## Next-generation radio interferometric imaging for the SKA era

From Bayesian inference and compressed sensing, to big-data, to uncertainty quantification

#### Jason McEwen

www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

University of Manchester, March 2017

#### Outline

- A unified framework for radio interferometric imaging
- Compressive sensing for SKA imaging
- Uncertainty quantification

#### Outline

- A unified framework for radio interferometric imaging
  - Bayesian inference
  - Regularisation
  - Compressive sensing
- Compressive sensing for SKA imaging
  - PURIFY
  - Reconstruction fidelity
  - Scaling to big-data
- Uncertainty quantification
  - Proximal MCMC
  - Compressive sensing with Bayesian credible intervals
  - Hypothesis testing

## Radio interferometric telescopes acquire "Fourier" measurements







### Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$oxed{y = oldsymbol{\Phi} oldsymbol{x} + oldsymbol{n}}$$

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g.  $\Phi = GFA$ , may incorporate:

### Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g.  $\Phi = GFA$ , may incorporate:
  - primary beam A of the telescope;
  - Fourier transform F:
  - convolutional de-gridding G to interpolate to continuous uv-coordinates:
  - direction-dependent effects (DDEs)...

### Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$oxed{y = oldsymbol{\Phi} oldsymbol{x} + oldsymbol{n}}$$

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator, e.g.  $\Phi = \mathbf{GFA}$ , may incorporate:
  - primary beam A of the telescope;
  - Fourier transform F:
  - convolutional de-gridding G to interpolate to continuous uv-coordinates:
  - direction-dependent effects (DDEs)...

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

## Bayesian evolution



## Bayesian inference

- Given data y (visibilities) and model M (interferometric telescope with Gaussian noise), we want a full probabilistic description of our knowledge of the underlying sky image x.

$$P(\boldsymbol{x} \mid \boldsymbol{y}, M) = \frac{P(\boldsymbol{y} \mid \boldsymbol{x}, M) P(\boldsymbol{x} \mid M)}{P(\boldsymbol{y} \mid M)}$$





## bayesian interence

- Given data y (visibilities) and model M (interferometric telescope with Gaussian noise), we want a full probabilistic description of our knowledge of the underlying sky image x.
- Bayes to the rescue:

$$P(\boldsymbol{x} \mid \boldsymbol{y}, M) = \frac{P(\boldsymbol{y} \mid \boldsymbol{x}, M) P(\boldsymbol{x} \mid M)}{P(\boldsymbol{y} \mid M)}$$

Bayes Theorem

• Bayes theorem in words:

$$\mathsf{posterior} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{evidence}}$$

- How do we perform Bayesian inference in practice?
  - $\Rightarrow$  maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)

(and many others)



### Bayesian inference

- Given data y (visibilities) and model M (interferometric telescope with Gaussian noise), we want a full probabilistic description of our knowledge of the underlying sky image x.
- Bayes to the rescue:

$$P(\boldsymbol{x} \mid \boldsymbol{y}, M) = \frac{P(\boldsymbol{y} \mid \boldsymbol{x}, M) P(\boldsymbol{x} \mid M)}{P(\boldsymbol{y} \mid M)}$$

Baves Theorem



$$\mathsf{posterior} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{evidence}}$$

- How do we perform Bayesian inference in practice?
  - ⇒ maximum a-posteriori (MAP) estimates and sampling approaches (MCMC) (and many others)



Figure: Probability distribution to explore in 2D



Figure: Maximum a-posteriori (MAP) estimate



Figure: Markov Chain Monte Carlo (MCMC) sampling



Figure: Markov Chain Monte Carlo (MCMC) sampling



Figure: Markov Chain Monte Carlo (MCMC) sampling

Hint: they're the same thing!

- Many interferometric imaging approaches are based on regularisation
   (i.e. minimising an objective function comprised of a data-fidelity penalty and a
   regularisation penalty).
- Consider the MAP estimation problem...

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(x \mid y) \propto P(y \mid x)P(x)$$
, i.e. posterior  $\propto$  likelihood  $\times$  prior

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{x})P(\boldsymbol{x})$$
, i.e. posterior  $\propto$  likelihood  $\times$  prior

Define likelihood (assuming Gaussian noise) and prior:

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{x})P(\boldsymbol{x})$$
, i.e. posterior  $\propto$  likelihood  $\times$  prior

Define likelihood (assuming Gaussian noise) and prior:

$$\boxed{ P(\boldsymbol{y} \mid \boldsymbol{x}) \propto \exp\left(-\|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{x}\|_{2}^{2}/(2\sigma^{2})\right) }$$

Likelihood

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{x})P(\boldsymbol{x})$$
, i.e. posterior  $\propto$  likelihood  $\times$  prior

Likelihood

Define likelihood (assuming Gaussian noise) and prior:

$$\left[ P(\boldsymbol{y} \mid \boldsymbol{x}) \propto \exp\left(-\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}/(2\sigma^{2})\right) \right]$$

$$P(\boldsymbol{x}) \propto \exp(-R(\boldsymbol{x}))$$
Prior

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{x})P(\boldsymbol{x})$$
, *i.e.* posterior  $\propto$  likelihood  $\times$  prior

Define likelihood (assuming Gaussian noise) and prior:

$$P(\boldsymbol{y} \mid \boldsymbol{x}) \propto \exp\left(-\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}\|_2^2/(2\sigma^2)\right)$$
Likelihood

Consider log-posterior:

$$\log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = - \big\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \big\|_2^2 / (2\sigma^2) - R(\boldsymbol{x}) + \mathrm{const.}$$

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) \propto P(\boldsymbol{y} \mid \boldsymbol{x})P(\boldsymbol{x})$$
, i.e. posterior  $\propto$  likelihood  $\times$  prior

Define likelihood (assuming Gaussian noise) and prior:

$$P(\boldsymbol{y} \mid \boldsymbol{x}) \propto \exp\left(-\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}\|_2^2/(2\sigma^2)\right)$$
 Likelihood

Consider log-posterior:

$$\log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = - \big\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \big\|_2^2 / (2\sigma^2) - R(\boldsymbol{x}) + \mathrm{const.}$$

MAP estimator:

$$x_{\text{map}} = \underset{x}{\text{arg max}} \Big[ \log P(x \mid y) \Big]$$

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$\mathrm{P}(m{x}\,|\,m{y}) \propto \mathrm{P}(m{y}\,|\,m{x})\mathrm{P}(m{x})$$
 , i.e. posterior  $\propto$  likelihood  $imes$  prior

Define likelihood (assuming Gaussian noise) and prior:

$$P(\boldsymbol{y} \,|\, \boldsymbol{x}) \propto \exp\Bigl(-ig\| \boldsymbol{y} - oldsymbol{\Phi} \boldsymbol{x} ig\|_2^2/(2\sigma^2)\Bigr)$$

Consider log-posterior:

$$\log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = - \big\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \big\|_2^2 / (2\sigma^2) - R(\boldsymbol{x}) + \mathrm{const.}$$

MAP estimator:

$$oldsymbol{x}_{ ext{map}} = rg \max_{oldsymbol{x}} \left[ \log P(oldsymbol{x} \, | \, oldsymbol{y}) \right] = rg \min_{oldsymbol{x}} \left[ -\log P(oldsymbol{x} \, | \, oldsymbol{y}) \right]$$

Hint: they're the same thing!

