#### Radio interferometric imaging with compressive sensing

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

In collaboration with Laura Wolz, Filipe Abdalla, Rafael Carrillo & Yves Wiaux

IEEE ACT Signal Processing and Communications Chapter, Australian National University (ANU), August 2015

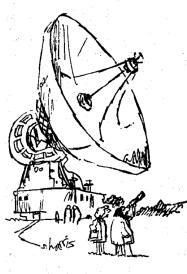








# Radio telescopes are big!



"Just checking."



# Radio telescopes are big!





Radio interferometric imaging with compressive sensing

Jason McEwen

#### Radio interferometric telescopes





Jason McEwen Radio interferometric imaging with compressive sensing

Compressive Sensing Interferometric Imaging Telescope Optimisation

# Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) construction scheduled to begin 2018.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Broad range of science goals.



Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]



( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

Compressive Sensing Interferometric Imaging Telescope Optimisation

# Next-generation of radio interferometry rapidly approaching

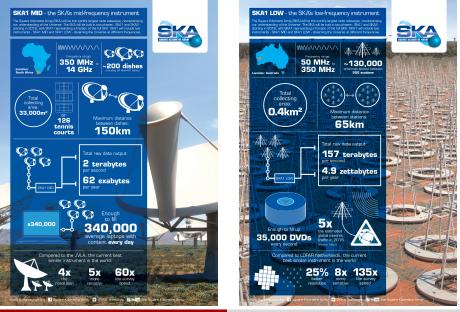
- Square Kilometre Array (SKA) construction scheduled to begin 2018.
- Many other pathfinder telescopes under construction, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- Broad range of science goals.



Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]



#### SKA sites



Jason McEwen

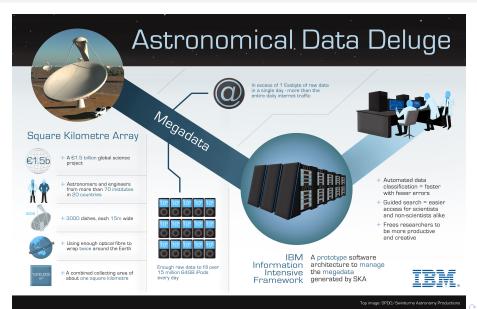
Radio interferometric imaging with compressive sensing

#### SKA timeline

#### High-level SKA Schedule



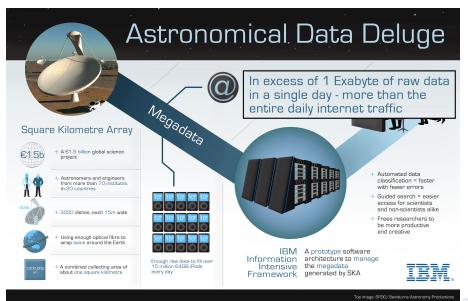
#### The SKA poses a considerable big-data challenge



Jason McEwen

Radio interferometric imaging with compressive sensing

## The SKA poses a considerable big-data challenge



Jason McEwen

Radio interferometric imaging with compressive sensing

#### Outline

- Compressive sensing
  - Introduction
  - Analysis vs synthesis
  - Bayesian interpretations

Interferometric imaging with compressive sensing

- Imaging
- SARA
- Continuous visibilities
- Optimising telescope configurations
  - Spread spectrum effect
  - Simulations



( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

#### Outline

- Compressive sensing
  - Introduction
  - Analysis vs synthesis
  - Bayesian interpretations

Interferometric imaging with compressive sensing

- Imaging
- SARA
- Continuous visibilities
- Optimising telescope configurations
  - Spread spectrum effect
  - Simulations



"Nothing short of revolutionary."

- National Science Foundation

- Developed by Candes et al. 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- Exploits the sparsity of natural signals.



(a) Emmanuel Candes



(b) David Donoho



- Mystery of JPEG compression.
- $\bullet\,$  Move compression to the acquisition stage  $\rightarrow$  compressive sensing.
- Acquisition versus imaging.



Figure: TIFF (uncompressed) vs JPEG (compressed)



- Mystery of JPEG compression.
- Move compression to the acquisition stage  $\rightarrow$  compressive sensing.
- Acquisition versus imaging.





Figure: TIFF (uncompressed) vs JPEG (compressed)

- Mystery of JPEG compression.
- $\bullet\,$  Move compression to the acquisition stage  $\rightarrow$  compressive sensing.
- Acquisition versus imaging.





Figure: TIFF (uncompressed) vs JPEG (compressed)

- Mystery of JPEG compression.
- Move compression to the acquisition stage  $\rightarrow$  compressive sensing.
- Acquisition versus imaging.





Figure: TIFF (uncompressed) vs JPEG (compressed)

#### An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

$$\mathbf{x}(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \quad \rightarrow \quad \mathbf{x} = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \quad \rightarrow \quad \boxed{\mathbf{x} = \Psi_{0}}$$

• Linear operator (linear algebra) representation of measurement:

$$y_i = \langle x, \Phi_j \rangle \quad \rightarrow \quad \mathbf{y} = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} \mathbf{x} \quad \rightarrow \quad \boxed{\mathbf{y} = \Phi \mathbf{x}}$$

• Putting it together:



B > 4 B >

#### An introduction to compressive sensing Operator description

• Linear operator (linear algebra) representation of signal decomposition:

$$x(t) = \sum_{i} \alpha_{i} \Psi_{i}(t) \quad \rightarrow \quad \mathbf{x} = \sum_{i} \Psi_{i} \alpha_{i} = \begin{pmatrix} | \\ \Psi_{0} \\ | \end{pmatrix} \alpha_{0} + \begin{pmatrix} | \\ \Psi_{1} \\ | \end{pmatrix} \alpha_{1} + \cdots \quad \rightarrow \quad \boxed{\mathbf{x} = \mathbf{x} + \mathbf{x$$

• Linear operator (linear algebra) representation of measurement:

$$y_i = \langle x, \Phi_j \rangle \rightarrow \mathbf{y} = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} \mathbf{x} \rightarrow \mathbf{y} = \Phi \mathbf{x}$$

• Putting it together:

A (B) > A (B) > A (B) >

 $\Psi \mathbf{a}$ 

#### An introduction to compressive sensing Operator description

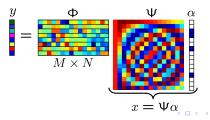
• Linear operator (linear algebra) representation of signal decomposition:

