

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

KONKRAKS KRAU

 QQQ

Compressive sensing

- Developed by Candes *et al.* 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- Exploits the sparsity of natural signals.
- Acquisition versus imaging.

(a) Emmanuel Candes (b) David Donoho

イロメ イ団 メイミメイミメー

 $E = \Omega Q$

Compressive sensing

- Developed by Candes *et al.* 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- **•** Exploits the sparsity of natural signals.
- **Acquisition versus imaging.**

(a) Emmanuel Candes (b) David Donoho

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 η an \Rightarrow

[Radio Interferometry](#page-2-0) [Interferometric Imaging](#page-13-0) [Scalable Algorithms](#page-42-0) [Imaging](#page-14-0) [SARA](#page-22-0) [Continuous Visibilities](#page-29-0) [Telescope Optimisation](#page-35-0)

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = MFCA$,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

• Basis Pursuit (BP) denoising problem

$$
\boxed{\alpha^{\star} = \underset{\text{α}}{\arg\min} \|\alpha\|_1 \text{ such that } \|y - \Phi\Psi\alpha\|_2 \leq \epsilon \,, \, \begin{array}{|{\mathcal{Z}}|} \\\frac{\alpha}{\alpha} \\ \frac{\alpha}{\alpha} \end{array}}
$$

where the image is synthesised by $x^\star = \Psi \boldsymbol{\alpha}^\star.$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \textbf{M F C A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

• Basis Pursuit (BP) denoising problem

$$
\boxed{\alpha^{\star} = \underset{\textbf{O}}{\arg \min} \|\alpha\|_1 \text{ such that } \|y - \Phi \Psi \alpha\|_2 \leq \epsilon \,, \, \sum_{\substack{\textbf{O} \\ \textbf{O} \\\textbf{O}}} \quad}
$$

where the image is synthesised by $x^\star = \Psi \alpha^\star.$

KID KA KED KED E YA G

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity);
	- ⇒ concatenation of 9 bases
- \bullet Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$
\left[\min_{\bar{x}\in\mathbb{R}^N} \|\mathbf{W}\Psi^T \bar{x}\|_1 \quad \text{ subject to } \quad \|y-\Phi \bar{x}\|_2\leq \epsilon \quad \text{ and } \quad \bar{x}\geq 0\,,\right] \underset{\substack{\sigma \\ \sigma \\ \sigma}}{\underbrace{\mathbb{R}}}
$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

Solve a sequence of reweighted ℓ_1 problems using the solution of the previous pro[blem](#page-21-0) as the inverse weights \rightarrow approximate the ℓ_0 problem[.](#page-23-0)

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
	- ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

 \bullet Solve a sequence of reweighted ℓ_1 problems using the solution of the previous pro[blem](#page-22-0) as the inverse weights \rightarrow approximate the ℓ_0 problem[.](#page-24-0)

SARA algorithm for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],
$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with $D = qN$.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
	- ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\tilde{\mathbf{x}} \in \mathbb{R}^N} \|\mathbf{W}\Psi^T \bar{\mathbf{x}}\|_1$ subject to $\|\mathbf{y} - \Phi \bar{\mathbf{x}}\|_2 \le \epsilon$ and $\bar{\mathbf{x}} \ge 0$, $\begin{cases} \frac{\sigma}{\sigma} \\ \frac{\sigma}{\sigma} \\ \infty \end{cases}$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

 \bullet Solve a sequence of reweighted ℓ_1 problems using the solution of the previous pro[blem](#page-23-0) as the inverse weights \rightarrow approximate the ℓ_0 problem[.](#page-25-0)
And a state of the stat

(a) Original

イロメ イ団メ イモメ イモメー

重

 298

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重 OQ

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

(c) "MS-CLEAN" (SNR=17.87 dB)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重

(a) Original

(b) "CLEAN" (SNR=16.67 dB)

(c) "MS-CLEAN" (SNR=17.87 dB)

 $2Q$

(d) BPDb8 (SNR=24.53 dB)

(e) TV (SNR=26.47 dB)

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$
\Phi = \mathbf{F}^{\mathbf{c}}.
$$

• But this is impracticably slow!

- **Incorporated gridding into our CS interferometric imaging framework (Carrillo** *et al.* **2014).**
- Model with measurement operator

$$
\boxed{\Phi = \textbf{GFDZ}}\,,
$$

- convolutional gridding operator **G**;
- fast Fourier transform **F**;
- normalisation operator **D** to undo the convolution gridding;
- zero-padding operator **Z** to upsample the discrete visibility space.

K ロ ト K 何 ト K ヨ ト K ヨ ト

Þ

Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$
\Phi = \mathbf{F}^c.
$$

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo *et al.* 2014).
- Model with measurement operator

$$
\Phi = \text{GFDZ} \ ,
$$

where we incorporate:

- convolutional gridding operator **G**;
- fast Fourier transform **F**;
- normalisation operator **D** to undo the convolution gridding;
- zero-padding operator **Z** to upsample the discrete visibility space.