Start with Bayes Theorem (ignore normalising evidence):

$$\mathrm{P}(m{x}\,|\,m{y}) \propto \mathrm{P}(m{y}\,|\,m{x})\mathrm{P}(m{x})$$
 , i.e. posterior  $\propto$  likelihood  $imes$  prior

Define likelihood (assuming Gaussian noise) and prior:

$$P(\boldsymbol{y} \mid \boldsymbol{x}) \propto \exp\left(-\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x}\|_2^2/(2\sigma^2)\right)$$
Likelihood

Consider log-posterior:

$$\log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = - \big\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \big\|_2^2 / (2\sigma^2) - R(\boldsymbol{x}) + \mathrm{const.}$$

MAP estimator:

$$\boldsymbol{x}_{\text{map}} = \operatorname*{arg\,max}_{\boldsymbol{x}} \Big[ \log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) \Big] = \operatorname*{arg\,min}_{\boldsymbol{x}} \Big[ - \log \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) \Big] = \operatorname*{arg\,min}_{\boldsymbol{x}} \Big[ \frac{ \left\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \right\|_2^2 }{ \operatorname{Data\,fidelity}} + \frac{\lambda \, R(\boldsymbol{x})}{\operatorname{Regulariser}} \Big] \Big]$$

# Norms often considered for regularisation

• Recall norms given by:

$$\|\pmb{\alpha}\|_2^2 = \sum_i |\pmb{\alpha}_i|^2 \qquad \|\pmb{\alpha}\|_1 = \sum_i |\pmb{\alpha}_i| \qquad \|\pmb{\alpha}\|_0 = \text{no. non-zero elements}$$



Figure: Norms in 1D [Credit: Qiao 2014]

## Norms often considered for regularisation

Recall norms given by:

$$\|\alpha\|_2^2=\sum_i|\alpha_i|^2 \qquad \|\alpha\|_1=\sum_i|\alpha_i| \qquad \|\alpha\|_0=\text{no. non-zero elements}$$



Figure: Norms in 2D [Credit: Kudo et al. 2013]

#### CLEAN

Consider the sparse prior:  $P(\boldsymbol{x}) \propto \exp\left(-\beta \|\boldsymbol{x}\|_{0}\right)$ .

Corresponding MAP estimator is:

$$oxed{x_{ ext{clean}} \simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x} 
ight\|_{0}} 
ight]}$$

#### MEN

Consider the entropic prior:  $\mathrm{P}(m{x}) \propto \exp\left(-\beta \; m{x}^\dagger \log m{x}\right)$ 

Corresponding MAP estimator is

$$oldsymbol{x}_{ ext{mem}} \simeq \operatorname*{arg\,min}_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight]^2 + \lambda \, oldsymbol{x}^\dagger \log oldsymbol{x} 
ight]$$

(In practice some differences: CLEAN does not solve MAP problem exactly MEM considered in RI imposes additional constraints.)



#### CLEAN

Consider the sparse prior:  $P(x) \propto \exp\left(-\beta \|x\|_0\right)$ .

Corresponding MAP estimator is:

$$oxed{x_{ ext{clean}} \simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x} 
ight\|_{0} 
ight]}$$

#### MEN

Consider the entropic prior:  $P(\boldsymbol{x}) \propto \exp\left(-\beta \ \boldsymbol{x}^\dagger \log \boldsymbol{x}\right)$ 

Corresponding MAP estimator is

$$oldsymbol{x}_{ ext{mem}} \simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight]^2 + \lambda \, oldsymbol{x}^\dagger \log oldsymbol{x} 
ight]$$

(In practice some differences: CLEAN does not solve MAP problem exactly MEM considered in RI imposes additional constraints.)



#### CLEAN

Consider the sparse prior:  $P(\boldsymbol{x}) \propto \exp\left(-\beta \|\boldsymbol{x}\|_{0}\right)$ .

Corresponding MAP estimator is:

$$oldsymbol{x}_{ ext{clean}} \simeq \operatorname*{arg\,min}_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_2^2 + \lambda \left\| oldsymbol{x} 
ight\|_0 
ight]$$

#### MEM

Consider the entropic prior:  $P(x) \propto \exp(-\beta x^{\dagger} \log x)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{mem}} &\simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight]_2^2 + \lambda \, oldsymbol{x}^\dagger \log oldsymbol{x} 
ight] \end{aligned}$$

(In practice some differences: CLEAN does not solve MAP problem exactly: MEM considered in RI imposes additional constraints.)



#### CLEAN

Consider the sparse prior:  $P(\boldsymbol{x}) \propto \exp(-\beta \|\boldsymbol{x}\|_0)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{clean}} &\simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x} 
ight\|_{0} 
ight] \end{aligned}$$

#### MFM

Consider the entropic prior:  $P(x) \propto \exp(-\beta x^{\dagger} \log x)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{mem}} &\simeq rg\min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight]_2^2 + \lambda \, oldsymbol{x}^\dagger \log oldsymbol{x} 
ight] \end{aligned}$$



#### CLEAN

Consider the sparse prior:  $P(x) \propto \exp(-\beta ||x||_0)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{clean}} &\simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x} 
ight\|_{0} 
ight] \end{aligned}$$

#### MEM

Consider the entropic prior:  $P(x) \propto \exp(-\beta x^{\dagger} \log x)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{mem}} & \simeq rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight]_2^2 + \lambda \, oldsymbol{x}^\dagger \log oldsymbol{x} 
ight] \end{aligned}$$

(In practice some differences: CLEAN does not solve MAP problem exactly; MEM considered in RI imposes additional constraints.)



## Compressive sensing as MAP estimator

#### Naive compressive sensing

Consider the Laplacian prior:  $P(x) \propto \exp(-\beta \|x\|_1)$ .

Corresponding MAP estimator is

$$\left[ \left. \boldsymbol{x}_{\text{cs}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \left[ \left\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{x} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{x} \right\|_{1} \right] \right]$$

(This is one possible Bayesian interpretation of compressive sensing but there are others.)

## Compressive sensing as MAP estimator

Naive compressive sensing

Consider the Laplacian prior:  $P(x) \propto \exp(-\beta \|x\|_1)$ .

Corresponding MAP estimator is:

$$\mathbf{z}_{\text{cs}} = \underset{\mathbf{x}}{\text{arg min}} \left[ \left\| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \right\|_{2}^{2} + \lambda \left\| \mathbf{x} \right\|_{1} \right]$$

## Compressive sensing as MAP estimator

Naive compressive sensing

Consider the Laplacian prior:  $P(x) \propto \exp \left(-\beta \left\|x\right\|_1\right)$ .

Corresponding MAP estimator is:

$$egin{aligned} oldsymbol{x}_{ ext{cs}} = rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{x} 
ight\|_{1} 
ight] \end{aligned}$$

(This is one possible Bayesian interpretation of compressive sensing but there are others.)

# Compressive sensing

#### Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

$$x = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \Rightarrow x = \Psi \alpha$$

- Consider the Laplacian prior on coefficients:  $P(\alpha) \propto \exp(-\beta \|\alpha\|_1)$ .

$$egin{aligned} oldsymbol{x}_{ ext{synthesis}} &= oldsymbol{\Psi} imes rg \min_{oldsymbol{lpha}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha} 
ight]_{2}^{2} + \lambda \left\| oldsymbol{lpha} 
ight\|_{1} 
ight] \end{aligned}$$

### Compressive sensing Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

$$x = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \Rightarrow x = \Psi \alpha$$

- Recover (wavelet) coefficients  $\alpha$  of image x.
- Consider the Laplacian prior on coefficients:  $P(\alpha) \propto \exp(-\beta \|\alpha\|_1)$ .

$$oxed{x_{ ext{synthesis}} = oldsymbol{\Psi} imes rg \min_{oldsymbol{lpha}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha} 
ight]_{2}^{2} + \lambda \left\| oldsymbol{lpha} 
ight\|_{1}}$$

### Compressive sensing Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

$$x = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \Rightarrow x = \Psi \alpha$$

- Recover (wavelet) coefficients  $\alpha$  of image x.
- Consider the Laplacian prior on coefficients:  $P(\alpha) \propto \exp(-\beta \|\alpha\|_{_1})$ .

$$egin{aligned} oldsymbol{x}_{ ext{synthesis}} &= oldsymbol{\Psi} imes rg \min_{oldsymbol{lpha}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha} 
ight]_{2}^{2} + \lambda \left\| oldsymbol{lpha} 
ight\|_{1} 
ight] \end{aligned}$$