• Linear operator (linear algebra) representation of measurement:

 $= \Phi x = \Phi \Psi \alpha$ 

$$y_i = \langle x, \Phi_j \rangle \quad \rightarrow \quad \mathbf{y} = \begin{pmatrix} -\Phi_0 & -\\ -\Phi_1 & -\\ \vdots \end{pmatrix} \mathbf{x} \quad \rightarrow \quad \mathbf{y} = \Phi \mathbf{x}$$

Putting it together:





 $\Psi \mathbf{a}$ 

Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

• Solve by imposing a regularising prior that the signal to be recovered is sparse in  $\Psi$ , *i.e.* solve the following  $\ell_0$  optimisation problem:

$$oldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{oldsymbol{lpha}} \| oldsymbol{lpha} \|_{0} \, \, ext{such that} \, \, \| oldsymbol{y} - \Phi \Psi oldsymbol{lpha} \|_{2} \leq \epsilon$$

where the signal is synthesising by  $x^* = \Psi \alpha^*$ .

• Recall norms given by:

 $\|lpha\|_0=$  no. non-zero elements  $\|lpha\|_1=\sum_i |lpha_i| \quad \|lpha\|_2=\left(\sum_i |lpha_i|^2
ight)$ 

- Solving this problem is difficult (combinatorial).
- Instead, solve the  $\ell_1$  optimisation problem (convex):

 $\boldsymbol{\alpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1}$  such that  $\|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon$ 



Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

Solve by imposing a regularising prior that the signal to be recovered is sparse in  $\Psi$ , *i.e.* solve the following  $\ell_0$  optimisation problem:

$$oldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{oldsymbol{lpha}} \|lpha\|_0 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon$$

where the signal is synthesising by  $x^{\star} = \Psi \alpha^{\star}$ .

Recall norms given by:

 $\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$  $\|\alpha\|_0 =$ no. non-zero elements

- Instead, solve the  $\ell_1$  optimisation problem (convex):



Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ<sub>0</sub> optimisation problem:

$$oldsymbol{lpha}^{\star} = rgmin_{oldsymbol{lpha}} \|lpha\|_0 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon$$

where the signal is synthesising by  $x^* = \Psi \alpha^*$ .

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements  $\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$ 

- Solving this problem is difficult (combinatorial).
- Instead, solve the  $\ell_1$  optimisation problem (convex):

 $oldsymbol{lpha}^{\star} = rgmin_{oldsymbol{lpha}} \|lpha\|_1 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon$ 



Ill-posed inverse problem:

$$y = \Phi x + n = \Phi \Psi \alpha + n$$

 Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, *i.e.* solve the following ℓ<sub>0</sub> optimisation problem:

$$oldsymbol{lpha}^{\star} = \operatorname*{arg\,min}_{oldsymbol{lpha}} \|lpha\|_0 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon \, \, ,$$

where the signal is synthesising by  $x^{\star} = \Psi \alpha^{\star}$ .

• Recall norms given by:

 $\|\alpha\|_0 =$ no. non-zero elements  $\|\alpha\|_1 = \sum_i |\alpha_i| \qquad \|\alpha\|_2 = \left(\sum_i |\alpha_i|^2\right)^{1/2}$ 

- Solving this problem is difficult (combinatorial).
- Instead, solve the  $\ell_1$  optimisation problem (convex):

 $oldsymbol{lpha}^{\star} = rgmin_{oldsymbol{lpha}} \|lpha\|_1 \, ext{ such that } \, \|oldsymbol{y} - \Phi \Psi oldsymbol{lpha}\|_2 \leq \epsilon \ .$ 



#### An introduction to compressive sensing Union of subspaces

• Space of sparse vectors given by the union of subspaces aligned with the coordinate axes.

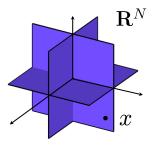


Figure: Space of the sparse vectors [Credit: Baraniuk]



#### An introduction to compressive sensing Restricted isometry property (RIP)

- Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Restricted isometry property (RIP):

 $(1 - \delta_{2K}) \| \mathbf{x}_1 - \mathbf{x}_2 \|_2^2 \le \| \Theta \mathbf{x}_1 - \Theta \mathbf{x}_2 \|_2^2 \le (1 + \delta_{2K}) \| \mathbf{x}_1 - \mathbf{x}_2 \|_2^2,$ 

for *K*-sparse  $x_1$  and  $x_2$ , where  $\Theta = \Phi \Psi$ .

Measurement must preserve geometry of sets of sparse vectors.



#### An introduction to compressive sensing Restricted isometry property (RIP)

- Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Restricted isometry property (RIP):

 $(1 - \delta_{2K}) \| \mathbf{x}_1 - \mathbf{x}_2 \|_2^2 \le \| \Theta \mathbf{x}_1 - \Theta \mathbf{x}_2 \|_2^2 \le (1 + \delta_{2K}) \| \mathbf{x}_1 - \mathbf{x}_2 \|_2^2,$ 

for *K*-sparse  $x_1$  and  $x_2$ , where  $\Theta = \Phi \Psi$ .

Measurement must preserve geometry of sets of sparse vectors.



#### An introduction to compressive sensing Restricted isometry property (RIP)

- Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Restricted isometry property (RIP):

 $(1 - \delta_{2K}) \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2 \le \|\Theta \mathbf{x}_1 - \Theta \mathbf{x}_2\|_2^2 \le (1 + \delta_{2K}) \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2,$ 

for *K*-sparse  $x_1$  and  $x_2$ , where  $\Theta = \Phi \Psi$ .

Measurement must preserve geometry of sets of sparse vectors.

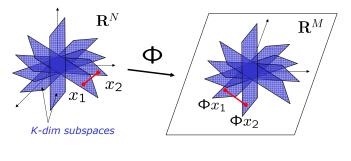




Figure: Measurement must preserve geometry of sets of sparse vectors. [Credit: Baraniuk]

# An introduction to compressive sensing Intuition

- Solutions of  $\ell_0$  and  $\ell_1$  problems often the same.
- Geometry of  $\ell_0$ ,  $\ell_2$  and  $\ell_1$  problems.