KONKRAKS KRAU

 \equiv \cap α

Figure: Reconstructed images from continuou[s v](#page-30-0)is[ibil](#page-32-0)[iti](#page-30-0)[e](#page-31-0)[s.](#page-34-0)

 298

D. Þ

(c) "CLEAN" (SNR= 8.2dB)

Figure: Reconstructed images from continuou[s v](#page-31-0)is[ibil](#page-33-0)[iti](#page-30-0)[e](#page-31-0)[s.](#page-34-0)

 OQ

D-B Þ

(c) "CLEAN" $(SNR = 8.2dB)$ (d) "MS-CLEAN" $(SNR = 11.1dB)$

Figure: Reconstructed images from continuou[s v](#page-32-0)is[ibil](#page-34-0)[iti](#page-30-0)[e](#page-31-0)[s.](#page-34-0)

 OQ

Þ

イヨト

(a) Coverage (b) M31 (ground truth)

(c) "CLEAN" (SNR= 8.2dB) (d) "MS-CLEAN" (SNR= 11.1dB) (e) SARA (SNR= 13.4dB)

B.V.

 298

Figure: Reconstructed images from continuou[s v](#page-33-0)is[ibil](#page-35-0)[iti](#page-30-0)[e](#page-31-0)[s.](#page-34-0)

Optimising telescope configurations Spread spectrum effect

- Use theory of compressive sensing to optimise telescope configurations.
- Non-coplanar baselines and wide fields \rightarrow *w*-modulation \rightarrow spread spectrum effect which reduces coherence \rightarrow improves reconstruction quality (first considered by Wiaux *et al.* 2009b).
- Perform simulations to assess the effectiveness of the spread spectrum effect in the presence of varying *w* (Wolz, McEwen *et al.* 2013).

Figure: Ground truth images in logarithmic scale.

K ロ ト K 何 ト K ヨ ト K ヨ ト

(a) $w_d = 0 \rightarrow$ SNR= 5dB

Figure: Reconstructed images of M31 for 10% coverage.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

(a) $w_d = 0 \rightarrow$ SNR= 5dB

(c) $w_d = 1 \rightarrow$ SNR= 19dB

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Figure: Reconstructed images of M31 for 10% coverage. $coverage.$

Figure: Reconstructed images of M31 for 10% coverage. $coverage.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

(a) $w_d = 0 \rightarrow$ SNR= 2dB

Figure: Reconstructed images of 30Dor for 10% coverage.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

(a) $w_d = 0 \rightarrow$ SNR= 2dB

(c) $w_d = 1 \rightarrow$ SNR= 15dB

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Figure: Reconstructed images of 30Dor for 10% coverage. −2 −1.5 −1 −0.5 0 −0.2 −0.1 0 0.1 0.2 −2 −1 0 1 2

Figure: Reconstructed images of 30Dor for 10% coverage. −2 −1.5 −1 −0.5 0 −0.2 −0.1 0 0.1 0.2 −2 −1 0 1 2

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Outline

[Radio interferometry and the SKA](#page-2-0)

[Interferometric imaging with compressive sensing](#page-13-0)

Jason McEwen [Radio interferometry in the big-data era of the SKA](#page-0-0)

K ロ K x 行 K K を K K モ K モ W Y A C Y C

Standard algorithms

Standard algorithms

CPU Raw Data

Standard algorithms

CPU Raw Data

Many Cores (CPU, GPU, Xeon Phi)

Block algorithm

Block algorithm to split data and measurement operator (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$
y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} G_1 M_1 \\ \vdots \\ G_{n_d} M_{n_d} \end{bmatrix} \text{FZ}.
$$

For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q].
$$

Leads to a highly distributed and parallelised algorithmic structure.

イロメ イ団メ イヨメ イヨメー

Block algorithm

- Block algorithm to split data and measurement operator
	- (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$
\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_d} \mathbf{M}_{n_d} \end{bmatrix} \text{FZ}.
$$

For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q].
$$

Leads to a highly distributed and parallelised algorithmic structure.

イロメ イ団メ イヨメ イヨメー

Block algorithm

Block algorithm to split data and measurement operator

(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet & Wiaux 2016)

$$
\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{n_d} \end{bmatrix}, \quad \Phi = \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_{n_d} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_d} \mathbf{M}_{n_d} \end{bmatrix} \text{FZ}.
$$

For SARA, sparsifying operator can also be naturally split into constituent dictionaries:

$$
\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q].
$$

Leads to a highly distributed and parallelised algorithmic structure.

イロメ イ団メ イモメ イモメー

画

Public codes

Sparse OPTimisation Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

PURIFY code <http://basp-group.github.io/purify/>

 QQQ

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Conclusions & outlook

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration. \bullet
- State-of-the-art convex optimisation algorithms that support distribution.

Applying to observations made by real interferometric telescopes.

Developing fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.

Supported by:

KONKRAKS KRAU

 \equiv \cap α