## Compressive sensing

#### Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

$$x = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \Rightarrow x = \Psi \alpha$$

- Recover (wavelet) coefficients  $\alpha$  of image x.
- Consider the Laplacian prior on coefficients:  $P(\alpha) \propto \exp(-\beta \|\alpha\|_1)$ .
- Sparse synthesis regularisation problem:

$$\boxed{ \boldsymbol{x}_{\mathrm{synthesis}} = \boldsymbol{\Psi} \times \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \! \left[ \left\| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\alpha} \right\|_{1} \right] }$$

Synthesis framework

### Compressive sensing Analysis framework

- Typically sparsity assumption justified by analysing example signals in transformed domain.
- Different to synthesising signals.

$$egin{aligned} oldsymbol{x}_{ ext{analysis}} &= rg \min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_{2}^{2} + \lambda \left\| oldsymbol{\Psi}^{\dagger} oldsymbol{x} 
ight\|_{1} 
ight] \end{aligned}$$

## Compressive sensing

#### Analysis framework

- Typically sparsity assumption justified by analysing example signals in transformed domain.
- Different to synthesising signals.
- Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

$$egin{aligned} oldsymbol{x}_{ ext{analysis}} &= rg\min_{oldsymbol{x}} \left[ \left\| oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} 
ight\|_2^2 + \lambda \left\| oldsymbol{\Psi}^\dagger oldsymbol{x} 
ight\|_1 
ight] \end{aligned}$$

Analysis framework

(For orthogonal bases  $\Omega = \Psi^{\dagger}$  and the two approaches are identical.)

## Compressive sensing

## Analysis vs synthesis

• Synthesis-based approach is more general, while analysis-based approach more restrictive.



Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)]

## Compressive sensing SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

$$\boxed{\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \dots, \boldsymbol{\Psi}_q \end{bmatrix}}$$

$$\min_{m{x}\in\mathbb{R}^N}\|\mathbf{W}\mathbf{\Psi}^\daggerm{x}\|_1$$
 subject to  $\|m{y}-\mathbf{\Phi}m{x}\|_2\leq\epsilon$  and  $m{x}\geq0$ 

## Compressive sensing SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$\boxed{\boldsymbol{\Psi} = \begin{bmatrix} \boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \dots, \boldsymbol{\Psi}_q \end{bmatrix}}$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight  $\Rightarrow$  concatenation of 9 bases.

$$\min_{m{x}\in\mathbb{R}^N}\|\mathbf{W}\mathbf{\Psi}^\daggerm{x}\|_1$$
 subject to  $\|m{y}-\mathbf{\Phi}m{x}\|_2\leq\epsilon$  and  $m{x}\geq0$ 

## Compressive sensing SARA algorithm

- Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
- Overcomplete dictionary composed of a concatenation of orthonormal bases:

$$oldsymbol{\Psi} = egin{bmatrix} oldsymbol{\Psi}_1, oldsymbol{\Psi}_2, \dots, oldsymbol{\Psi}_q \end{bmatrix}$$

with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelets two to eight  $\Rightarrow$  concatenation of 9 bases.

• Promote average sparsity by solving the constrained reweighted  $\ell_1$  analysis problem:

$$\min_{m{x}\in\mathbb{R}^N}\|m{W}m{\Psi}^\daggerm{x}\|_1$$
 subject to  $\|m{y}-m{\Phi}m{x}\|_2\leq\epsilon$  and  $m{x}\geq0$ 

#### Outline

- 1 A unified framework for radio interferometric imaging
  - Bayesian inference
  - Regularisation
  - Compressive sensing
- Compressive sensing for SKA imaging
  - PURIFY
  - Reconstruction fidelity
  - Scaling to big-data
- Uncertainty quantification
  - Proximal MCMC
  - Compressive sensing with Bayesian credible intervals
  - Hypothesis testing

## Public open-source codes

#### **PURIFY** code

http://basp-group.github.io/purify/



Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d'Avezac

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

#### SOPT code

http://basp-group.github.io/sopt/



#### Sparse OPTimisation

Carrillo, McEwen, Wiaux, Kartik, d'Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

### Robust application of PURIFY to real interferometric observations

- Robust sparse image reconstruction of radio interferometric observations with PURIFY (Pratley, McEwen, et al. 2016; arXiv:1610.02400).
- All parameters are set automatically (but can be refined)

Table: Description of main user parameters for using PURIFY to reconstruct an observation

| Parameter | PURIFY option | Description                                                                                                                                                                                                             | Value                                            |
|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|           |               | Parameterisation of the fidelity constraint: $\epsilon_{\eta} = \eta \sqrt{M} \sigma_n$ .                                                                                                                               | $\eta=1.4$ (default); $\eta\in[1,10]$ (typical). |
|           |               | Parameterisation of the step size of the algorithm: $\hat{\gamma}_i = \beta \  \Psi^\dagger \varpi^{(i)} \ _{\ell_\infty}$ (default). One can also fix $\gamma = \beta \  \Psi^\dagger \varpi^{(0)} \ _{\ell_\infty}$ . | $\beta=10^{-3}$ (default)                        |
|           |               | Relative difference criteria for adapting $\boldsymbol{\gamma}_i$ .                                                                                                                                                     | $\delta_{ m adapt} = 0.01$ (default).            |
|           |               | Number of iterations to consider adapting the step size $\gamma_i$ (should be before convergence).                                                                                                                      | $i_{ m adapt} = 100$ (default).                  |
|           |               | Relative difference convergence criteria on the $\ell_2$ -norm of the solution: $\frac{\ \varpi^{(i)}-\varpi^{(i-1)}\ _{\ell_2}}{\ \varpi^{(i)}\ _{\ell_2}} \leq \delta.$                                               | $\delta = 5 \times 10^{-3}$ (default).           |
|           |               | Convergence criteria on the $\ell_2$ residual norm: $\ y-\Phi x\ _{\ell_2} \leq \xi \epsilon_\eta$                                                                                                                      | $\xi=1$ (default); require $\xi\geq 1.$          |
|           |               | Maximum number of iterations.                                                                                                                                                                                           | $i_{ m max} = \infty$ (default).                 |

## Robust application of PURIFY to real interferometric observations

- Robust sparse image reconstruction of radio interferometric observations with PURIFY (Pratley, McEwen, et al. 2016; arXiv:1610.02400).
- All parameters are set automatically (but can be refined).

Table: Description of main user parameters for using PURIFY to reconstruct an observation

| Parameter | PURIFY option | Description                                                                                                                                                                                                               | Value                                            |
|-----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|           |               | Parameterisation of the fidelity constraint: $\epsilon_{\eta}=\eta\sqrt{M}\sigma_{n}$ .                                                                                                                                   | $\eta=1.4$ (default); $\eta\in[1,10]$ (typical). |
|           |               | Parameterisation of the step size of the algorithm: $\tilde{\gamma}_i = \beta \  \Psi^\dagger \varpi^{(i)} \ _{\ell_\infty}$ (default). One can also fix $\gamma = \beta \  \Psi^\dagger \varpi^{(0)} \ _{\ell_\infty}$ . | $\beta=10^{-3}$ (default)                        |
|           |               | Relative difference criteria for adapting $\boldsymbol{\gamma}_i$ .                                                                                                                                                       | $\delta_{ m adapt} = 0.01$ (default).            |
|           |               | Number of iterations to consider adapting the step size $\gamma_i$ (should be before convergence).                                                                                                                        | $i_{ m adapt} = 100$ (default).                  |
|           |               | Relative difference convergence criteria on the $\ell_2$ -norm of the solution: $\frac{\ \varpi^{(i)}-\varpi^{(i-1)}\ _{\ell_2}}{\ \varpi^{(i)}\ _{\ell_2}} \leq \delta.$                                                 | $\delta = 5 \times 10^{-3}$ (default).           |
|           |               | Convergence criteria on the $\ell_2$ residual norm: $\ y-\Phi x\ _{\ell_2} \leq \xi \epsilon_\eta$                                                                                                                        | $\xi=1$ (default); require $\xi\geq 1.$          |
|           |               | Maximum number of iterations.                                                                                                                                                                                             | $i_{	ext{max}} = \infty$ (default).              |

## Robust application of PURIFY to real interferometric observations

- Robust sparse image reconstruction of radio interferometric observations with PURIFY (Pratley, McEwen, et al. 2016; arXiv:1610.02400).
- All parameters are set automatically (but can be refined).