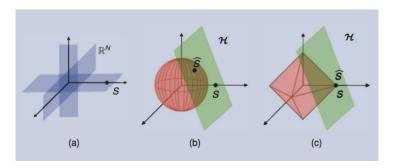


Figure: Geometry of (a)  $\ell_0$  (b)  $\ell_2$  and (c)  $\ell_1$  problems. [Credit: Baraniuk (2007)]



B 1 4 B 1

#### An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N$ 

where *K* is the sparsity and *N* the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\mu = \sqrt{N} \, \max_{i,j} |\langle \Psi_i, \Phi_j 
angle| ~~.$$



#### Robust to noise.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

#### An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N \quad ,$ 

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

 $\mu = \sqrt{N} \, \max_{i,j} |\langle \Psi_i, \Phi_j 
angle| \, \, .$ 



#### Robust to noise.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

$$M \ge c\mu^2 K \log N \quad ,$$

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\begin{array}{c} \mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle| \\ y \\ \Psi \\ M \times N \\ M \times N \\ x = \Psi \alpha \end{array}$$

Robust to noise.



## An introduction to compressive sensing Coherence

- In the absence of noise, compressed sensing is exact!
- Number of measurements required to achieve exact reconstruction is given by

$$M \ge c\mu^2 K \log N \quad ,$$

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\begin{array}{c} \mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle| \\ y \\ \Psi \\ M \times N \\ M \times N \\ x = \Psi \alpha \end{array}$$



Robust to noise.

- Many new developments (e.g. analysis vs synthesis, structured sparsity).
- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- But this is different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$x^{\star} = \operatorname*{arg\,min}_{x} \|\Omega x\|_{1} \text{ such that } \|y - \Phi x\|_{2} \leq \epsilon$$
.

analysis

• Contrast with synthesis-based approach:

$$x^{\star} = \Psi + \operatorname*{arg\,min}_{\boldsymbol{lpha}} \| \boldsymbol{lpha} \|_1 \text{ such that } \| \mathbf{y} - \Phi \Psi \boldsymbol{lpha} \|_2 \leq \epsilon \,.$$

synthesis



- Many new developments (e.g. analysis vs synthesis, structured sparsity).
- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- But this is different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$x^{\star} = \operatorname*{arg\,min}_{x} \|\Omega x\|_{1}$$
 such that  $\|y - \Phi x\|_{2} \le \epsilon$ .

• Contrast with synthesis-based approach:

$$x^{\star} = \Psi + \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon$$
.

synthesis



- Many new developments (*e.g.* analysis vs synthesis, structured sparsity).
- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- But this is different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$x^* = \underset{x}{\operatorname{arg\,min}} \|\Omega x\|_1 \text{ such that } \|y - \Phi x\|_2 \le \epsilon.$$

• Contrast with synthesis-based approach:

$$x^{\star} = \Psi + \underset{\boldsymbol{\alpha}}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon.$$

synthesis



- Many new developments (*e.g.* analysis vs synthesis, structured sparsity).
- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- But this is different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$x^{\star} = \underset{x}{\operatorname{arg\,min}} \|\Omega x\|_1 \text{ such that } \|y - \Phi x\|_2 \le \epsilon$$

• Contrast with synthesis-based approach:

$$x^{\star} = \Psi \cdot \underset{\boldsymbol{\alpha}}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon.$$
synthesis

• For orthogonal bases  $\Omega = \Psi^{\dagger}$  and the two approaches are identical.



(4月) トイヨト イヨト

- Many new developments (*e.g.* analysis vs synthesis, structured sparsity).
- Typically sparsity assumption is justified by analysing example signals in terms of atoms of the dictionary.
- But this is different to synthesising signals from atoms.
- Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

$$x^{\star} = \operatorname*{arg\,min}_{x} \|\Omega x\|_{1}$$
 such that  $\|y - \Phi x\|_{2} \le \epsilon$ .

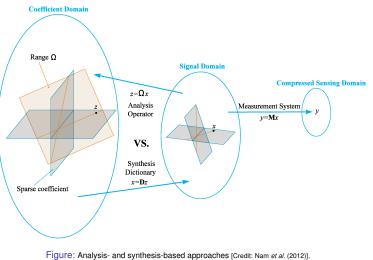
• Contrast with synthesis-based approach:

$$x^{\star} = \Psi \cdot \underset{\boldsymbol{\alpha}}{\operatorname{arg\,min}} \|\boldsymbol{\alpha}\|_{1}$$
 such that  $\|\boldsymbol{y} - \Phi\Psi\boldsymbol{\alpha}\|_{2} \leq \epsilon$ .

synthesis

・ 同 ト ・ ヨ ト ・ ヨ ト







・ロン ・回 ・ ・ ヨン・

#### • Synthesis-based approach is more general, while analysis-based approach more restrictive.

- The more restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).



- Synthesis-based approach is more general, while analysis-based approach more restrictive.
- The more restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).



- Synthesis-based approach is more general, while analysis-based approach more restrictive.
- The more restrictive analysis-based approach may make it more robust to noise.
- The greater descriptive power of the synthesis-based approach may provide better signal representations (too descriptive?).



One Bayesian interpretation of the synthesis-based approach

• Consider the inverse problem:

 $y = \Phi \Psi \alpha + n$ .

• Assume Gaussian noise, yielding the likelihood:

$$\mathbf{P}(\mathbf{y} \mid \boldsymbol{\alpha}) \propto \exp\left(\|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_2^2 / (2\sigma^2)\right).$$

Consider the Laplacian prior:

 $P(\boldsymbol{\alpha}) \propto \exp\left(-\beta \|\boldsymbol{\alpha}\|_{1}\right).$ 

• The maximum *a-posteriori* (MAP) estimate (with  $\lambda = 2\beta\sigma^2$ ) is

$$\mathbf{x}_{\text{MAP-Synthesis}}^{\star} = \Psi \cdot \operatorname*{arg\,max}_{\boldsymbol{\alpha}} P(\boldsymbol{\alpha} \,|\, \mathbf{y}) = \Psi \cdot \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1} \,.$$

synthesis

- One possible Bayesian interpretation!
- Signal may be  $\ell_0$ -sparse, then solving  $\ell_1$  problem finds the correct  $\ell_0$ -sparse solution



One Bayesian interpretation of the synthesis-based approach

• Consider the inverse problem:

 $y = \Phi \Psi \alpha + n$ .

