Next-generation radio interferometric imaging with compressive sensing

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

Cosmology @ MSSL

Auckland University of Technology (AUT) :: December 2013

・ロット (母) ・ ヨ) ・ ヨ)

Outline

Radio Interferometry (RI)

Compressive Sensing (CS)

Radio Interferometric Imaging with Compressive Sensing (RI+CS)

- Spread Spectrum
- Continuous Visibilities

< 2 > < 2 >

Outline

Radio Interferometry (RI)

- Compressive Sensing (CS)
- Radio Interferometric Imaging with Compressive Sensing (RI+CS)
- Spread Spectrum
- Continuous Visibilities

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) first observations planned for 2019.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) first observations planned for 2019.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques required to ensure the next-generation of interferometric telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Fourier imaging

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow!

[Credit: xkcd]

イロン イヨン イヨン -

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, \boldsymbol{x}(\boldsymbol{l}) \, C(\|\boldsymbol{l}\|_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})} \,,$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

Various assumptions are often made regarding the size of the field-of-view (FoV):

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(\|\boldsymbol{l}\|_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

Various assumptions are often made regarding the size of the field-of-view (FoV):

• Small-field with
$$||I||^2 w \ll 1 \Rightarrow C(||I||_2) \simeq 1$$

• Small-field with $||I||^4 w \ll 1 \Rightarrow C(||I||_2) \simeq e^{i\pi w ||I||^2}$
• Wide-field $\Rightarrow C(||I||_2) = e^{i2\pi w (1 - \sqrt{1 - ||I||^2})}$

Radio interferometry

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(\|\boldsymbol{l}\|_2) \, \mathbf{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation $C(||l||_2)$ is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
w-modulation

• Various assumptions are often made regarding the size of the field-of-view (FoV):

• Small-field with
$$||I||^2 w \ll 1 \Rightarrow C(||I||_2) \simeq 1$$

• Small-field with $||I||^4 w \ll 1 \Rightarrow C(||I||_2) \simeq e^{i\pi w ||I||^2}$
• Wide-field $\Rightarrow C(||I||_2) = e^{i2\pi w (1 - \sqrt{1 - ||I||^2})}$

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = MFCA$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n ,$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = MFCA$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Outline

Radio Interferometry (RI)

Compressive Sensing (CS)

Radio Interferometric Imaging with Compressive Sensing (RI+CS)

Spread Spectrum

Compressive sensing

"Nothing short of revolutionary."

- National Science Foundation

• Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes

(b) David Donoho

Compressive sensing

- Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

Compressive sensing

- Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

Compressive sensing

- Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Compressive sensing

- Next evolution of wavelet analysis \rightarrow wavelets are a key ingredient.
- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

$$x(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \quad \rightarrow \quad \mathbf{x} = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \quad \rightarrow \quad \boxed{\mathbf{x} = \Psi_{0}} \Psi_{0}(t) = \Psi_{0}(t) \Psi_{0}(t) + \Psi_{0}(t) \Psi_{0}(t) = \Psi_{0}(t) \Psi_{0}(t) \Psi_{0}(t) + \Psi_{0}(t) \Psi_{0}(t) \Psi_{0}(t) + \Psi_{0}(t) \Psi_{0}(t) \Psi_{0}(t) \Psi_{0}(t) + \Psi_{0}(t) \Psi_{0}$$

• Linear operator (linear algebra) representation of measurement:

$$y_i = \langle x, \Phi_j \rangle \quad \rightarrow \quad y = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} x \quad \rightarrow \quad \boxed{y = \Phi x}$$

• Putting it together:

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

$$x(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \quad \rightarrow \quad \mathbf{x} = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \quad \rightarrow \quad \boxed{\mathbf{x} = \mathbf{x}}$$

• Linear operator (linear algebra) representation of measurement:

$$y_i = \langle x, \Phi_j \rangle \rightarrow y = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} x \rightarrow y = \Phi x$$

• Putting it together:

B > 4 B >

An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

• Linear operator (linear algebra) representation of measurement:

 $\mathbf{v} = \Phi \mathbf{x} = \Phi \Psi \boldsymbol{\alpha}$

$$y_i = \langle x, \Phi_j \rangle \rightarrow y = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} x \rightarrow y = \Phi x$$

Putting it together:

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements

$$lpha \|_1 = \sum_i |lpha_i| \qquad \|lpha\|_2 = \left(\sum_i |lpha_i|^2
ight)^1$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ₀ optimisation problem:

$$oldsymbol{lpha}^{\star} = rgmin_{oldsymbol{lpha}} \|oldsymbol{lpha}\|_0 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon \ ,$$

where the signal is synthesising by $x^{\star} = \Psi \alpha^{\star}$.

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

Jason McEwen Next-generation radio interferometric imaging

→ ∃→

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements

$$\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ₀ optimisation problem:

$$oldsymbol{lpha}^{\star} = rgmin_{oldsymbol{lpha}} \|oldsymbol{lpha}\|_0 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon \ ,$$

where the signal is synthesising by $x^{\star} = \Psi \alpha^{\star}$.

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

Jason McEwen Next-generation radio interferometric imaging

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements

$$\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ₀ optimisation problem:

$$oldsymbol{lpha}^{\star} = rg\min_{oldsymbol{lpha}} \| oldsymbol{lpha} \|_0 \, \, ext{such that} \, \, \| oldsymbol{y} - \Phi \Psi oldsymbol{lpha} \|_2 \leq \epsilon \ ,$$

where the signal is synthesising by $x^{\star} = \Psi \alpha^{\star}$.

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

Jason McEwen Next-generation radio interferometric imaging

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements

$$\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ₀ optimisation problem:

$$oldsymbol{lpha}^{\star} = rg\min_{oldsymbol{lpha}} \| oldsymbol{lpha} \|_0 \, \, ext{such that} \, \, \| oldsymbol{y} - \Phi \Psi oldsymbol{lpha} \|_2 \leq \epsilon \ ,$$

where the signal is synthesising by $x^{\star} = \Psi \alpha^{\star}$.

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

Jason McEwen Next-generation radio interferometric imaging

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements

$$\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ₀ optimisation problem:

$$oldsymbol{lpha}^{\star} = rg\min_{oldsymbol{lpha}} \| oldsymbol{lpha} \|_0 \, \, ext{such that} \, \, \| oldsymbol{y} - \Phi \Psi oldsymbol{lpha} \|_2 \leq \epsilon \ ,$$

where the signal is synthesising by $x^{\star} = \Psi \alpha^{\star}$.

- Solving this problem is difficult (combinatorial).
- Instead, solve the ℓ_1 optimisation problem (convex):

 $\boldsymbol{\alpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \| \boldsymbol{\alpha} \|_{1} \, \text{ such that } \, \| \mathbf{y} - \Phi \Psi \boldsymbol{\alpha} \|_{2} \leq \epsilon$

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

- Solutions of the ℓ_0 and ℓ_1 problems are often the same.
- Restricted isometry property (RIP):

 $(1-\delta_K)\|\boldsymbol{lpha}\|_2^2 \leq \|\Theta\boldsymbol{lpha}\|_2^2 \leq (1+\delta_K)\|\boldsymbol{lpha}\|_2^2$

for *K*-sparse α , where $\Theta = \Phi \Psi$.

An introduction to compressive sensing Promoting sparsity via ℓ_1 minimisation

- Solutions of the ℓ_0 and ℓ_1 problems are often the same.
- Restricted isometry property (RIP):

 $(1-\delta_K)\|\boldsymbol{\alpha}\|_2^2 \leq \|\Theta\boldsymbol{\alpha}\|_2^2 \leq (1+\delta_K)\|\boldsymbol{\alpha}\|_2^2,$

for *K*-sparse α , where $\Theta = \Phi \Psi$.

Figure: Geometry of (a) ℓ_0 (b) ℓ_2 and (c) ℓ_1 problems. [Credit: Baraniuk (2007)]

An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N$

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j
angle|$$

★ 문 → ★ 문 →

An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N \quad ,$

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle|$$

A B K A B K

An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N \quad ,$

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

Robust to noise.