Table: Description of main user parameters for using PURIFY to reconstruct an observation.

| Parameter                 | PURIFY option         | Description                                                                                                                                                                                                             | Value                                            |
|---------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| η                         | -12_bound             | Parameterisation of the fidelity constraint: $\epsilon_{\eta} = \eta \sqrt{M} \sigma_n$ .                                                                                                                               | $\eta=1.4$ (default); $\eta\in[1,10]$ (typical). |
| β                         | -beta                 | Parameterisation of the step size of the algorithm: $\dot{\gamma}_i = \beta \  \Psi^\dagger \varpi^{(i)} \ _{\ell_\infty}$ (default). One can also fix $\gamma = \beta \  \Psi^\dagger \varpi^{(0)} \ _{\ell_\infty}$ . | $eta=10^{-3}$ (default)                          |
| $\delta_{\mathrm{adapt}}$ | -relative_gamma_adapt | Relative difference criteria for adapting $\gamma_i$ .                                                                                                                                                                  | $\delta_{ m adapt} = 0.01$ (default).            |
| i <sub>adapt</sub>        | -adapt_iter           | Number of iterations to consider adapting the step size $\gamma_i$ (should be before convergence).                                                                                                                      | $i_{ m adapt} = 100$ (default).                  |
| δ                         | -relative_variation   | $\frac{\text{Relative ria on the }\ell_2\text{-norm of the solution:}}{\ \boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i-1)}\ _{\ell_2}} \leq \delta.$                                                                        | $\delta = 5 \times 10^{-3}$ (default).           |
| ξ                         | -residual_convergence | Convergence criteria on the $\ell_2$ residual norm: $\ y-\Phi x\ _{\ell_2} \leq \xi \epsilon_\eta$                                                                                                                      | $\xi=1$ (default); require $\xi\geq 1.$          |
| $i_{ m max}$              | -niters               | Maximum number of iterations.                                                                                                                                                                                           | $i_{	ext{max}} = \infty$ (default).              |

### Imaging observations from the VLA and ATCA with PURIFY



(a) NRAO Very Large Array (VLA)



(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered

## PURIFY reconstruction VLA observation of 3C129



Figure: VLA visibility coverage for 3C129

## PURIFY reconstruction VLA observation of 3C129



Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)

(Extra)

### **PURIFY** reconstruction

VLA observation of 3C129 imaged by CLEAN (natural)



(Extra)

### **PURIFY** reconstruction

#### VLA observation of 3C129 images by CLEAN (uniform)



## PURIFY reconstruction VLA observation of 3C129 images by PURIFY



(Extra)

# PURIFY reconstruction VLA observation of 3C129



Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)

# PURIFY reconstruction VLA observation of Cygnus A



Figure: VLA visibility coverage for Cygnus A

# PURIFY reconstruction VLA observation of Cygnus A



Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)

## **PURIFY** reconstruction



## PURIFY reconstruction ATCA observation of PKS J0334-39



Figure: VLA visibility coverage for PKS J0334-39

## PURIFY reconstruction ATCA observation of PKS J0334-39



Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)

## PURIFY reconstruction ATCA observation of PKS J0334-39



Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)

## PURIFY reconstruction ATCA observation of PKS J0116-473



Figure: ATCA visibility coverage for Cygnus A

## PURIFY reconstruction ATCA observation of PKS J0116-473



Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)

## PURIFY reconstruction

#### ATCA observation of PKS J0116-473



Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)

### Distributed and parallelised convex optimisation

- Solve resulting convex optimisation problems by proximal splitting.
- Block inexact ADMM algorithm to split data and measurement operator: (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016

$$egin{bmatrix} oldsymbol{y} = egin{bmatrix} oldsymbol{y}_1 \ dots \ oldsymbol{y}_{n_{
m d}} \end{bmatrix}$$

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_1 \\ \vdots \\ \mathbf{\Phi}_{n_\mathrm{d}} \end{bmatrix} = \begin{bmatrix} \mathbf{G}_1 \mathbf{M}_1 \\ \vdots \\ \mathbf{G}_{n_\mathrm{d}} \mathbf{M}_{n_\mathrm{d}} \end{bmatrix} \mathbf{FZ}$$

## Distributed and parallelised convex optimisation

- Solve resulting convex optimisation problems by proximal splitting.
- Block inexact ADMM algorithm to split data and measurement operator: (Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016)

$$\begin{bmatrix} \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_1 \\ \vdots \\ \boldsymbol{y}_{n_{\mathrm{d}}} \end{bmatrix}, \quad \begin{bmatrix} \boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\Phi}_1 \\ \vdots \\ \boldsymbol{\Phi}_{n_{\mathrm{d}}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mathsf{G}}_1 \boldsymbol{\mathsf{M}}_1 \\ \vdots \\ \boldsymbol{\mathsf{G}}_{n_{\mathrm{d}}} \boldsymbol{\mathsf{M}}_{n_{\mathrm{d}}} \end{bmatrix} \boldsymbol{\mathsf{FZ}}.$$

## Distributed and parallelised convex optimisation





## Standard algorithms



## Highly distributed and parallelised algorithms



## Highly distributed and parallelised algorithms













#### Outline

- 1 A unified framework for radio interferometric imaging
  - Bayesian inference
  - RegularisationCompressive sensing
  - Compressive sensing
- Compressive sensing for SKA imaging
  - PURIFY
  - Reconstruction fidelity
  - Scaling to big-data
- Uncertainty quantification
  - Proximal MCMC
  - Compressive sensing with Bayesian credible intervals
  - Hypothesis testing

• Alternative is to sample full posterior distribution P(x | y).

 $\Rightarrow$  Provides uncertainly (error) information.

- MCMC methods for high-dimensional problems (like interferometric imaging):
  - Gibbs sampling (sample from conditional distributions)
  - Hamiltonian MC (HMC) sampling (exploit gradients)
  - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
- Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al 2014), using methods developed for CMB by Wandelt et al. (2005).
  - ullet Assume isotropic Gaussian process prior characterised by power spectrum  $C_\ell$
  - Sample from conditional distributions

$$oldsymbol{x}^{i+1} \leftarrow \mathrm{P}(oldsymbol{x} \, | \, C_\ell^i, oldsymbol{y}) \quad \mathsf{and} \quad C_\ell^{i+1} \leftarrow \mathrm{P}(C_\ell \, | \, oldsymbol{x}^{i+1}) \ .$$

• Alternative is to sample full posterior distribution P(x | y).

 $\Rightarrow$  Provides uncertainly (error) information.

- MCMC methods for high-dimensional problems (like interferometric imaging):
  - Gibbs sampling (sample from conditional distributions)
  - Hamiltonian MC (HMC) sampling (exploit gradients)
  - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
- Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al. 2014), using methods developed for CMB by Wandelt et al. (2005).
  - ullet Assume isotropic Gaussian process prior characterised by power spectrum  $C_\ell$
  - Sample from conditional distributions:

$$oldsymbol{x}^{i+1} \leftarrow \mathrm{P}(oldsymbol{x} \, | \, C_\ell^i, oldsymbol{y}) \quad \mathsf{and} \quad C_\ell^{i+1} \leftarrow \mathrm{P}(C_\ell \, | \, oldsymbol{x}^{i+1}) \; .$$

• Alternative is to sample full posterior distribution P(x | y).

 $\Rightarrow$  Provides uncertainly (error) information.