• Assume Gaussian noise, yielding the likelihood:

$$\mathbf{P}(\mathbf{y} \mid \boldsymbol{\alpha}) \propto \exp\left(\|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_2^2 / (2\sigma^2)\right).$$

Consider the Laplacian prior:

$$P(\boldsymbol{\alpha}) \propto \exp\left(-\beta \|\boldsymbol{\alpha}\|_{1}\right).$$

• The maximum *a-posteriori* (MAP) estimate (with  $\lambda = 2\beta\sigma^2$ ) is

$$\mathbf{x}_{\text{MAP-Synthesis}}^{\star} = \Psi \cdot \underset{\boldsymbol{\alpha}}{\arg \max} \operatorname{P}(\boldsymbol{\alpha} \mid \mathbf{y}) = \Psi \cdot \underset{\boldsymbol{\alpha}}{\arg \min} \|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}.$$

synthesis

- One possible Bayesian interpretation!
- Signal may be  $\ell_0$ -sparse, then solving  $\ell_1$  problem finds the correct  $\ell_0$ -sparse solution!



One Bayesian interpretation of the synthesis-based approach

• Consider the inverse problem:

 $y = \Phi \Psi \alpha + n$ .

• Assume Gaussian noise, yielding the likelihood:

$$\mathbf{P}(\mathbf{y} \mid \boldsymbol{\alpha}) \propto \exp\left(\|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_2^2 / (2\sigma^2)\right).$$

Consider the Laplacian prior:

$$P(\boldsymbol{\alpha}) \propto \exp\left(-\beta \|\boldsymbol{\alpha}\|_{1}\right).$$

• The maximum *a-posteriori* (MAP) estimate (with  $\lambda = 2\beta\sigma^2$ ) is

$$\mathbf{x}_{\text{MAP-Synthesis}}^{\star} = \Psi \cdot \underset{\boldsymbol{\alpha}}{\arg \max} \operatorname{P}(\boldsymbol{\alpha} \,|\, \mathbf{y}) = \Psi \cdot \underset{\boldsymbol{\alpha}}{\arg \min} \|\mathbf{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1} \,.$$

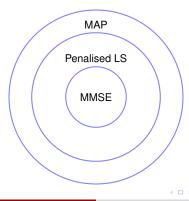
synthesis

- One possible Bayesian interpretation!
- Signal may be  $\ell_0$ -sparse, then solving  $\ell_1$  problem finds the correct  $\ell_0$ -sparse solution!



Other Bayesian interpretations of the synthesis-based approach

- Other Bayesian interpretations are also possible (Gribonval 2011).
- Minimum mean square error (MMSE) estimators
  - $\subset$  synthesis-based estimators with appropriate penalty function,
    - i.e. penalised least-squares (LS)
  - ⊂ MAP estimators





B 1 4 B 1

One Bayesian interpretation of the analysis-based approach

• For the analysis-based approach, the MAP estimate is then

$$\mathbf{x}^{\star}_{\text{MAP-Analysis}} = \arg\max_{\mathbf{x}} \mathbb{P}(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \Phi \mathbf{x}\|_{2}^{2} + \lambda \|\Omega \mathbf{x}\|_{1}.$$

analysis

- Identical to the synthesis-based approach if  $\Omega = \Psi^{\dagger}$  .
- But for redundant dictionaries, the analysis-based MAP estimate is

$$\mathbf{x}_{\text{MAP-Analysis}}^{*} = \Omega^{\dagger} \cdot \underset{\boldsymbol{\gamma} \in \text{column space } \Omega}{\arg \min} \|\mathbf{y} - \Phi \Omega^{\dagger} \boldsymbol{\gamma}\|_{2}^{2} + \lambda \|\boldsymbol{\gamma}\|_{1} \,.$$
analysis

- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).



One Bayesian interpretation of the analysis-based approach

• For the analysis-based approach, the MAP estimate is then

$$\mathbf{x}^{\star}_{\text{MAP-Analysis}} = \arg\max_{\mathbf{x}} \mathbb{P}(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \Phi \mathbf{x}\|_{2}^{2} + \lambda \|\Omega \mathbf{x}\|_{1}.$$

analysis

- Identical to the synthesis-based approach if  $\Omega=\Psi^\dagger$  .
- But for redundant dictionaries, the analysis-based MAP estimate is

$$\mathbf{x}_{MAP-Analysis}^{\star} = \Omega^{\dagger} \cdot \underset{\boldsymbol{\gamma} \in \text{column space } \Omega}{\arg \min} \| \mathbf{y} - \Phi \Omega^{\dagger} \boldsymbol{\gamma} \|_{2}^{2} + \lambda \| \boldsymbol{\gamma} \|_{1} .$$
analysis

- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).



One Bayesian interpretation of the analysis-based approach

• For the analysis-based approach, the MAP estimate is then

$$\mathbf{x}_{\text{MAP-Analysis}}^{\star} = \arg\max_{\mathbf{x}} P(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \Phi \mathbf{x}\|_{2}^{2} + \lambda \|\Omega \mathbf{x}\|_{1}$$

analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

- Identical to the synthesis-based approach if  $\Omega=\Psi^\dagger$  .
- But for redundant dictionaries, the analysis-based MAP estimate is

$$\mathbf{x}^{\star}_{\text{MAP-Analysis}} = \Omega^{\dagger} \cdot \arg\min_{\boldsymbol{\gamma} \in \text{column space } \Omega} \|\mathbf{y} - \Phi \Omega^{\dagger} \boldsymbol{\gamma}\|_{2}^{2} + \lambda \|\boldsymbol{\gamma}\|_{1} \,.$$
analysis

- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).



One Bayesian interpretation of the analysis-based approach

• For the analysis-based approach, the MAP estimate is then

$$\mathbf{x}_{\text{MAP-Analysis}}^{\star} = \arg\max_{\mathbf{x}} P(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} \|\mathbf{y} - \Phi \mathbf{x}\|_{2}^{2} + \lambda \|\Omega \mathbf{x}\|_{1}$$

analysis

・ 同 ト ・ ヨ ト ・ ヨ ト

- Identical to the synthesis-based approach if  $\Omega=\Psi^\dagger$  .
- But for redundant dictionaries, the analysis-based MAP estimate is

$$\mathbf{x}_{\text{MAP-Analysis}}^{\star} = \Omega^{\dagger} \cdot \underset{\boldsymbol{\gamma} \in \text{column space } \Omega}{\arg\min} \|\mathbf{y} - \Phi \Omega^{\dagger} \boldsymbol{\gamma}\|_{2}^{2} + \lambda \|\boldsymbol{\gamma}\|_{1} \,.$$
analysis

- Analysis-based approach more restrictive than synthesis-based.
- Similar ideas promoted by Maisinger & Hobson (2004) in a Bayesian framework for wavelet MEM (maximum entropy method).