An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N \quad ,$

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$\boldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{lpha}} \| \boldsymbol{lpha} \|_1 \, \, \mathrm{such} \, \mathrm{that} \, \, \| \mathbf{y} - \Phi \Psi \boldsymbol{lpha} \|_2 \leq \epsilon \, .$$

where we synthesise the signal from its recovered wavelet coefficients by $x^\star = \Psi lpha^\star$

• Analysis-based framework:

$$x^{\star} = \operatorname*{arg\,min}_{x} \| \Psi^{\mathrm{T}} x \|_{1} \, ext{ such that } \, \| y - \Phi x \|_{2} \leq \epsilon \, ,$$

where the signal x^* is recovered directly.

Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & Wiaux 2013)

$$\Psi = \left[\Psi_1, \Psi_2, \cdots, \Psi_q\right].$$

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$\boldsymbol{\alpha}^{\star} = \argmin_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon \,.$$

where we synthesise the signal from its recovered wavelet coefficients by $x^{\star} = \Psi \alpha^{\star}$.

Analysis-based framework:

$$oldsymbol{x}^\star = \mathop{\mathrm{arg\,min}}_{oldsymbol{x}} \| \Psi^{\mathrm{T}} oldsymbol{x} \|_1 \; ext{ such that } \; \| oldsymbol{y} - \Phi oldsymbol{x} \|_2 \leq \epsilon \; ,$$

where the signal x^{\star} is recovered directly.

• Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & Wiaux 2013)

$$\Psi = [\Psi_1, \Psi_2, \cdots, \Psi_q] \,.$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

An introduction to compressive sensing Analysis vs synthesis

- Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity).
- Synthesis-based framework:

$$\boldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{lpha}} \| \boldsymbol{lpha} \|_1 \, \, \mathrm{such \ that} \, \, \| \boldsymbol{y} - \Phi \Psi \boldsymbol{lpha} \|_2 \leq \epsilon \, .$$

where we synthesise the signal from its recovered wavelet coefficients by $x^{\star} = \Psi \alpha^{\star}$.

Analysis-based framework:

$$oldsymbol{x}^\star = \mathop{\mathrm{arg\,min}}_{oldsymbol{x}} \| \Psi^{\mathrm{T}} oldsymbol{x} \|_1 \; ext{ such that } \; \| oldsymbol{y} - \Phi oldsymbol{x} \|_2 \leq \epsilon \; ,$$

where the signal x^* is recovered directly.

Concatenating dictionaries (Rauhut *et al.* 2008) and sparsity averaging (Carrillo, McEwen & Wiaux 2013)

$$\Psi = [\Psi_1, \Psi_2, \cdots, \Psi_q] \,.$$

Outline

Compressive Sensing (CS)

- Spread Spectrum
- Continuous Visibilities

Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \mathbf{MF}\mathbf{C}\mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\boldsymbol{\Psi}.$

Basis pursuit (BP) denoising problem

 $oldsymbol{lpha}^{\star} = rg\min_{oldsymbol{lpha}} \|oldsymbol{lpha}\|_1 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon \, ,$

where the image is synthesised by $x^* = \Psi \alpha^*$.

Total Variation (TV) denoising problem

 $x^\star = \operatorname*{arg\,min}_x \|x\|_{\mathrm{TV}}$ such that $\|y - \Phi x\|_2 \leq \epsilon$.

• Various choices for sparsifying dictionary Ψ , e.g. Dirac basis, Daubechies wavelets.

・ロン ・回 ・ ・ ヨン・

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\Psi.$

Basis pursuit (BP) denoising problem

 $oldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{oldsymbol{lpha}} \|lpha\|_1 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon \, ,$

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

Total Variation (TV) denoising problem

 $oldsymbol{x}^\star = rgmin_{oldsymbol{x}} \|oldsymbol{x}\|_{ ext{TV}} ext{ such that } \|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon \,.$

• Various choices for sparsifying dictionary Ψ , e.g. Dirac basis, Daubechies wavelets.

