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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Bayesian evolution
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Bayesian inference

Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

Bayes to the rescue:

P(x |y,M) =
P(y |x,M) P(x |M)

P(y |M)

Bayes Theorem

Bayes theorem in words:

posterior =
likelihood× prior

evidence

How do we perform Bayesian inference in practice?

⇒ maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)
(and many others)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Bayesian inference

Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

Bayes to the rescue:

P(x |y,M) =
P(y |x,M) P(x |M)

P(y |M)

Bayes Theorem

Bayes theorem in words:

posterior =
likelihood× prior

evidence

How do we perform Bayesian inference in practice?

⇒ maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)
(and many others)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Bayesian inference

Given data y (visibilities) and model M (interferometric telescope with Gaussian noise),
we want a full probabilistic description of our knowledge of the underlying sky image x.

Bayes to the rescue:

P(x |y,M) =
P(y |x,M) P(x |M)

P(y |M)

Bayes Theorem

Bayes theorem in words:

posterior =
likelihood× prior

evidence

How do we perform Bayesian inference in practice?

⇒ maximum a-posteriori (MAP) estimates and sampling approaches (MCMC)
(and many others)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Bayes in practice
MAP and MCMC sampling

Figure: Probability distribution to explore in 2D
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Bayes in practice
MAP and MCMC sampling

Figure: Maximum a-posteriori (MAP) estimate
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Bayes in practice
MAP and MCMC sampling

Figure: Markov Chain Monte Carlo (MCMC) sampling
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MAP estimation and regularisation
Hint: they’re the same thing!

Many interferometric imaging approaches are based on regularisation
(i.e. minimising an objective function comprised of a data-fidelity penalty and a
regularisation penalty).

Consider the MAP estimation problem. . .
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MAP estimation and regularisation
Hint: they’re the same thing!

Start with Bayes Theorem (ignore normalising evidence):

P(x |y) ∝ P(y |x)P(x) , i.e. posterior ∝ likelihood× prior

Define likelihood (assuming Gaussian noise) and prior:

P(y |x) ∝ exp
(
−
∥∥y −Φx

∥∥2
2
/(2σ2)

)
Likelihood

P(x) ∝ exp
(
−R(x)

)
Prior

Consider log-posterior:

log P(x |y) = −
∥∥y −Φx

∥∥2
2
/(2σ2)−R(x) + const.

MAP estimator:

xmap = arg max
x

[
log P(x |y)

]
= arg min

x

[
− log P(x |y)

]
= arg min

x

[ ∥∥y −Φx
∥∥2
2

Data fidelity

+ λ R(x)

Regulariser

]
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Norms often considered for regularisation

Recall norms given by:

‖α‖22 =
∑
i

|αi|2 ‖α‖1 =
∑
i

|αi| ‖α‖0 = no. non-zero elements

Figure: Norms in 1D [Credit: Qiao 2014]
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Norms often considered for regularisation

Recall norms given by:

‖α‖22 =
∑
i

|αi|2 ‖α‖1 =
∑
i

|αi| ‖α‖0 = no. non-zero elements

`2 norm `1 norm `p norm (p < 1)

Figure: Norms in 2D [Credit: Kudo et al. 2013]
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CLEAN and MEM as MAP estimators

CLEAN

Consider the sparse prior: P(x) ∝ exp
(
−β

∥∥x∥∥
0

)
.

Corresponding MAP estimator is:

xclean ' arg min
x

[∥∥y −Φx
∥∥2
2

+ λ
∥∥x∥∥

0

]

MEM

Consider the entropic prior: P(x) ∝ exp
(
−β x† logx

)
.

Corresponding MAP estimator is:

xmem ' arg min
x

[∥∥y −Φx
∥∥2
2

+ λ x† logx
]

(In practice some differences: CLEAN does not solve MAP problem exactly;
MEM considered in RI imposes additional constraints.)
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Compressive sensing as MAP estimator

Naive compressive sensing

Consider the Laplacian prior: P(x) ∝ exp
(
−β

∥∥x∥∥
1

)
.

Corresponding MAP estimator is:

xcs = arg min
x

[∥∥y −Φx
∥∥2
2

+ λ
∥∥x∥∥

1

]

(This is one possible Bayesian interpretation of compressive sensing but there are others.)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Compressive sensing as MAP estimator

Naive compressive sensing

Consider the Laplacian prior: P(x) ∝ exp
(
−β

∥∥x∥∥
1

)
.