## Outline

- Compressive sensing
  - Introduction
  - Analysis vs synthesis
  - Bayesian interpretations

Interferometric imaging with compressive sensing

- Imaging
- SARA
- Continuous visibilities
- Optimising telescope configurations
  - Spread spectrum effect
  - Simulations



イロト イヨト イヨト イヨト

### Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(\|\boldsymbol{l}\|_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation  $C(||l||_2)$  is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
  
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

• Small-field with 
$$\left[ H_{1}^{(0)}, \cos(2\lambda) \right] \Rightarrow \left[ C(|H_{1}|_{2}) \approx 1 \right]$$
  
• Small-field with  $\left[ H_{1}^{(0)}, \cos(2\lambda) \right] \Rightarrow \left[ C(|H_{1}|_{2}) \approx 2^{n+1} H_{1}^{(0)} \right]$   
• Wide-field  $\Rightarrow \left[ C(|H_{1}|_{2}) - 2^{n+1} (1 - \sqrt{1 - 1} H_{1}^{(0)}) \right] = 2^{n+1} (1 - \sqrt{1 - 1} H_{1}^{(0)}) = 2^{n+1} (1 - \sqrt{1 - 1} H_{1}$ 

## Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(||\boldsymbol{l}||_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation  $C(||l||_2)$  is given by

$$C(||l||_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - ||l||^2}\right)}$$
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

• Small-field with 
$$||I||^2 w \ll 1 \Rightarrow C(||I||_2) \simeq 1$$
  
• Small-field with  $||I||^4 w \ll 1 \Rightarrow C(||I||_2) \simeq e^{i\pi w ||I||^2}$   
• Wide-field  $\Rightarrow C(||I||_2) = e^{i2\pi w (1 - \sqrt{1 - ||I||^2})}$ 

## Radio interferometric inverse problem

• The complex visibility measured by an interferometer is given by

$$y(\boldsymbol{u}, \boldsymbol{w}) = \int_{D^2} A(\boldsymbol{l}) \, x(\boldsymbol{l}) \, C(||\boldsymbol{l}||_2) \, \mathrm{e}^{-\mathrm{i}2\pi\boldsymbol{u}\cdot\boldsymbol{l}} \, \frac{\mathrm{d}^2\boldsymbol{l}}{n(\boldsymbol{l})}$$

visibilities

where the *w*-modulation  $C(||l||_2)$  is given by

$$C(\|\boldsymbol{l}\|_2) \equiv e^{i2\pi w \left(1 - \sqrt{1 - \|\boldsymbol{l}\|^2}\right)}.$$
  
w-modulation

• Various assumptions are often made regarding the size of the field-of-view:

• Small-field with 
$$||I||^2 w \ll 1 \Rightarrow C(||I||_2) \simeq 1$$
  
• Small-field with  $||I||^4 w \ll 1 \Rightarrow C(||I||_2) \simeq e^{i\pi w ||I||^2}$   
• Wide-field  $\Rightarrow C(||I||_2) = e^{i2\pi w (1 - \sqrt{1 - ||I||^2})}$ 

## Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$ 

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator  $\Phi = MFCA$  may incorporate
  - primary beam A of the telescope;
  - w-modulation modulation C;
  - Fourier transform F;
  - masking M which encodes the incomplete measurements taken by the interferometer.



## Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$ 

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator  $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$  may incorporate:
  - primary beam A of the telescope;
  - w-modulation modulation C;
  - Fourier transform F;
  - masking M which encodes the incomplete measurements taken by the interferometer.



周 ト イヨト イヨト

## Radio interferometric inverse problem

• Consider the ill-posed inverse problem of radio interferometric imaging:

 $y = \Phi x + n ,$ 

where y are the measured visibilities,  $\Phi$  is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator  $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$  may incorporate:
  - primary beam A of the telescope;
  - w-modulation modulation C;
  - Fourier transform F;
  - masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.



# Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

 $y = \Phi x + n$  with  $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$ ,

by applying a prior on sparsity of the signal in a sparsifying dictionary  $\Psi$ .





## Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$  with  $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$ ,

by applying a prior on sparsity of the signal in a sparsifying dictionary  $\boldsymbol{\Psi}.$ 

• Basis Pursuit (BP) denoising problem

 $\boldsymbol{\alpha}^{\star} = \underset{\boldsymbol{\alpha}}{\arg\min} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon,$ 

where the image is synthesised by  $x^{\star} = \Psi \alpha^{\star}$ .

• Total Variation (TV) denoising problem

 $x^* = \underset{x}{\operatorname{arg\,min}} \|x\|_{\mathrm{TV}} \text{ such that } \|y - \Phi x\|_2 \le \epsilon$ 



A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Interferometric imaging with compressed sensing

• Solve the interferometric imaging problem

 $y = \Phi x + n$  with  $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$ ,

by applying a prior on sparsity of the signal in a sparsifying dictionary  $\boldsymbol{\Psi}.$ 

• Basis Pursuit (BP) denoising problem

$$\boldsymbol{\alpha}^{\star} = \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \| \boldsymbol{\alpha} \|_{1} \text{ such that } \| \mathbf{y} - \Phi \Psi \boldsymbol{\alpha} \|_{2} \leq \epsilon ,$$

where the image is synthesised by  $x^{\star} = \Psi \alpha^{\star}$ .

• Total Variation (TV) denoising problem

 $x^{\star} = \underset{x}{\operatorname{arg\,min}} \|x\|_{\mathrm{TV}} \text{ such that } \|y - \Phi x\|_{2} \leq \epsilon.$ 



A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus  $\Psi \in \mathbb{R}^{N \times D}$  with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
  - $\Rightarrow$  concatenation of 9 bases
- Promote average sparsity by solving the reweighted  $\ell_1$  analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \ ,$ 

where  $W \in \mathbb{R}^{D \times D}$  is a diagonal matrix with positive weights.



- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus  $\Psi \in \mathbb{R}^{N \times D}$  with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
  - $\Rightarrow$  concatenation of 9 bases
- Promote average sparsity by solving the reweighted l<sub>1</sub> analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \,,$ 

where  $W \in \mathbb{R}^{D \times D}$  is a diagonal matrix with positive weights.



- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus  $\Psi \in \mathbb{R}^{N \times D}$  with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
  - $\Rightarrow$  concatenation of 9 bases
- Promote average sparsity by solving the reweighted  $\ell_1$  analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| W \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \ ,$ 

where  $W \in \mathbb{R}^{D \times D}$  is a diagonal matrix with positive weights.



- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}} [\Psi_1, \Psi_2, \dots, \Psi_q],$$

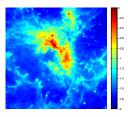
thus  $\Psi \in \mathbb{R}^{N \times D}$  with D = qN.

- We consider the following bases: Dirac (*i.e.* pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
  - $\Rightarrow$  concatenation of 9 bases
- Promote average sparsity by solving the reweighted  $\ell_1$  analysis problem:

 $\min_{\bar{\boldsymbol{x}} \in \mathbb{R}^N} \| \boldsymbol{W} \Psi^T \bar{\boldsymbol{x}} \|_1 \quad \text{subject to} \quad \| \boldsymbol{y} - \Phi \bar{\boldsymbol{x}} \|_2 \le \epsilon \quad \text{and} \quad \bar{\boldsymbol{x}} \ge 0 \,,$ 

where  $W \in \mathbb{R}^{D \times D}$  is a diagonal matrix with positive weights.

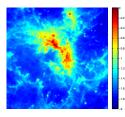




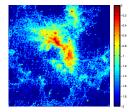
(a) Original



B 1 4 B 1



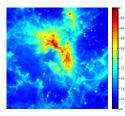
(a) Original



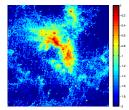
(b) "CLEAN" (SNR=16.67 dB)



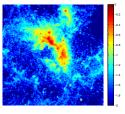
B 1 4 B 1



(a) Original

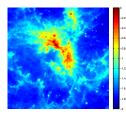


(b) "CLEAN" (SNR=16.67 dB)

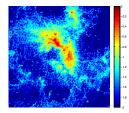


(c) "MS-CLEAN" (SNR=17.87 dB)

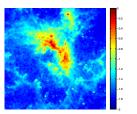




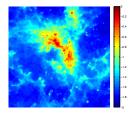
(a) Original



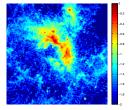
(b) "CLEAN" (SNR=16.67 dB)



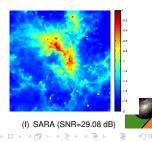
(d) BPDb8 (SNR=24.53 dB)



(e) TV (SNR=26.47 dB)



(c) "MS-CLEAN" (SNR=17.87 dB)



Radio interferometric imaging with compressive sensing

Jason McEwen

#### SARA for radio interferometric imaging Results on simulations

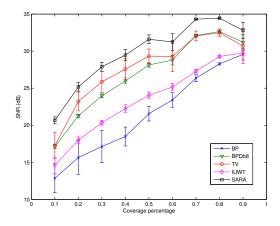


Figure: Reconstruction fidelity vs visibility coverage.



#### Imaging SARA Continuous Visibilities

## Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{c}$$
.

#### But this is impracticably slow!

- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.



# Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{c}$$
.

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z},$$

where we incorporate:

- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- zero-padding operator Z to upsample the discrete visibility space.



# Supporting continuous visibilities Algorithm

• Ideally we would like to model the continuous Fourier transform operator

$$\Phi = \mathbf{F}^{c}$$
.

- But this is impracticably slow!
- Incorporated gridding into our CS interferometric imaging framework (Carrillo et al. 2013).
- Model with measurement operator

$$\Phi = \mathbf{G} \mathbf{F} \mathbf{D} \mathbf{Z} ,$$

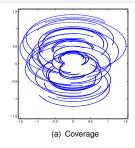
where we incorporate:

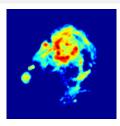
- convolutional gridding operator G;
- fast Fourier transform F;
- normalisation operator D to undo the convolution gridding;
- $\bullet\$  zero-padding operator Z to upsample the discrete visibility space.



(4月) トイヨト イヨト

#### Supporting continuous visibilities Results on simulations



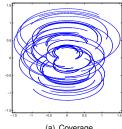


(b) M31 (ground truth)

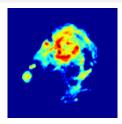


Figure: Reconstructed images from continuous visibilities.

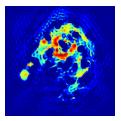
#### Supporting continuous visibilities Results on simulations



(a) Coverage



(b) M31 (ground truth)

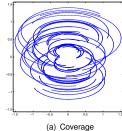


(c) "CLEAN" (SNR= 8.2dB)

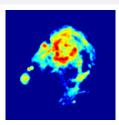


Figure: Reconstructed images from continuous visibilities.

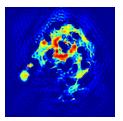
#### Supporting continuous visibilities Results on simulations



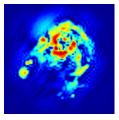




(b) M31 (ground truth)



(c) "CLEAN" (SNR= 8.2dB)



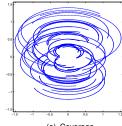
(d) "MS-CLEAN" (SNR= 11.1dB)



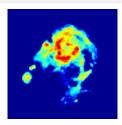
Figure: Reconstructed images from continuous visibilities.

Imaging SARA Continuous Visibilities

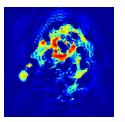
#### Supporting continuous visibilities Results on simulations



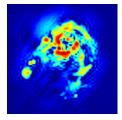
(a) Coverage

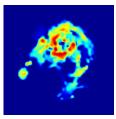


(b) M31 (ground truth)



(c) "CLEAN" (SNR= 8.2dB)





(e) SARA (SNR= 13.4dB)



= 8.2dB) (d) "MS-CLEAN" (SNR= 11.1dB) (e) SAR Figure: Reconstructed images from continuous visibilities.

# Outline

- Compressive sensing
  - Introduction
  - Analysis vs synthesis
  - Bayesian interpretations

Interferometric imaging with compressive sensing

- Imaging
- SARA
- Continuous visibilities
- Optimising telescope configurations
  - Spread spectrum effect
  - Simulations



## Optimising telescope configurations Spread spectrum effect

- Use theory of compressive sensing to optimise telescope configurations.
- Non-coplanar baselines and wide fields  $\rightarrow$  *w*-modulation  $\rightarrow$  spread spectrum effect  $\rightarrow$  improves reconstruction quality (first considered by Wiaux *et al.* 2009b).
- The w-modulation operator C has elements defined by

$$C(l,m) \equiv \mathrm{e}^{\mathrm{i} 2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq \mathrm{e}^{\mathrm{i} \pi w \| \boldsymbol{l} \|^2} \quad \text{for} \quad \| \boldsymbol{l} \|^4 \; w \ll 1$$

giving rise to to a linear chirp.



