Imaging observations from next-generation radio interferometric telescopes

Jason McEwen www.jasonmcewen.org @jasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

UCL Research IT Services Annual Forum, June 2014

Radio telescopes are big!

"Just checking."

Jason McEwen

Radio telescopes are big!

Jason McEwen

Radio interferometric telescopes

Jason McEwen

ৰ া চ ৰ লী চ ৰ ই চ ৰ ই চ ই বি ্ ্ ্ ্ ্ ্ Imaging observations from next-generation radio interferometric telescopes SKA movie

Next-generation of radio interferometry rapidly approaching

Square Kilometre Array (SKA) construction scheduled to begin in 2018.

- Many pathfinder telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques essential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Jason McEwen

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) construction scheduled to begin in 2018.
- Many pathfinder telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques essential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Jason McEwen

Next-generation of radio interferometry rapidly approaching

- Square Kilometre Array (SKA) construction scheduled to begin in 2018.
- Many pathfinder telescopes coming online, *e.g.* LOFAR, ASKAP, MeerKAT, MWA.
- New modelling and imaging techniques essential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

Jason McEwen

The SKA poses a considerable big-data challenge

Jason McEwen

"Nothing short of revolutionary."

- National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others).

(a) Emmanuel Candes

(b) David Donoho

- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage \rightarrow compressive sensing.
- Acquisition versus imaging.

- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage → compressive sensing.
- Acquisition versus imaging.

Figure: Single pixel camera

(D) (A) (A) (A)

- The mystery of JPEG compression (discrete cosine transform; wavelet transform).
- Move compression to the acquisition stage → compressive sensing.
- Acquisition versus imaging.

Figure: Single pixel camera

・ロト ・同ト ・ヨト ・ヨ

Interferometric imaging with compressive sensing

Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

to recover image x from Fourier measurements y, where Φ models the telescope measurement operator.

• Promote sparsity by minimising ℓ_1 norm of wavelet representation of image:

$$\boldsymbol{\alpha}^{\star} = \argmin_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{1} \text{ such that } \|\boldsymbol{y} - \Phi \Psi \boldsymbol{\alpha}\|_{2} \leq \epsilon$$

where we synthesise the image from its recovered wavelet coefficients by $x^\star = \Psi oldsymbol lpha^\star$

- Solve with convex optimisation algorithms.
- Many new developments (*e.g.* analysis vs synthesis, reweighting, cosparsity, structured sparsity).

Interferometric imaging with compressive sensing

Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

to recover image x from Fourier measurements y, where Φ models the telescope measurement operator.

• Promote sparsity by minimising ℓ_1 norm of wavelet representation of image:

$$oldsymbol{lpha}^{\star} = \mathop{\mathrm{arg\,min}}_{oldsymbol{lpha}} \|oldsymbol{lpha}\|_1 \, \, ext{such that} \, \, \|oldsymbol{y} - \Phi\Psioldsymbol{lpha}\|_2 \leq \epsilon$$

where we synthesise the image from its recovered wavelet coefficients by $x^{\star} = \Psi \alpha^{\star}$.

- Solve with convex optimisation algorithms.
- Many new developments (*e.g.* analysis vs synthesis, reweighting, cosparsity, structured sparsity).

(b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.

(b) M31 (ground truth)

Figure: Reconstructed images from continuous visibilities.

(a) Coverage

(b) M31 (ground truth)

(d) MS-CLEAN \rightarrow SNR= 11.1dB

Figure: Reconstructed images from continuous visibilities.

(a) Coverage

(b) M31 (ground truth)

(c) CLEAN \rightarrow SNR= 8.2dB

(e) PURIFY \rightarrow SNR= 13.4dB

R = 8.2 dB (d) MS-CLEAN \rightarrow SNR = 11.1 dB (e) PURIF Figure: Reconstructed images from continuous visibilities.

PURIFY

- Recently released the PURIFY code.
- Shown dramatic improvement over state-of-the-art on simulations.
- Further development by Research Software Development Team (RSDT) to handle real telescope data...

Apply to observations made by real interferometric telescopes.

PURIFY code

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux Ongoing development by RSDT

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

http://basp-group.github.io/purify/

PURIFY

- Recently released the PURIFY code.
- Shown dramatic improvement over state-of-the-art on simulations.
- Further development by Research Software Development Team (RSDT) to handle real telescope data...

Apply to observations made by real interferometric telescopes.

PURIFY

- Recently released the PURIFY code.
- Shown dramatic improvement over state-of-the-art on simulations.
- Further development by Research Software Development Team (RSDT) to handle real telescope data...

Apply to observations made by real interferometric telescopes.