Corresponding MAP estimator is:

xcs = arg min
x

[∥∥y −Φx
∥∥2
2

+ λ
∥∥x∥∥

1

]

(This is one possible Bayesian interpretation of compressive sensing but there are others.)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Compressive sensing as MAP estimator

Naive compressive sensing

Consider the Laplacian prior: P(x) ∝ exp
(
−β

∥∥x∥∥
1

)
.

Corresponding MAP estimator is:

xcs = arg min
x

[∥∥y −Φx
∥∥2
2

+ λ
∥∥x∥∥

1

]

(This is one possible Bayesian interpretation of compressive sensing but there are others.)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification Bayesian inference Regularisation Compressive Sensing

Compressive sensing
Synthesis framework

Consider sparsifying representation (e.g. wavelet basis):

x =
∑
i

Ψiαi =

 |Ψ0

|

α0 +

 |Ψ1

|

α1 + · · · ⇒ x = Ψα

Recover (wavelet) coefficients α of image x.

Consider the Laplacian prior on coefficients: P(α) ∝ exp
(
−β

∥∥α∥∥
1

)
.

Sparse synthesis regularisation problem:

xsynthesis = Ψ× arg min
α

[∥∥y −ΦΨα
∥∥2
2

+ λ
∥∥α∥∥

1

]
Synthesis framework
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Compressive sensing
Analysis framework

Typically sparsity assumption justified by analysing example signals in transformed domain.

Different to synthesising signals.

Suggests sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = arg min
x

[∥∥y −Φx
∥∥2
2

+ λ
∥∥Ψ†x

∥∥
1

]
Analysis framework

(For orthogonal bases Ω = Ψ† and the two approaches are identical.)
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Compressive sensing
Analysis vs synthesis

Synthesis-based approach is more general, while analysis-based approach more restrictive.

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)]
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Compressive sensing
SARA algorithm

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

Promote average sparsity by solving the constrained reweighted `1 analysis problem:

min
x∈RN

‖WΨ†x‖1 subject to ‖y −Φx‖2 ≤ ε and x ≥ 0

SA
R
A
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Outline

1 A unified framework for radio interferometric imaging
Bayesian inference
Regularisation
Compressive sensing

2 Compressive sensing for SKA imaging
PURIFY
Reconstruction fidelity
Scaling to big-data

3 Uncertainty quantification
Proximal MCMC
Compressive sensing with Bayesian credible intervals
Hypothesis testing
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Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d’Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux, Kartik, d’Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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Robust application of PURIFY to real interferometric observations

Robust sparse image reconstruction of radio interferometric observations with PURIFY
(Pratley, McEwen, et al. 2016; arXiv:1610.02400).

All parameters are set automatically (but can be refined).

Table: Description of main user parameters for using PURIFY to reconstruct an observation.

Parameter PURIFY option Description Value

η –l2_bound Parameterisation of the fidelity constraint:
εη = η

√
Mσn.

η = 1.4 (default); η ∈ [1, 10]
(typical).

β –beta Parameterisation of the step size of the algo-
rithm: γ̃i = β‖Ψ†x(i)‖`∞ (default). One

can also fix γ = β‖Ψ†x(0)‖`∞ .

β = 10−3 (default)

δadapt –relative_gamma_adapt Relative difference criteria for adapting γi. δadapt = 0.01 (default).

iadapt –adapt_iter Number of iterations to consider adapting the
step size γi (should be before convergence).

iadapt = 100 (default).

δ –relative_variation Relative difference convergence crite-
ria on the `2-norm of the solution:
‖x(i)−x(i−1)‖`2
‖x(i)‖`2

≤ δ.

δ = 5 × 10−3 (default).

ξ –residual_convergence Convergence criteria on the `2 residual norm:
‖y − Φx‖`2 ≤ ξεη

ξ = 1 (default); require ξ ≥ 1.

imax –niters Maximum number of iterations. imax = ∞ (default).

Jason McEwen Next-generation radio interferometric imaging (Extra)
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Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification PURIFY Reconstruction Fidelity Scaling to Big-Data

PURIFY reconstruction
VLA observation of 3C129

Figure: VLA visibility coverage for 3C129
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

Figure: VLA visibility coverage for Cygnus A

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification PURIFY Reconstruction Fidelity Scaling to Big-Data

PURIFY reconstruction
VLA observation of Cygnus A

m
Jy

/B
ea

m

0

0.5

1

1.5

(a) CLEAN (natural)

m
Jy

/B
ea

m

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) CLEAN (uniform)

Jy
/P

ix
el

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) PURIFY

Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

Figure: VLA visibility coverage for PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)

Jason McEwen Next-generation radio interferometric imaging (Extra)



RI Imaging CS for SKA Uncertainty Quantification PURIFY Reconstruction Fidelity Scaling to Big-Data

PURIFY reconstruction
ATCA observation of PKS J0116-473

Figure: ATCA visibility coverage for Cygnus A
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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Distributed and parallelised convex optimisation

Solve resulting convex optimisation problems by proximal splitting.

Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016)

y =

 y1...
ynd

 , Φ =

 Φ1

...
Φnd

 =

 G1M1

...
GndMnd

FZ .
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Distributed and parallelised convex optimisationScalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j

1
Gjb

(t)
j + r

(t)
j ≠ s

(t)
j

2

11: end and gather q
(t)
j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
jq

(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel

20: d
(k)
i = 1

÷

3
I ≠SŸÎ�ÎS

41
÷d

(k≠1)
i + �†

i z̄
(k≠1)

2

21: d̃
(k)
i = �id

(k)
i

22: end
23: z̄(k) = PC

1
z ≠

nbÿ

i=1

d̃
(k)
i

2

24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
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the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Algorithm 1 Dual forward-backward ADMM.
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14: until convergence

15: function DualFB
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1
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d̃
(k)
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24: until convergence
25: return z̄(k)
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
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prior, and image spaces.
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Outline

1 A unified framework for radio interferometric imaging
Bayesian inference
Regularisation
Compressive sensing

2 Compressive sensing for SKA imaging
PURIFY
Reconstruction fidelity
Scaling to big-data

3 Uncertainty quantification
Proximal MCMC
Compressive sensing with Bayesian credible intervals
Hypothesis testing
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Alternative is to sample full posterior distribution P(x |y).

⇒ Provides uncertainly (error) information.

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Gibbs sampling applied to radio interferometric imaging (Sutter, Wandelt, McEwen, et al.
2014), using methods developed for CMB by Wandelt et al. (2005).

Assume isotropic Gaussian process prior characterised by power spectrum C`.

Sample from conditional distributions:

x
i+1 ← P(x |Ci`,y) and C

i+1
` ← P(C` |xi+1

) .

Require MCMC approach to support sparse priors, which shown to be highly effective.
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

MCMC sampling with gradients
Langevin dynamics

Consider posteriors of the following form (and more compact notation):

P(x |y) = π(x)

Posterior

∝ exp
[
− g(x)

Convex

]

If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

Langevin dynamics model molecular dynamics (includes friction and occasional high
velocity collisions that perturb the system).

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC
Moreau approximation

Follow Pereyra (2016a) and consider Moreau approximation of π:

πλ(x) = sup
u∈RN

π(u) exp

(
−
‖u− x‖2

2λ

)

Important properties of πλ(x):

1 As λ→ 0, πλ(x)→ π(x)

2 ∇ log πλ(x) = (proxλg (x)− x)/λ ∈ ∂ log π
(
proxλg (x)

)

Figure: Illustration of Moreau approximations [Credit: Pereyra (2016a)]
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RI Imaging CS for SKA Uncertainty Quantification Prox-MCMC Bayesian Credibility Hypothesis Testing

Proximal MCMC
Proximal-MALA in the synthesis and analysis framework

Proximal Metropolis adjusted Langevin algorithm (P-MALA)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
[
− g(x)

C
on

ve
x ]

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Discretise and apply Moreau approximation:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.

Need to compute prox
δ/2
g for problem (Cai, Pereyra & McEwen, in prep.):

' prox
δ/2
λ‖·‖1

(
α− δΨ†Φ†

(
ΦΨα− y

))
Synthesis framework

' prox
δ/2

λ‖Ψ†·‖1

(
x− δΦ†

(
Φx− y

))
Analysis framework
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Proximal Metropolis adjusted Langevin algorithm (P-MALA)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
[
− g(x)

C
on

ve
x ]

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Discretise and apply Moreau approximation:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.

Need to compute prox
δ/2
g for problem (Cai, Pereyra & McEwen, in prep.):

' prox
δ/2
λ‖·‖1

(
α− δΨ†Φ†

(
ΦΨα− y

))
Synthesis framework

' prox
δ/2

λ‖Ψ†·‖1

(
x− δΦ†

(
Φx− y

))
Analysis framework
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Proximal MCMC
Preliminary results on simulations

(a) Dirty image

(b) Mean recovered image (c) Standard deviation image

Figure: HII region of M31
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Bayesian credible regions for compressive sensing

Combine error estimation with fast sparse regularisation (cf. compressive sensing).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Analytic approximation γ̃α = g(x?) +N(τα + 1) (Pereyra 2016b).