- MCMC methods for high-dimensional problems (like interferometric imaging):
  - Gibbs sampling (sample from conditional distributions)
  - Hamiltonian MC (HMC) sampling (exploit gradients)
  - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
- Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al. 2014), using methods developed for CMB by Wandelt et al. (2005).
  - ullet Assume isotropic Gaussian process prior characterised by power spectrum  $C_\ell.$
  - Sample from conditional distributions:

$$\boldsymbol{x}^{i+1} \leftarrow \mathrm{P}(\boldsymbol{x} \,|\, C_{\ell}^{i}, \boldsymbol{y}) \quad \text{and} \quad C_{\ell}^{i+1} \leftarrow \mathrm{P}(C_{\ell} \,|\, \boldsymbol{x}^{i+1}) \;.$$

• Alternative is to sample full posterior distribution P(x | y).

 $\Rightarrow$  Provides uncertainly (error) information.

- MCMC methods for high-dimensional problems (like interferometric imaging):
  - Gibbs sampling (sample from conditional distributions)
  - Hamiltonian MC (HMC) sampling (exploit gradients)
  - Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)
- Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al. 2014), using methods developed for CMB by Wandelt et al. (2005).
  - Assume isotropic Gaussian process prior characterised by power spectrum  $C_{\ell}$ .
  - Sample from conditional distributions:

$$\boldsymbol{x}^{i+1} \leftarrow \mathrm{P}(\boldsymbol{x} \,|\, C_{\ell}^{i}, \boldsymbol{y}) \quad \text{and} \quad C_{\ell}^{i+1} \leftarrow \mathrm{P}(C_{\ell} \,|\, \boldsymbol{x}^{i+1}) \;.$$

#### Langevin dynamics

• Consider posteriors of the following form (and more compact notation):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \boxed{\pi(\boldsymbol{x})} \propto \exp\left[-\boxed{g(\boldsymbol{x})}\right]$$
Posterior Convex

- If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
- Based on Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi (\mathcal{L}(t))dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

#### Langevin dynamics

• Consider posteriors of the following form (and more compact notation):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \begin{bmatrix} \pi(\boldsymbol{x}) \\ \text{Posterior} \end{bmatrix} \propto \exp\left[-\begin{bmatrix} g(\boldsymbol{x}) \\ \text{Convex} \end{bmatrix}\right]$$

- ullet If  $g(oldsymbol{x})$  differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian dynamics) MCMC methods.
- Langevin dynamics model molecular dynamics (includes friction and occasional high velocity collisions that perturb the system).
- Based on Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi \left(\mathcal{L}(t)\right)dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

#### Langevin dynamics

Consider posteriors of the following form (and more compact notation):

$$P(\boldsymbol{x} \mid \boldsymbol{y}) = \begin{bmatrix} \pi(\boldsymbol{x}) \\ Posterior \end{bmatrix} \propto \exp\left[-\begin{bmatrix} g(\boldsymbol{x}) \\ Convex \end{bmatrix}\right]$$

- ullet If  $g(oldsymbol{x})$  differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian dynamics) MCMC methods.
- Langevin dynamics model molecular dynamics (includes friction and occasional high velocity collisions that perturb the system).
- Based on Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2}\nabla \log \pi \big(\mathcal{L}(t)\big)dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$

where W is Brownian motion

#### Langevin dynamics

Consider posteriors of the following form (and more compact notation):

$$P(x \mid y) = \pi(x) \propto \exp[-g(x)]$$

- If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian dynamics) MCMC methods.
- Langevin dynamics model molecular dynamics (includes friction and occasional high velocity collisions that perturb the system).
- Based on Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution:

$$d\mathcal{L}(t) = \frac{1}{2} \boxed{\nabla \log \pi (\mathcal{L}(t))} dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0$$
Gradient

where W is Brownian motion.

Need gradients so cannot support sparse priors.

## Proximity operators

#### A brief aside

Define proximity operator:

$$prox_g^{\lambda}(\boldsymbol{x}) = \underset{\boldsymbol{u}}{\operatorname{arg min}} \left[ g(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^2 / 2\lambda \right]$$

Generalisation of projection operator:

$$\mathcal{P}_{\mathcal{C}}(\boldsymbol{x}) = \operatorname*{arg\,min}_{\boldsymbol{u}} \left[ \imath_{\mathcal{C}}(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^2 / 2 \right],$$

where  $\imath_{\mathcal{C}}(\boldsymbol{u}) = \infty$  if  $\boldsymbol{u} \notin \mathcal{C}$  and zero otherwise.

## Proximity operators

#### A brief aside

Define proximity operator:

$$prox_g^{\lambda}(\boldsymbol{x}) = \arg\min_{\boldsymbol{u}} \left[ g(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^2 / 2\lambda \right]$$

• Generalisation of projection operator:

$$\mathcal{P}_{\mathcal{C}}(\boldsymbol{x}) = \underset{\boldsymbol{u}}{\operatorname{arg min}} \left[ \imath_{\mathcal{C}}(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^2 / 2 \right],$$

where  $i_{\mathcal{C}}(\boldsymbol{u}) = \infty$  if  $\boldsymbol{u} \notin \mathcal{C}$  and zero otherwise.

### Proximity operators

#### A brief aside

Define proximity operator:

$$\operatorname{prox}_{g}^{\lambda}(\boldsymbol{x}) = \underset{\boldsymbol{u}}{\operatorname{arg\,min}} \left[ g(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^{2} / 2\lambda \right]$$

Generalisation of projection operator:

$$\mathcal{P}_{\mathcal{C}}(\boldsymbol{x}) = \underset{\boldsymbol{u}}{\operatorname{arg min}} \left[ \imath_{\mathcal{C}}(\boldsymbol{u}) + \|\boldsymbol{u} - \boldsymbol{x}\|^2 / 2 \right],$$

where  $i_{\mathcal{C}}(\boldsymbol{u}) = \infty$  if  $\boldsymbol{u} \notin \mathcal{C}$  and zero otherwise.



Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]

#### Moreau approximation

• Follow Pereyra (2016a) and consider Moreau approximation of  $\pi$ :

$$egin{aligned} \pi_{\lambda}(oldsymbol{x}) = \sup_{oldsymbol{u} \in \mathbb{R}^N} \pi(oldsymbol{u}) \exp\Biggl(-rac{\|oldsymbol{u} - oldsymbol{x}\|^2}{2\lambda}\Biggr) \end{aligned}$$

- Important properties of  $\pi_{\lambda}(x)$ :







Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]

#### Moreau approximation

• Follow Pereyra (2016a) and consider Moreau approximation of  $\pi$ :

$$\pi_{\lambda}(\boldsymbol{x}) = \sup_{\boldsymbol{u} \in \mathbb{R}^N} \pi(\boldsymbol{u}) \exp\left(-\frac{\|\boldsymbol{u} - \boldsymbol{x}\|^2}{2\lambda}\right)$$

- Important properties of  $\pi_{\lambda}(\boldsymbol{x})$ :







Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]

#### Proximal-MALA in the synthesis and analysis framework

#### Proximal Metropolis adjusted Langevin algorithm (P-MALA)

- $\bullet \ \, \text{Consider log-convex posteriors:} \ \, \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp \left[ \underbrace{ \left[ g(\boldsymbol{x}) \right]_{\geq 0}^{\times 0}}_{\geq 0} \right] \,.$
- Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution ( $\mathcal W$  Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi (\mathcal{L}(t)) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

Discretise and apply Moreau approximation:

$$egin{aligned} oldsymbol{l}^{(m+1)} &= oldsymbol{l}^{(m)} + rac{\delta}{2} \boxed{
abla \log \pi(oldsymbol{l}^{(m)})} + \sqrt{\delta} oldsymbol{w}^{(m)} \ . \ & \nabla \log \pi_{\lambda}(oldsymbol{x}) = (\mathrm{prox}_{\sigma}^{\lambda}(oldsymbol{x}) - oldsymbol{x})/\lambda \end{aligned}$$