・ロン ・四 と ・ 回 と ・ 回 と

Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$ with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

by applying a prior on sparsity of the signal in a sparsifying dictionary $\Psi.$

Basis pursuit (BP) denoising problem

 $\boldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{lpha}} \| \boldsymbol{lpha} \|_1 \, \, ext{such that} \, \, \| \boldsymbol{y} - \Phi \Psi \boldsymbol{lpha} \|_2 \leq \epsilon \, ,$

where the image is synthesised by $x^{\star} = \Psi \alpha^{\star}$.

• Total Variation (TV) denoising problem

 $oldsymbol{x}^\star = rgmin_{oldsymbol{x}} \|oldsymbol{x}\|_{ ext{TV}} ext{ such that } \|oldsymbol{y} - \Phi oldsymbol{x}\|_2 \leq \epsilon \,.$

• Various choices for sparsifying dictionary Ψ , e.g. Dirac basis, Daubechies wavelets.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 → concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{w} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \leq \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \geq 0 \ ,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

・ロット (雪) ・ ヨ) ・

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{x} \in \mathbb{R}^N} \|W\Psi^T \bar{x}\|_1 \quad \text{subject to} \quad \|y - \Phi \bar{x}\|_2 \le \epsilon \quad \text{and} \quad \bar{x} \ge 0 \,,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \boldsymbol{\Psi}^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \ ,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - \Rightarrow concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \boldsymbol{\Psi}^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \ ,$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

A D A A B A A B A A B A

SARA for radio interferometric imaging Results on simulations

Next-generation radio interferometric imaging

-0.6

-1.6

Jason McEwen

SARA for radio interferometric imaging Results on simulations

(a) Original

(b) BP (SNR=16.67 dB)

(d) BPDb8 (SNR=24.53 dB)

(e) TV (SNR=26.47 dB)

(c) IUWT (SNR=17.87 dB)

Next-generation radio interferometric imaging

SARA for radio interferometric imaging Results on simulations

Figure: Reconstruction fidelity vs visibility coverage.

・ロト ・回ト ・ヨト ・ヨト

Outline

Radio Interferometry (RI)

Compressive Sensing (CS)

Radio Interferometric Imaging with Compressive Sensing (RI+CS)

・ロト ・回ト ・ヨト ・ヨト

Review of the spread spectrum effect

- Wide field → w-modulation → spread spectrum effect first considered by Wiaux *et al.* (2009b).
- The *w*-modulation operator C has elements defined by

$$C(l,m) \equiv e^{i2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq e^{i\pi w \|l\|^2} \text{ for } \|l\|^4 w \ll 1$$

giving rise to to a linear chirp.

・ロト ・回ト ・ヨト ・ヨト

Review of the spread spectrum effect

- Wide field → *w*-modulation → spread spectrum effect first considered by Wiaux *et al.* (2009b).
- The w-modulation operator C has elements defined by

$$C(l,m) \equiv e^{i2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq e^{i\pi w ||l||^2} \text{ for } ||l||^4 w \ll 1$$

giving rise to to a linear chirp.

(a) Real part

(b) Imaginary part

イロト イヨト イヨト イヨト

Figure: Chirp modulation.

Review of the spread spectrum effect

- For the (essentially) Fourier measurements of interferometric telescopes the coherence is the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.
- w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving reconstruction fidelity.
- Improved reconstruction fidelity of the spread spectrum effect demonstrated with simulations by Wiaux *et al.* (2009b).
- However, previous analysis was restricted to constant *w* for simplicity.
- Examined the spread spectrum effect for varying w.
- Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux (see Wolz *et al.* 2013).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Review of the spread spectrum effect

- For the (essentially) Fourier measurements of interferometric telescopes the coherence is the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.
- w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving reconstruction fidelity.
- Improved reconstruction fidelity of the spread spectrum effect demonstrated with simulations by Wiaux *et al.* (2009b).
- However, previous analysis was restricted to constant w for simplicity.
- Examined the spread spectrum effect for varying w.
- Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux (see Wolz *et al.* 2013).