Compute x? by sparse regularisation and estimate local Bayesian credible intervals.

Local Bayesian credible intervals for sparse reconstruction (Cai, Pereyra & McEwen, in prep.)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

where

x
′

= x
?
(I − ζ) + ξζ .
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Bayesian credible regions
Preliminary results on simulations

(a) Recovered image

(b) Credible intervals for
regions of size 10× 10

(c) Credible intervals for
regions of size 20× 20

(d) Credible intervals for
regions of size 30× 30

Figure: HII region of M31
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Hypothesis testing
Method

Is structure in an image physical or an artefact?

Can we make precise statistical statements?

Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Hypothesis testing of physical structure

1 Cut out region containing structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artefact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing
Preliminary results on simulations

1

(a) Recovered image

(b) Surrogate with region removed

Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Conclusions

1 Unified framework for interferometric imaging.

Sparse priors (cf. compressive sensing) shown to be highly effective and scalable to big-data.

PURIFY package provides robust framework for imaging interferometric observations
(http://basp-group.github.io/purify/).

2 Seek statistical interpretation to recover error information.

Proximal MCMC sampling can support sparse priors in full statistical framework.

Combine error estimation with fast sparse regularisation (cf. compressive sensing):

Recover Bayesian credible regions.

Perform hypothesis testing to test whether structure physical.

Supported by:
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Compressive sensing Analysis vs synthesis Bayesian interpretations
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An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑
i

αiΨi(t) → x =
∑
i

Ψiαi =

 |Ψ0

|

α0 +

 |Ψ1

|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Ill-posed inverse problem:

y = Φx+ n = ΦΨα+ n .

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α
‖α‖0 subject to ‖y − ΦΨα‖2 ≤ ε ,

where the signal is synthesised by x? = Ψα?.

Recall norms given by:
‖α‖0 = no. non-zero elements ‖α‖1 =

∑
i

|αi| ‖α‖22 =
∑
i

|αi|2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α
‖α‖1 subject to ‖y − ΦΨα‖2 ≤ ε .
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An introduction to compressive sensing
Union of subspaces

Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

• Sparse signal: All but K coordinates are zero

• Model: union of K-dimensional subspaces
aligned w/ coordinate axes
(highly nonlinear!)

Geometrical Situation

sparse
signal

nonzero
entries

Figure: Space of the sparse vectors [Credit: Baraniuk]
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An introduction to compressive sensing
Restricted isometry property (RIP)

Solutions of `0 and `1 problems often the same.

Restricted isometry property (RIP):

(1− δ2K)‖x1 − x2‖22 ≤ ‖Θx1 −Θx2‖22 ≤ (1 + δ2K)‖x1 − x2‖22 ,
for K-sparse x1 and x2, where Θ = ΦΨ.

Measurement must preserve geometry of sets of sparse vectors.

Stable Embedding
• An information preserving projection      preserves 

the geometry of the set of sparse signals

• How to do this?    Ensure

K-dim subspaces

Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]
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An introduction to compressive sensing
Intuition

Solutions of `0 and `1 problems often the same.

Geometry of `0, `2 and `1 problems.

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Sparsity and coherence

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K logN ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√
N max

i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x

‖Ωx‖1 subject to ‖y − Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 subject to ‖y − ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.
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Analysis vs synthesis
Comparison

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

Synthesis-based approach is more general, while analysis-based approach more restrictive.

More restrictive analysis-based approach may make it more robust to noise.

The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα+ n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y −ΦΨα‖22/(2σ2)

)
.

Consider the Laplacian prior:

P(α) ∝ exp
(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-synthesis = Ψ · arg max
α

P(α |y) = Ψ · arg min
α

‖y − ΦΨα‖22 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

x?MAP-analysis = Ω† · arg min
γ∈column space Ω

‖y − ΦΩ†γ‖22 + λ‖γ‖1 .

analysis

Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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CLEAN (natural) reconstruction
VLA observation of 3C129
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CLEAN (uniform) reconstruction
VLA observation of 3C129
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PURIFY reconstruction
VLA observation of 3C129
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CLEAN (natural) reconstruction
VLA observation of Cygnus A
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CLEAN (uniform) reconstruction
VLA observation of Cygnus A
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PURIFY reconstruction
VLA observation of Cygnus A
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CLEAN (natural) reconstruction
ATCA observation of PKS J0334-39
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CLEAN (uniform) reconstruction
ATCA observation of PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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CLEAN (natural) reconstruction
ATCA observation of PKS J0116-473
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CLEAN (uniform) reconstruction
ATCA observation of PKS J0116-473
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36

PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24
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