Metropolis-Hastings accept-reject step

Need to compute  $\operatorname{prox}_{a}^{\delta/2}$  for problem (Cai. Perevra & McEwen, in prep.):

$$\simeq ext{prox}_{\lambda\|\cdot\|_1}^{\delta/2}igg(lpha-\deltaoldsymbol{\Psi}^\daggeroldsymbol{\Phi}^\daggerig(oldsymbol{\Phi}oldsymbol{\Psi}oldsymbol{lpha}-oldsymbol{y}ig)igg)$$

Synthesis framework

$$\simeq ext{prox}_{\lambda \parallel oldsymbol{\psi}^{\dagger} \cdot \parallel_{1}}^{\delta/2} igg( oldsymbol{x} - \delta oldsymbol{\Phi}^{\dagger} ig( oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y} ig) igg)$$

#### Proximal-MALA in the synthesis and analysis framework

#### Proximal Metropolis adjusted Langevin algorithm (P-MALA)

- $\bullet \ \, \text{Consider log-convex posteriors:} \ \, \mathrm{P}(\boldsymbol{x} \,|\, \boldsymbol{y}) = \pi(\boldsymbol{x}) \propto \exp\left[-\boxed{g(\boldsymbol{x})} \right] \overset{\times}{\underset{[0]}{\overset{\wedge}{\geqslant}}} \, \left] \ .$
- Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution ( $\mathcal{W}$  Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left( \mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

Discretise and apply Moreau approximation

$$l^{(m+1)} = l^{(m)} + \frac{\delta}{2} \left[ \nabla \log \pi(l^{(m)}) + \sqrt{\delta} \boldsymbol{w}^{(m)} \right].$$
  
$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

Metropolis-Hastings accept-reject step

Need to compute  $\text{prox}_{a}^{\delta/2}$  for problem (Cai. Perevra & McEwen, in prep.)

$$\simeq ext{prox}_{\lambda\|\cdot\|_1}^{\delta/2}igg(lpha-\deltaoldsymbol{\Psi}^\daggeroldsymbol{\Phi}^\daggerig(oldsymbol{\Phi}oldsymbol{\Psi}oldsymbol{lpha}-oldsymbol{y}ig)igg)$$

Synthesis framework

$$\simeq \mathrm{prox}_{\lambda \|oldsymbol{\psi}^\dagger \cdot \|_1}^{\delta/2} igg(oldsymbol{x} - \delta oldsymbol{\Phi}^\dagger ig(oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y}ig)igg)$$

Analysis framework

◆□▶◆♬▶◆Ē▶◆Ē▶ Ē ❤️९ⓒ

#### Proximal-MALA in the synthesis and analysis framework

#### Proximal Metropolis adjusted Langevin algorithm (P-MALA)

- Consider log-convex posteriors:  $P(x \mid y) = \pi(x) \propto \exp\left[-\frac{g(x)}{g(x)}\right]^{\frac{N}{N}}$
- Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution ( $\mathcal{W}$  Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left( \mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

Discretise and apply Moreau approximation:

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$
$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}_{a}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

Metropolis-Hastings accept-reject step

Need to compute  $\operatorname{prox}_{a}^{\delta/2}$  for problem (Cai. Perevra & McEwen, in prep.):

$$\simeq ext{prox}_{\lambda\|\cdot\|_1}^{\delta/2}igg(lpha - \deltaoldsymbol{\Psi}^\daggeroldsymbol{\Phi}^\daggerig(oldsymbol{\Phi}oldsymbol{\Psi}oldsymbol{lpha} - oldsymbol{y}ig)igg)$$

Synthesis framework

$$\simeq \operatorname{prox}_{\lambda \|oldsymbol{\psi}^{\dagger} \cdot \|_{1}}^{\delta/2} \left( oldsymbol{x} - \delta oldsymbol{\Phi}^{\dagger} ig( oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y} ig) 
ight)$$

Analysis framework

#### Proximal-MALA in the synthesis and analysis framework

#### Proximal Metropolis adjusted Langevin algorithm (P-MALA)

- Consider log-convex posteriors:  $P(x | y) = \pi(x) \propto \exp\left[-\frac{g(x)}{g(x)}\right]$ .
- Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution ( $\mathcal{W}$  Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left( \mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

Discretise and apply Moreau approximation:

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$
$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}_{a}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

Metropolis-Hastings accept-reject step.

$$\left[ \simeq \mathrm{prox}_{\lambda\|\cdot\|_1}^{\delta/2} \left( lpha - \delta oldsymbol{\Psi}^\dagger oldsymbol{\Phi}^\dagger ig( oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha} - oldsymbol{y} ig) 
ight]$$

$$\simeq \operatorname{prox}_{\lambda \|oldsymbol{\psi}^{\dagger} \cdot \|_{1}}^{\delta/2} \left( oldsymbol{x} - \delta oldsymbol{\Phi}^{\dagger} ig( oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y} ig) 
ight)$$

#### Proximal-MALA in the synthesis and analysis framework

#### Proximal Metropolis adjusted Langevin algorithm (P-MALA)

- ullet Consider log-convex posteriors:  $\mathrm{P}(m{x} \,|\, m{y}) = \pi(m{x}) \propto \exp\left[-\left(m{g(m{x})}\right) egin{smallmatrix} \mathbb{X} \\ \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \end{bmatrix}$  .
- Langevin diffusion process  $\mathcal{L}(t)$ , with  $\pi$  as stationary distribution ( $\mathcal{W}$  Brownian motion):

$$d\mathcal{L}(t) = \frac{1}{2} \nabla \log \pi \left( \mathcal{L}(t) \right) dt + d\mathcal{W}(t), \quad \mathcal{L}(0) = l_0.$$

Discretise and apply Moreau approximation:

$$\boldsymbol{l}^{(m+1)} = \boldsymbol{l}^{(m)} + \frac{\delta}{2} \boxed{\nabla \log \pi(\boldsymbol{l}^{(m)})} + \sqrt{\delta} \boldsymbol{w}^{(m)}.$$
$$\nabla \log \pi_{\lambda}(\boldsymbol{x}) = (\operatorname{prox}_{a}^{\lambda}(\boldsymbol{x}) - \boldsymbol{x})/\lambda$$

Metropolis-Hastings accept-reject step.

Need to compute  $\operatorname{prox}_{q}^{\delta/2}$  for problem (Cai, Pereyra & McEwen, in prep.):

$$\simeq \mathrm{prox}_{\lambda\|\cdot\|_1}^{\delta/2}igg(oldsymbol{lpha} - \deltaoldsymbol{\Psi}^\daggeroldsymbol{\Phi}^\daggerig(oldsymbol{\Phi}oldsymbol{\Psi}oldsymbol{lpha} - oldsymbol{y}ig)igg)$$

$$\simeq ext{prox}_{\lambda \parallel oldsymbol{\psi}^{\dagger} \cdot \parallel_1}^{\delta/2} igg( oldsymbol{x} - \delta oldsymbol{\Phi}^{\dagger} ig( oldsymbol{\Phi} oldsymbol{x} - oldsymbol{y} ig) igg)$$

### Preliminary results on simulations



(a) Dirty image

Figure: HII region of M31

(Extra)



Figure: HII region of M31



Figure: HII region of M31



Figure: Supernova remnant W28



Figure: Supernova remnant W28



Figure: Supernova remnant W28



Figure: 3C288



Figure: 3C288



Figure: 3C288

- Combine error estimation with fast sparse regularisation (cf. compressive sensing).
- Let  $C_{\alpha}$  denote the highest posterior density (HPD) Bayesian credible region with confidence level  $(1-\alpha)\%$  defined by posterior iso-contour:  $C_{\alpha}=\{x:g(x)\leq\gamma_{\alpha}\}$
- Analytic approximation  $\tilde{\gamma}_{\alpha} = g(x^{\star}) + N(\tau_{\alpha} + 1)$  (Pereyra 2016b).
- ullet Compute  $oldsymbol{x}^*$  by sparse regularisation and estimate local Bayesian credible intervals.