### Optimising telescope configurations Spread spectrum effect

- Use theory of compressive sensing to optimise telescope configurations.
- Non-coplanar baselines and wide fields  $\rightarrow$  *w*-modulation  $\rightarrow$  spread spectrum effect  $\rightarrow$  improves reconstruction quality (first considered by Wiaux *et al.* 2009b).
- The w-modulation operator C has elements defined by

$$C(l,m) \equiv \mathrm{e}^{\mathrm{i} 2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq \mathrm{e}^{\mathrm{i} \pi w \| \boldsymbol{l} \|^2} \quad \text{for} \quad \| \boldsymbol{l} \|^4 \; w \ll 1$$

giving rise to to a linear chirp.



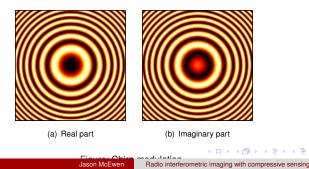
(4月) トイヨト イヨト

# Optimising telescope configurations Spread spectrum effect

- Use theory of compressive sensing to optimise telescope configurations.
- Non-coplanar baselines and wide fields → w-modulation → spread spectrum effect → improves reconstruction quality (first considered by Wiaux *et al.* 2009b).
- The w-modulation operator C has elements defined by

$$C(l,m) \equiv e^{i2\pi w \left(1 - \sqrt{1 - l^2 - m^2}\right)} \simeq e^{i\pi w ||I||^2} \text{ for } ||I||^4 w \ll 1$$

giving rise to to a linear chirp.



### Recap compressive sensing preliminaries Sparsity and coherence

- What drives the quality of compressive sensing reconstruction?
- Number of measurements required to achieve exact reconstruction is given by

 $M \ge c\mu^2 K \log N$ ,

where *K* is the sparsity and *N* the dimensionality.

• The coherence between the measurement and sparsity basis is given by

$$\mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j 
angle| ~~.$$



## Recap compressive sensing preliminaries Sparsity and coherence

- What drives the quality of compressive sensing reconstruction?
- Number of measurements required to achieve exact reconstruction is given by

$$M \ge c\mu^2 K \log N \quad ,$$

Spread Spectrum Simulations

where K is the sparsity and N the dimensionality.

• The coherence between the measurement and sparsity basis is given by

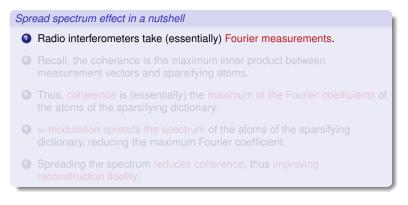
$$\begin{array}{c} \mu = \sqrt{N} \max_{i,j} |\langle \Psi_i, \Phi_j \rangle| \\ y \\ \Psi \\ M \times N \\ M \times N \\ x = \Psi \alpha \end{array}$$



| Spre | Spread spectrum effect in a nutshell                                                                                            |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | Radio interferometers take (essentially) Fourier measurements.                                                                  |  |  |
|      | Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.                           |  |  |
|      | Thus, coherence is (essentially) the maximum of the Fourier coefficients of the atoms of the sparsifying dictionary.            |  |  |
|      | <i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient. |  |  |
| 6    | Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                               |  |  |

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant *w* (for simplicity) by Wiaux *et al.* (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).





- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).



| Spread spectrum effect in a nutshell |                                                                                                                                 |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| 0                                    | Radio interferometers take (essentially) Fourier measurements.                                                                  |  |
| 2                                    | Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.                           |  |
|                                      | Thus, coherence is (essentially) the maximum of the Fourier coefficients of the atoms of the sparsifying dictionary.            |  |
|                                      | <i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient. |  |
|                                      | Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                               |  |

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).



| Spr                                                                                                                     | ead spectrum effect in a nutshell                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                       | Radio interferometers take (essentially) Fourier measurements.                                                                  |
| 2                                                                                                                       | Recall, the coherence is the maximum inner product between measurement vectors and sparsifying atoms.                           |
| Thus, coherence is (essentially) the maximum of the Fourier coefficients of<br>the atoms of the sparsifying dictionary. |                                                                                                                                 |
|                                                                                                                         | <i>w</i> -modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient. |
| 0                                                                                                                       | Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                               |

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).



| Spread spectrum effect in a nutshell                                                                              |                |
|-------------------------------------------------------------------------------------------------------------------|----------------|
| Radio interferometers take (essentially) Fourier measurements                                                     | s.             |
| Recall, the coherence is the maximum inner product between<br>measurement vectors and sparsifying atoms.          |                |
| Thus, coherence is (essentially) the maximum of the Fourier control the atoms of the sparsifying dictionary.      | pefficients of |
| w-modulation spreads the spectrum of the atoms of the sparsidictionary, reducing the maximum Fourier coefficient. | fying          |
| Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                 |                |

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).



| Spread spectrum effect in a nutshell                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------|
| Radio interferometers take (essentially) Fourier measurements.                                                            |
| Recall, the coherence is the maximum inner product between<br>measurement vectors and sparsifying atoms.                  |
| Thus, coherence is (essentially) the maximum of the Fourier coefficients of<br>the atoms of the sparsifying dictionary.   |
| • w-modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient. |
| Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                         |

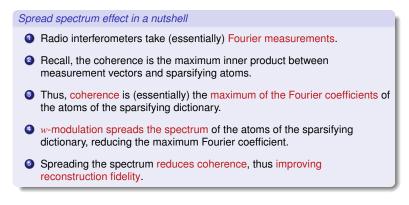
- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying w (with realistic images and various sparse representations) by Wolz et al. (2013).



| Spread spectrum effect in a nutshell                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------|
| Radio interferometers take (essentially) Fourier measurements.                                                          |
| Recall, the coherence is the maximum inner product between<br>measurement vectors and sparsifying atoms.                |
| Thus, coherence is (essentially) the maximum of the Fourier coefficients of<br>the atoms of the sparsifying dictionary. |
| w-modulation spreads the spectrum of the atoms of the sparsifying dictionary, reducing the maximum Fourier coefficient. |
| Spreading the spectrum reduces coherence, thus improving reconstruction fidelity.                                       |

- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).





