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Next-generation of radio interferometry rapidly approaching

Square Kilometre Array (SKA) first
observations planned for 2019.

Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP,
MeerKAT, MWA.

New modelling and imaging techniques
required to ensure the next-generation of
interferometric telescopes reach their full
potential.

Figure: Artist impression of SKA dishes. [Credit: SKA
Organisation]

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) Epoch of reionization (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Fourier imaging

[Credit: xkcd]
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Radio interferometry

The complex visibility measured by an interferometer is given by

y(u,w) =

∫
D2

A(l) x(l) C(‖l‖2) e−i2πu·l d2l
n(l)

visibilities

,

where the w-modulation C(‖l‖2) is given by

C(‖l‖2) ≡ ei2πw
(

1−
√

1−‖l‖2
)

w-modulation

.

Various assumptions are often made regarding the size of the field-of-view (FoV):

Small-field with ‖l‖2 w� 1 ⇒ C(‖l‖2) ' 1

Small-field with ‖l‖4 w� 1 ⇒ C(‖l‖2) ' eiπw‖l‖2

Wide-field ⇒ C(‖l‖2) = ei2πw
(

1−
√

1−‖l‖2
)
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx + n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator Φ = M F C A may incorporate:

primary beam A of the telescope;

w-modulation modulation C;

Fourier transform F;

masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Jason McEwen Next-generation radio interferometric imaging
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Compressive sensing

“Nothing short of revolutionary.”

– National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes (b) David Donoho
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Compressive sensing

Next evolution of wavelet analysis→ wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ compressive sensing.

Acquisition versus imaging.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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An introduction to compressive sensing
Operator description

Linear operator (linear algebra) representation of signal decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0 +

 |Ψ1
|

α1 + · · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Ill-posed inverse problem:

y = Φx + n = ΦΨα + n .

Recall norms given by:

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e.
solve the following `0 optimisation problem:

α? = arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

Jason McEwen Next-generation radio interferometric imaging
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An introduction to compressive sensing
Promoting sparsity via `1 minimisation

Solutions of the `0 and `1 problems are often the same.

Restricted isometry property (RIP):

(1− δK)‖α‖2
2 ≤ ‖Θα‖2

2 ≤ (1 + δK)‖α‖2
2 ,

for K-sparse α, where Θ = ΦΨ.

[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.

S

(a) (b) (c)

S

S

HH

S

S

[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.

(a)

(b) (c)

Scene

Photodiode

DMD
Array RNG

A/D
Bitstream

Reconstruction Image

(continued on page 124)

IEEE SIGNAL PROCESSING MAGAZINE [120] JULY 2007

Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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Figure: Geometry of (a) `0 (b) `2 and (c) `1 problems. [Credit: Baraniuk (2007)]
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An introduction to compressive sensing
Coherence

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.
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M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.

Jason McEwen Next-generation radio interferometric imaging



RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

An introduction to compressive sensing
Analysis vs synthesis

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).

Synthesis-based framework:

α? = arg min
α

‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

where we synthesise the signal from its recovered wavelet coefficients by x? = Ψα?.

Analysis-based framework:

x? = arg min
x
‖ΨTx‖1 such that ‖y− Φx‖2 ≤ ε ,

where the signal x? is recovered directly.

Concatenating dictionaries (Rauhut et al. 2008) and sparsity averaging (Carrillo, McEwen &
Wiaux 2013)

Ψ = [Ψ1,Ψ2, · · · ,Ψq] .
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Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

y = Φx + n with Φ = M F C A ,

by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ.

Basis pursuit (BP) denoising problem

α? = arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

where the image is synthesised by x? = Ψα?.

Total Variation (TV) denoising problem

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

Various choices for sparsifying dictionary Ψ, e.g. Dirac basis, Daubechies wavelets.
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SARA for radio interferometric imaging
Algorithm

Sparsity averaging reweighted analysis (SARA) for RI imaging
(Carrillo, McEwen & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelet bases two to eight.
⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨT x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous
problem as the inverse weights→ approximate the `0 problem.
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SARA for radio interferometric imaging
Results on simulations
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SARA for radio interferometric imaging
Results on simulations
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SARA for radio interferometric imaging
Results on simulations
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Review of the spread spectrum effect

Wide field→ w-modulation→ spread spectrum effect
first considered by Wiaux et al. (2009b).

The w-modulation operator C has elements defined by

C(l,m) ≡ ei2πw
(

1−
√

1−l2−m2
)
' eiπw‖l‖2

for ‖l‖4 w� 1 ,

giving rise to to a linear chirp.

(a) Real part (b) Imaginary part

Figure: Chirp modulation.
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Review of the spread spectrum effect

For the (essentially) Fourier measurements of interferometric telescopes the coherence is
the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.

w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.

Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.

Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b).

However, previous analysis was restricted to constant w for simplicity.

Examined the spread spectrum effect for varying w.

Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux
(see Wolz et al. 2013).

Jason McEwen Next-generation radio interferometric imaging



RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Review of the spread spectrum effect

For the (essentially) Fourier measurements of interferometric telescopes the coherence is
the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.

w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.

Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.

Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b).

However, previous analysis was restricted to constant w for simplicity.

Examined the spread spectrum effect for varying w.

Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux
(see Wolz et al. 2013).

Jason McEwen Next-generation radio interferometric imaging



RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Review of the spread spectrum effect

For the (essentially) Fourier measurements of interferometric telescopes the coherence is
the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.

w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.

Consequently, spreading the spectrum increases the incoherence between the sensing and
sparsity bases, thus improving reconstruction fidelity.

Improved reconstruction fidelity of the spread spectrum effect demonstrated with
simulations by Wiaux et al. (2009b).

However, previous analysis was restricted to constant w for simplicity.

Examined the spread spectrum effect for varying w.

Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux
(see Wolz et al. 2013).

Jason McEwen Next-generation radio interferometric imaging



RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Spread spectrum effect for varying w
w-projection

Apply the w-projection algorithm (Cornwell et al. 2008) to shift the chirp modulation through
the Fourier transform:

Φ = M F C A ⇒ Φ = Ĉ F A .

Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row
of Ĉ) to approximate Ĉ accurately by a sparse matrix.

Retain E% of the energy content of the w-modulation for each visibility measurement
(typically E = 75%).

Support of w-modulation in Fourier space determined dynamically.

Jason McEwen Next-generation radio interferometric imaging
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Spread spectrum effect for varying w
Approximation of w-modulation kernel

wd = 0.1

wd = 0.5

wd = 1.0
E = 0.25 E = 0.50 E = 0.75 E = 1.00

Figure: w-modulation kernel.
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Spread spectrum effect for varying w
Impact of approximation of w-modulation kernel
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Figure: Percentage of non-zero entries as a function of preserved energy proportion.
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Spread spectrum effect for varying w
Impact of approximation of w-modulation kernel

0.2 0.4 0.6 0.8 1

10

15

20

25

30

Energy proportion

S
N

R

Figure: Reconstruction quality of M31 (green lines marked with squares) and 30Dor (blue lines marked with
circles) as a function of preserved energy proportion for visibility coverages 10% (dashed) and 50% (solid).
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Spread spectrum effect for varying w
Results on simulations

Perform simulations to assess the effectiveness of the spread spectrum effect in the
presence of varying w.

Consider idealised simulations with uniformly random visibility sampling.
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Figure: Ground truth images in logarithmic scale.
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Spread spectrum effect for varying w
Results on simulations
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Figure: Reconstructed images of M31 for 10% coverage.
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Spread spectrum effect for varying w
Results on simulations
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Spread spectrum effect for varying w
Results on simulations
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(a) Daubechies 8 (Db8) wavelets
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(b) Dirac basis

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
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As expected, for the case where coherence is already optimal, there is little improvement.
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Spread spectrum effect for varying w
Results on simulations
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Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Figure: Reconstruction fidelity for 30Dor.

Improvement in reconstruction fidelity due to the spread spectrum effect for
varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.
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Supporting continuous visibilities
Algorithm

Ideally we would like to model the continuous Fourier transform operator

Φ = Fc .

But this is impracticably slow!

Incorporated gridding into our CS interferometric imaging framework.

Work of Rafael Carrillo, in collaboration with Wiaux and McEwen
(see Carrillo, McEwen, Wiaux 2013).

Model with measurement operator

Φ = G F D Z ,

where we incorporate:
convolutional gridding operator G;

fast Fourier transform F;

normalisation operator D to undo the convolution gridding;

zero-padding operator Z to upsample the discrete visibility space.
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Supporting continuous visibilities
Results on simulations
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Outlook

Effectiveness of compressive sensing for radio interferometric imaging demonstrated
(Wiaux et al. 2009a, Wiaux et al.2009b, Wiaux et al. 2009c, McEwen & Wiaux 2011, Carrillo et al. 2012).

Important to take these methods to the realistic setting so that their advantages can be
realised on observations made by real radio interferometric telescopes.

Taken first steps toward more realistic setting.

Wide fields: studied the spread spectrum effect for varying w
(Wolz et al. 2013).

Continuous visibilities: incorporated gridding operator
(Carrillo et al. 2013).
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Outlook

Just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.
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http://basp-group.github.io/purify/


RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Outlook

Just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

Jason McEwen Next-generation radio interferometric imaging

http://basp-group.github.io/purify/


RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Outlook

Just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

Jason McEwen Next-generation radio interferometric imaging

http://basp-group.github.io/purify/


RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Outlook

Just released the PURIFY code to scale to the realistic setting.

Includes state-of-the-art convex optimisation algorithms that support parallelisation.

Plan to perform more extensive comparisons with traditional techniques, such as CLEAN,
MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

Jason McEwen Next-generation radio interferometric imaging

http://basp-group.github.io/purify/

	Radio Interferometry (RI)
	Compressive Sensing (CS)
	Radio Interferometric Imaging with Compressive Sensing (RI+CS)
	Spread Spectrum
	Continuous Visibilities
	Outlook