## Bayesian credible regions for compressive sensing

- Combine error estimation with fast sparse regularisation (cf. compressive sensing).
- Let  $C_{\alpha}$  denote the highest posterior density (HPD) Bayesian credible region with confidence level  $(1-\alpha)\%$  defined by posterior iso-contour:  $C_{\alpha} = \{x : g(x) \leq \gamma_{\alpha}\}$ .
- Analytic approximation  $\tilde{\gamma}_{\alpha} = g(x^{\star}) + N(\tau_{\alpha} + 1)$  (Pereyra 2016b).
- ullet Compute  $oldsymbol{x}^{\star}$  by sparse regularisation and estimate local Bayesian credible intervals.

## Bayesian credible regions for compressive sensing

- Combine error estimation with fast sparse regularisation (cf. compressive sensing).
- Let  $C_{\alpha}$  denote the highest posterior density (HPD) Bayesian credible region with confidence level  $(1 - \alpha)\%$  defined by posterior iso-contour:  $C_{\alpha} = \{x : g(x) \le \gamma_{\alpha}\}.$
- Analytic approximation  $\tilde{\gamma}_{\alpha} = g(x^{\star}) + N(\tau_{\alpha} + 1)$  (Pereyra 2016b).
- Compute  $x^*$  by sparse regularisation and estimate local Bayesian credible intervals.

### Bayesian credible regions for compressive sensing

- Combine error estimation with fast sparse regularisation (cf. compressive sensing).
- Let  $C_{\alpha}$  denote the highest posterior density (HPD) Bayesian credible region with confidence level  $(1-\alpha)\%$  defined by posterior iso-contour:  $C_{\alpha} = \{x: g(x) \leq \gamma_{\alpha}\}$ .
- Analytic approximation  $\tilde{\gamma}_{\alpha} = g(\boldsymbol{x}^{\star}) + N(\tau_{\alpha} + 1)$  (Pereyra 2016b).
- ullet Compute  $oldsymbol{x}^{\star}$  by sparse regularisation and estimate local Bayesian credible intervals.

### Local Bayesian credible intervals for sparse reconstruction (Cai, Pereyra & McEwen, in prep.)

Let  $\Omega$  define the area (or pixel) over which to compute the credible interval  $(\bar{\xi}_-,\bar{\xi}_+)$  and  $\zeta$  be an index vector describing  $\Omega$  (i.e.  $\zeta_i=1$  if  $i\in\Omega$  and 0 otherwise).

Given  $\tilde{\gamma}_{\alpha}$  and  $\boldsymbol{x}^{\star}$ , compute the credible interval by

$$\begin{split} \tilde{\xi}_{-} &= \min_{\xi} \left\{ \xi \mid g_{\boldsymbol{y}}(\boldsymbol{x}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}, \\ \tilde{\xi}_{+} &= \max_{\xi} \left\{ \xi \mid g_{\boldsymbol{y}}(\boldsymbol{x}') \leq \tilde{\gamma}_{\alpha}, \ \forall \xi \in [-\infty, +\infty) \right\}, \end{split}$$

where

$$x' = x^* (\mathcal{I} - \zeta) + \xi \zeta$$



(a) Recovered image

Figure: HII region of M31



(a) Recovered image



(b) Credible intervals for regions of size  $10 \times 10$ 

Figure: HII region of M31

### Bayesian credible regions Preliminary results on simulations



Figure: HII region of M31



(a) Recovered image

Figure: Supernova remnant W28



(a) Recovered image



(b) Credible intervals for regions of size  $10 \times 10$ 







(d) Credible intervals for regions of size  $30 \times 30$ 

Figure: Supernova remnant W28

### Bayesian credible regions Preliminary results on simulations



(a) Recovered image

Figure: 3C288

# Bayesian credible regions Preliminary results on simulations



(a) Recovered image



(b) Credible intervals for regions of size  $10 \times 10$ 



(c) Credible intervals for regions of size  $20 \times 20$ 



(d) Credible intervals for regions of size  $30 \times 30$ 

Figure: 3C288

# Hypothesis testing Method

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

# Hypothesis testing

#### Method

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

# Hypothesis testing Method

- etnoa
- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- ullet Cut out region containing structure of interest from recovered image  $x_{\star}$ .
- ② Inpaint background (noise) into region, yielding surrogate image  $oldsymbol{x}'$
- $\bullet$  Test whether  $x' \in C_{\alpha}$ :
  - If  $x' \notin C_{\alpha}$  then reject hypothesis that structure is an artefact with confiden
    - (= 11),50, 1111 = 111111 111111 111111
  - ullet If  $x' \in C_{lpha}$  uncertainly too high to draw strong conclusions about the physical nature of the structure

### Hypothesis testing Method

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- lacktriangle Cut out region containing structure of interest from recovered image  $x_{\star}$ .
- 2 Inpaint background (noise) into region, yielding surrogate image x'.

# Method

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- lacktriangle Cut out region containing structure of interest from recovered image  $x_{\star}$ .
- 2 Inpaint background (noise) into region, yielding surrogate image x'.
- **3** Test whether  $x' \in C_{\alpha}$ :

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- lacktriangle Cut out region containing structure of interest from recovered image  $x_{\star}$ .
- 2 Inpaint background (noise) into region, yielding surrogate image x'.
- $\bullet$  Test whether  $x' \in C_{\alpha}$ :
  - If  $x' \notin C_{\alpha}$  then reject hypothesis that structure is an artefact with confidence  $(1-\alpha)$ %, i.e. structure most likely physical.

- Is structure in an image physical or an artefact?
- Can we make precise statistical statements?
- Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

- lacktriangle Cut out region containing structure of interest from recovered image  $x_{\star}$ .
- 2 Inpaint background (noise) into region, yielding surrogate image x'.
- $\bullet$  Test whether  $x' \in C_{\alpha}$ :
  - If  $x' \notin C_{\alpha}$  then reject hypothesis that structure is an artefact with confidence  $(1-\alpha)$ %, i.e. structure most likely physical.
  - If  $x' \in C_{\alpha}$  uncertainly too high to draw strong conclusions about the physical nature of the structure.

# Hypothesis testing Preliminary results on simulations



(a) Recovered image

Figure: HII region of M31

(a) Recovered image



(b) Surrogate with region removed

Figure: HII region of M31



(a) Recovered image



(b) Surrogate with region removed

Figure: HII region of M31

Reject null hypothesis

⇒ structure physical



Figure: Supernova remnant W28



Figure: Supernova remnant W28



Figure: Supernova remnant W28

Reject null hypothesis

⇒ structure physical

# Hypothesis testing Preliminary results on simulations



(a) Recovered image

Figure: 3C288



Figure: 3C288

# Hypothesis testing Preliminary results on simulations



(a) Recovered image



(b) Surrogate with region removed

Figure: 3C288

Reject null hypothesis

⇒ structure physical

### Conclusions

Unified framework for interferometric imaging.

Sparse priors (cf. compressive sensing) shown to be highly effective and scalable to big-data.

PURIFY package provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).

Seek statistical interpretation to recover error information.

Proximal MCMC sampling can support sparse priors in full statistical framework

Combine error estimation with fast sparse regularisation (cf. compressive sensing):

- Recover Bayesian credible regions.
- Perform hypothesis testing to test whether structure physical.

#### Supported by:





### Conclusions

Unified framework for interferometric imaging.

Sparse priors (cf. compressive sensing) shown to be highly effective and scalable to big-data.

PURIFY package provides robust framework for imaging interferometric observations (http://basp-group.github.io/purify/).

2 Seek statistical interpretation to recover error information.

Proximal MCMC sampling can support sparse priors in full statistical framework.

Combine error estimation with fast sparse regularisation (cf. compressive sensing):

- Recover Bayesian credible regions.
- Perform hypothesis testing to test whether structure physical.