Review of the spread spectrum effect

- For the (essentially) Fourier measurements of interferometric telescopes the coherence is the maximum modulus of the Fourier coefficients of atoms of the sparsifying dictionary.
- w-modulation spreads the spectrum of the atoms of the sparsifying dictionary.
- Consequently, spreading the spectrum increases the incoherence between the sensing and sparsity bases, thus improving reconstruction fidelity.
- Improved reconstruction fidelity of the spread spectrum effect demonstrated with simulations by Wiaux *et al.* (2009b).
- However, previous analysis was restricted to constant *w* for simplicity.
- Examined the spread spectrum effect for varying w.
- Work of Laura Wolz in collaboration with McEwen, Abdalla, Carrillo and Wiaux (see Wolz *et al.* 2013).

Spread spectrum effect for varying *w w*-projection

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the chirp modulation through the Fourier transform:

$$\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \mathbf{F} \mathbf{A} \quad .$$

- Consider different *w* for each (u, v) and threshold each Fourier transformed chirp (each row of \hat{C}) to approximate \hat{C} accurately by a sparse matrix.
- Retain *E*% of the energy content of the *w*-modulation for each visibility measurement (typically E = 75%).
- Support of *w*-modulation in Fourier space determined dynamically.

Spread spectrum effect for varying *w w*-projection

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the chirp modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Consider different w for each (u, v) and threshold each Fourier transformed chirp (each row of \hat{C}) to approximate \hat{C} accurately by a sparse matrix.
- Retain *E*% of the energy content of the *w*-modulation for each visibility measurement (typically E = 75%).
- Support of *w*-modulation in Fourier space determined dynamically.

< 同 > < 三 > < 三 >

Spread spectrum effect for varying *w* Approximation of *w*-modulation kernel

Figure: w-modulation kernel.

물 🖌 🛪 물 🕨

Spread spectrum effect for varying *w* Impact of approximation of *w*-modulation kernel

Figure: Percentage of non-zero entries as a function of preserved energy proportion.

ъ

Spread spectrum effect for varying *w* Impact of approximation of *w*-modulation kernel

Figure: Reconstruction quality of M31 (green lines marked with squares) and 30Dor (blue lines marked with circles) as a function of preserved energy proportion for visibility coverages 10% (dashed) and 50% (solid

글 🕨 🖌 글

Spread spectrum effect for varying *w* Results on simulations

- Perform simulations to assess the effectiveness of the spread spectrum effect in the presence of varying *w*.
- Consider idealised simulations with uniformly random visibility sampling.

Figure: Ground truth images in logarithmic scale.

A B K A B K

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 5 dB$

Figure: Reconstructed images of M31 for 10% coverage.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 5 dB$

(c) $w_d = 1 \rightarrow SNR = 19 dB$

・ロン ・回 ・ ・ ヨン・

Figure: Reconstructed images of M31 for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

(a) $w_{\rm d} = 0 \rightarrow {\sf SNR} = 5 {\sf dB}$

(b) $w_d \sim \mathcal{U}(0, 1) \rightarrow \text{SNR}= 16\text{dB}$

(c) $w_d = 1 \rightarrow SNR = 19dB$

・ロン ・回 ・ ・ ヨン・

Figure: Reconstructed images of M31 for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 2dB$

Figure: Reconstructed images of 30Dor for 10% coverage.

Jason McEwen Next-generation radio interferometric imaging

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Spread spectrum effect for varying *w* Results on simulations

(a) $w_d = 0 \rightarrow SNR = 2dB$

(c) $w_d = 1 \rightarrow SNR = 15 dB$

・ロ・・ (日・・ 日・・ 日・・

Figure: Reconstructed images of 30Dor for 10% coverage.

Spread spectrum effect for varying w Results on simulations

(c) $w_d = 1 \rightarrow SNR = 15 dB$

・ロ・・ (日・・ 日・・ 日・・

Figure: Reconstructed images of 30Dor for 10% coverage.

Spread spectrum effect for varying *w* Results on simulations

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying *w* is almost as large as the case of constant maximum *w*!

Spread spectrum effect for varying *w* Results on simulations

Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying *w* is almost as large as the case of constant maximum *w*!