- Consistent with findings of Carozzi et al. (2013) from information theoretic approach.
- Studied for constant w (for simplicity) by Wiaux et al. (2009b).
- Studied for varying *w* (with realistic images and various sparse representations) by Wolz *et al.* (2013).



• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different *w* for each (u, v), while still exploiting FFT.
- Many of the elements of  $\hat{\mathbf{C}}$  will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.



• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of  $\hat{\mathbf{C}}$  will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.



• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of C will be close to zero.
- Support of w-modulation in Fourier space determined dynamically.



• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of C will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.



• Apply the *w*-projection algorithm (Cornwell *et al.* 2008) to shift the *w*-modulation through the Fourier transform:

$$\Phi = \mathbf{M} \, \mathbf{F} \, \mathbf{C} \, \mathbf{A} \quad \Rightarrow \quad \Phi = \hat{\mathbf{C}} \, \mathbf{F} \, \mathbf{A}$$

- Naively, expressing the application of the *w*-modulation in this manner is computationally less efficient that the original formulation but it has two important advantages.
- Different w for each (u, v), while still exploiting FFT.
- Many of the elements of C will be close to zero.
- Support of *w*-modulation in Fourier space determined dynamically.



- Perform simulations to assess the effectiveness of the spread spectrum effect in the presence of varying *w*.
- Consider idealised simulations with uniformly random visibility sampling.

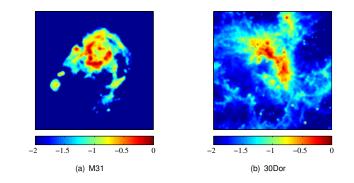
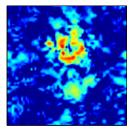


Figure: Ground truth images in logarithmic scale.

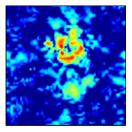




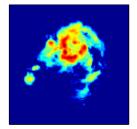
(a)  $w_d = 0 \rightarrow SNR = 5 dB$ 

Figure: Reconstructed images of M31 for 10% coverage.





(a)  $w_d = 0 \rightarrow SNR = 5 dB$ 



(c)  $w_d = 1 \rightarrow SNR = 19 dB$ 

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Figure: Reconstructed images of M31 for 10% coverage.



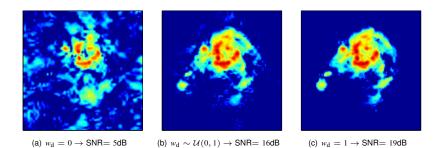
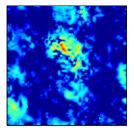


Figure: Reconstructed images of M31 for 10% coverage.



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

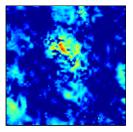


(a)  $w_d = 0 \rightarrow SNR = 2dB$ 

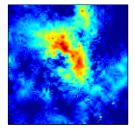
Figure: Reconstructed images of 30Dor for 10% coverage.



A B F A B F



(a)  $w_d = 0 \rightarrow SNR = 2dB$ 



(c)  $w_d = 1 \rightarrow SNR = 15 dB$ 

・ロト ・回ト ・ヨト ・ヨト

Figure: Reconstructed images of 30Dor for 10% coverage.



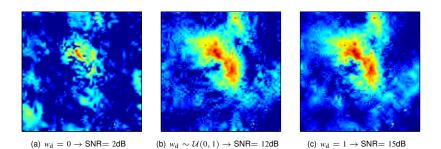
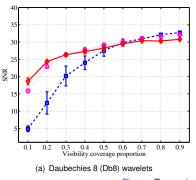


Figure: Reconstructed images of 30Dor for 10% coverage.



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



#### Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying *w* is almost as large as the case of constant maximum *w*.



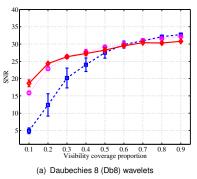


Figure: Reconstruction fidelity for M31.

Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w.

As expected, for the case where coherence is already optimal, there is little improvement.



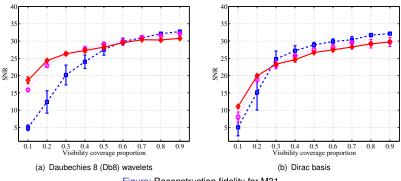
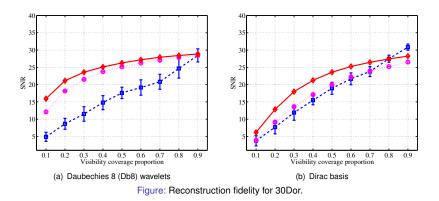


Figure: Reconstruction fidelity for M31.

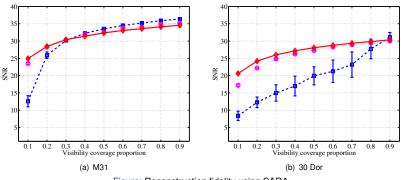
Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w.

• As expected, for the case where coherence is already optimal, there is little improvement.



Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w.

• As expected, for the case where coherence is already optimal, there is little improvement.





Improvement in reconstruction fidelity due to the spread spectrum effect for varying w is almost as large as the case of constant maximum w.

• As expected, for the case where coherence is already optimal, there is little improvement.



### Public codes

#### SOPT code



# http://basp-group.github.io/sopt/

Sparse OPTimisation Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

#### **PURIFY code**

#### http://basp-group.github.io/purify/



*Next-generation radio interferometric imaging* Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.



- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration.
- Exploit state-of-the-art convex optimisation algorithms that support parallelisation.

Apply to observations made by real interferometric telescopes.

Develop fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.



- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration.
- Exploit state-of-the-art convex optimisation algorithms that support parallelisation.

Apply to observations made by real interferometric telescopes.

Develop fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.



- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration.
- Exploit state-of-the-art convex optimisation algorithms that support parallelisation.

Apply to observations made by real interferometric telescopes.

Develop fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.



• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Effectiveness of compressive sensing for radio interferometric imaging demonstrated.
- Theory of compressive sensing can be used to optimise telescope configuration.
- Exploit state-of-the-art convex optimisation algorithms that support parallelisation.

Apply to observations made by real interferometric telescopes.

Develop fast convex optimisation algorithms that are parallelised and distributed to scale to big-data.



• □ ▶ • • □ ▶ • □ ▶ • □ ▶