#### Supported by:





# Extra Slides

Compressive sensing Analysis vs synthesis Bayesian interpretations

PURIFY reconstructions

# Extra Slides

Compressive sensing

# An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

$$x(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \quad o \quad \boldsymbol{x} = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} | \end{pmatrix} \alpha_{1} + \cdots \quad o \quad \boxed{\boldsymbol{x} = \boldsymbol{\Psi} \boldsymbol{\alpha}}$$

Linear operator (linear algebra) representation of measurement:

$$y_i = \langle x, \Phi_j \rangle \quad \rightarrow \quad \mathbf{y} = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ & \vdots \end{pmatrix} \mathbf{x} \quad \rightarrow \quad \mathbf{y} = \mathbf{\Phi} \mathbf{x}$$

• Putting it together:

$$y = \Phi x = \Phi \Psi \alpha$$



## An introduction to compressive sensing

Promoting sparsity via  $\ell_1$  minimisation

Ill-posed inverse problem:

$$oxed{y = oldsymbol{\Phi} oldsymbol{x} + oldsymbol{n} = oldsymbol{\Phi} oldsymbol{\Psi} oldsymbol{lpha} + oldsymbol{n}}$$

• Solve by imposing a regularising prior that the signal to be recovered is sparse in  $\Psi$ , *i.e.* solve the following  $\ell_0$  optimisation problem:

$$\boxed{ \pmb{\alpha}^\star = \underset{\pmb{\alpha}}{\arg\min} \|\pmb{\alpha}\|_0 \text{ subject to } \|\pmb{y} - \Phi \Psi \pmb{\alpha}\|_2 \leq \epsilon } \ ,$$

where the signal is synthesised by  $x^* = \Psi \alpha^*$ .

Recall norms given by:

$$\|\pmb{\alpha}\|_0 = \text{no. non-zero elements} \qquad \|\pmb{\alpha}\|_1 = \sum_i |\pmb{\alpha}_i| \qquad \|\pmb{\alpha}\|_2^2 = \sum_i |\pmb{\alpha}_i|^2$$

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ<sub>1</sub> optimisation problem (convex):

$$\boxed{ \boldsymbol{\alpha}^{\star} = \mathop{\arg\min}_{\boldsymbol{\alpha}} \lVert \boldsymbol{\alpha} \rVert_1 \ \text{subject to} \ \lVert \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \rVert_2 \leq \epsilon } \ .$$

# An introduction to compressive sensing Union of subspaces

• Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.



Figure: Space of the sparse vectors [Credit: Baraniuk]

# An introduction to compressive sensing Restricted isometry property (RIP)

- ullet Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Restricted isometry property (RIP):

$$(1 - \delta_{2K}) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \le \| \boldsymbol{\Theta} \boldsymbol{x}_1 - \boldsymbol{\Theta} \boldsymbol{x}_2 \|_2^2 \le (1 + \delta_{2K}) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \|_2^2 \ ,$$
 for  $K$ -sparse  $\boldsymbol{x}_1$  and  $\boldsymbol{x}_2$ , where  $\boldsymbol{\Theta} = \Phi \Psi$ .

Measurement must preserve geometry of sets of sparse vectors.



Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]

### An introduction to compressive sensing Intuition

- Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Geometry of  $\ell_0$ ,  $\ell_2$  and  $\ell_1$  problems.



Figure: Geometry of (a)  $\ell_0$  (b)  $\ell_2$  and (c)  $\ell_1$  problems. [Credit: Baraniuk (2007)]

# An introduction to compressive sensing Sparsity and coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

$$M \ge c\mu^2 K \log N$$

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by



# Extra Slides

Analysis vs synthesis

#### Analysis vs synthesis

- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- Different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$egin{aligned} oldsymbol{x}^\star = rg\min_{oldsymbol{x}} \|oldsymbol{\Omega} oldsymbol{x}\|_1 & ext{subject to } \|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon \ . \end{aligned}$$
 analysis

Contrast with synthesis-based approach:

$$\boxed{ egin{align*} \pmb{x}^\star = \Psi \ \cdot \ \text{arg min} \ \|\pmb{\alpha}\|_1 \ \text{ subject to } \ \|\pmb{y} - \Phi\Psi\pmb{\alpha}\|_2 \leq \epsilon \ . \end{bmatrix}} \\ \text{synthesis} }$$

• For orthogonal bases  $\Omega = \Psi^{\dagger}$  and the two approaches are identical.

#### Analysis vs synthesis Comparison



Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].

### Analysis vs synthesis

#### Comparison

- Synthesis-based approach is more general, while analysis-based approach more restrictive.
- More restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).

### Extra Slides

Bayesian interpretations

#### Bayesian interpretations

#### One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:

$$y = \Phi \Psi \alpha + n$$
.

Assume Gaussian noise, yielding the likelihood:

$$P(\boldsymbol{y} \mid \boldsymbol{\alpha}) \propto \exp\left(\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_2^2/(2\sigma^2)\right).$$

Consider the Laplacian prior:

$$P(\boldsymbol{\alpha}) \propto \exp(-\beta \|\boldsymbol{\alpha}\|_1)$$
.

ullet The maximum *a-posteriori* (MAP) estimate (with  $\lambda=2eta\sigma^2$ ) is

$$\left| \begin{array}{l} \boldsymbol{x}_{\mathsf{MAP-synthesis}}^{\star} = \boldsymbol{\Psi} \, \cdot \, \arg\max_{\boldsymbol{\alpha}} \mathrm{P}(\boldsymbol{\alpha} \,|\, \boldsymbol{y}) = \boldsymbol{\Psi} \, \cdot \, \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1} \, . \end{array} \right|$$

synthesis

- One possible Bayesian interpretation!
- Signal may be  $\ell_0$ -sparse, then solving  $\ell_1$  problem finds the correct  $\ell_0$ -sparse solution!

#### Bayesian interpretations

#### Other Bayesian interpretations of the synthesis-based approach

- Other Bayesian interpretations are also possible (Gribonval 2011).
- Minimum mean square error (MMSE) estimators
  - synthesis-based estimators with appropriate penalty function, i.e. penalised least-squares (LS)
  - MAP estimators



#### Bayesian interpretations

#### One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

$$\boxed{ \boldsymbol{x}_{\mathsf{MAP-analysis}}^{\star} = \boldsymbol{\Omega}^{\dagger} \, \cdot \, \mathop{\mathsf{arg \; min}}_{\boldsymbol{\gamma} \in \mathsf{column \; space} \; \boldsymbol{\Omega}} \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Omega}^{\dagger} \boldsymbol{\gamma} \|_2^2 + \lambda \| \boldsymbol{\gamma} \|_1 \, . }$$

analysis

- Different to synthesis-based approach if analysis operator  $\Omega$  is not an orthogonal basis.
- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).

### Extra Slides

**PURIFY** reconstructions

# CLEAN (natural) reconstruction VLA observation of 3C129



# CLEAN (uniform) reconstruction VLA observation of 3C129



# PURIFY reconstruction VLA observation of 3C129



# CLEAN (natural) reconstruction VLA observation of Cygnus A



# CLEAN (uniform) reconstruction VLA observation of Cygnus A



# PURIFY reconstruction VLA observation of Cygnus A



# CLEAN (natural) reconstruction ATCA observation of PKS J0334-39



# CLEAN (uniform) reconstruction ATCA observation of PKS J0334-39



### PURIFY reconstruction ATCA observation of PKS J0334-39



#### CLEAN (natural) reconstruction ATCA observation of PKS J0116-473



# CLEAN (uniform) reconstruction ATCA observation of PKS J0116-473



# PURIFY reconstruction ATCA observation of PKS J0116-473



#### **PURIFY** reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

| Observation   | PURIFY | CLEAN<br>(natural) | CLEAN<br>(uniform) |
|---------------|--------|--------------------|--------------------|
| 3C129         | 0.10   | 0.23               | 0.11               |
| Cygnus A      | 6.1    | 59                 | 36                 |
| PKS J0334-39  | 0.052  | 1.00               | 0.37               |
| PKS J0116-473 | 0.054  | 0.88               | 0.24               |