As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying w Results on simulations

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

 As expected, for the case where coherence is already optimal, there is little improvement.

Spread spectrum effect for varying *w* Results on simulations

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w!

As expected, for the case where coherence is already optimal, there is little improvement.

Outline

Continuous Visibilities

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{\mathsf{c}}$$

• But this is impracticably slow!

- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

 $\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z}$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space

• • = •

Supporting continuous visibilities Algorithm

Ideally we would like to model the continuous Fourier transform operator

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework.
- Work of Rafael Carrillo, in collaboration with Wiaux and McEwen (see Carrillo, McEwen, Wiaux 2013).
- Model with measurement operator

 $\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z} ,$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.

< 3 b
Supporting continuous visibilities Results on simulations

(b) M31 (ground truth)

・ロト ・回ト ・ヨト ・ヨト

Supporting continuous visibilities Results on simulations

(a) Coverage

(b) M31 (ground truth)

(c) Dirac basis \rightarrow SNR= 8.2dB

・ロン ・回 と ・ 回 と ・ 回 と

RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Supporting continuous visibilities Results on simulations

(a) Coverage

(b) M31 (ground truth)

(c) Dirac basis \rightarrow SNR= 8.2dB

(d) Db8 wavelets \rightarrow SNR= 11.1dB

Jason McEwen

Next-generation radio interferometric imaging

★ E → < E →</p>

RI CS RI+CS Spread Spectrum Continuous Visibilities Outlook

Supporting continuous visibilities Results on simulations

(a) Coverage

(b) M31 (ground truth)

(c) Dirac basis \rightarrow SNR= 8.2dB

(d) Db8 wavelets \rightarrow SNR= 11.1dB

Jason McEwen

Next-generation radio interferometric imaging

Outline

Radio Interferometry (RI)

Compressive Sensing (CS)

Radio Interferometric Imaging with Compressive Sensing (RI+CS)

- Spread Spectrum
- Continuous Visibilities

・ロト ・回ト ・ヨト ・ヨト

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated (Wiaux et al. 2009a, Wiaux et al.2009b, Wiaux et al. 2009c, McEwen & Wiaux 2011, Carrillo et al. 2012).
- Important to take these methods to the realistic setting so that their advantages can be realised on observations made by real radio interferometric telescopes.
- Taken first steps toward more realistic setting.
- Wide fields: studied the spread spectrum effect for varying w (Wolz et al. 2013).
- Continuous visibilities: incorporated gridding operator (Carrillo *et al.* 2013).

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated (Wiaux et al. 2009a, Wiaux et al. 2009b, Wiaux et al. 2009c, McEwen & Wiaux 2011, Carrillo et al. 2012).
- Important to take these methods to the realistic setting so that their advantages can be realised on observations made by real radio interferometric telescopes.

• Taken first steps toward more realistic setting.

- Wide fields: studied the spread spectrum effect for varying *w* (Wolz *et al.* 2013).
- Continuous visibilities: incorporated gridding operator (Carrillo *et al.* 2013).

・ロト ・回ト ・ヨト ・ヨト

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated (Wiaux et al. 2009a, Wiaux et al. 2009b, Wiaux et al. 2009c, McEwen & Wiaux 2011, Carrillo et al. 2012).
- Important to take these methods to the realistic setting so that their advantages can be realised on observations made by real radio interferometric telescopes.
- Taken first steps toward more realistic setting.
- Wide fields: studied the spread spectrum effect for varying w (Wolz et al. 2013).
- Continuous visibilities: incorporated gridding operator (Carrillo *et al.* 2013).

- Just released the **PURIFY** code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

- Just released the **PURIFY** code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

- Just released the **PURIFY** code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

- Just released the **PURIFY** code to scale to the realistic setting.
- Includes state-of-the-art convex optimisation algorithms that support parallelisation.
- Plan to perform more extensive comparisons with traditional techniques, such as CLEAN, MS-CLEAN and MEM.

Apply to observations made by real interferometric telescopes.

PURIFY code

http://basp-group.github.io/purify/

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

