Bianchi VII*^h* cosmologies and *Planck* XXVI. Background geometry and topology of the Universe

Planck Collaboration

Presented by Jason McEwen

<http://www.jasonmcewen.org/>

University College London (UCL)

The Universe as seen by Planck :: 47th ESLAB Symposium :: April 2013

Outline

Bianchi VII*^h* [cosmologies](#page-6-0)

Outline

Bianchi VII*^h* [cosmologies](#page-6-0)

Topology

Topology

Topology

[Topology](#page-2-0) Bianchi VII*h* [Cosmologies](#page-6-0) [Bayesian Analysis](#page-14-0) [Planck Results](#page-27-0)

Figure 4: Simulated circle matching (a) Back-to-back circles

Bianchi VII*^h* [cosmologies](#page-6-0)

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the Universe.
- \bullet Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- For small anisotropy, as already demanded by current observations, linear perturbation about the standard FRW model may be applied.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies.
- First examined by Collins & Hawking (1973) and Barrow *et al.* (1985), however dark energy not included.
- Focus on Bianchi VII*^h* using solutions derived by Anthony Lasenby that do incorporate dark

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the Universe.
- \bullet Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- For small anisotropy, as already demanded by current observations, linear perturbation about the standard FRW model may be applied.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies.
- First examined by Collins & Hawking (1973) and Barrow *et al.* (1985), however dark energy not included.
- Focus on Bianchi VII*^h* using solutions derived by Anthony Lasenby that do incorporate dark energy (also derived independently by Jaffe *et al.* 2006).

 QQ

- \bullet Bianchi VII_{*h*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ij} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- \bullet The model has a free parameter, denoted x, describing the comoving length-scale over which
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII*^h* models may be described by the parameter vector:

- \bullet Bianchi VII_{*h*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ii} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- \bullet The model has a free parameter, denoted x , describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII*^h* models may be described by the parameter vector:

- \bullet Bianchi VII_{*h*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ii} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- \bullet The model has a free parameter, denoted x, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII*^h* models may be described by the parameter vector:

- \bullet Bianchi VII_{*h*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ij} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- \bullet The model has a free parameter, denoted x, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- **•** Bianchi VII_h models may be described by the parameter vector:

 $\Theta_{\text{B}} = (\Omega_{\text{m}}, \Omega_{\Lambda}, x, (\omega/H)_0, \alpha, \beta, \gamma)$.

 299

Bianchi VII*^h* cosmologies

Figure: Simulated deterministic CMB temperature contributions in Bianchi VII*^h* cosmologies for varying *x* and Ωtotal $(\text{left-to-right } \Omega_{\text{total}} \in \{0.10, 0.30, 0.95\}; \text{top-to-bottom } x \in \{0.1, 0.3, 0.7, 1.5\}).$

ă

イロトメ 御 トメ 差 トメ 差 ト

Bianchi VII*^h* [cosmologies](#page-6-0)

Bayesian analysis of Bianchi VII*^h* cosmologies

• Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) <http://arxiv.org/abs/arXiv:1303.3409>

and applied to WMAP previously.

Posterior distribution of the parameters Θ of model of interest *M* given data *d*, as

- Consider open and flat cosmologies with cosmological parameters:
- Recall Bianchi parameters:
- Likelihood is given by

$$
\left|P(d\,|\,\Theta_B,\Theta_C)\propto\frac{1}{\sqrt{|{\bf X}(\Theta_C)|}}e^{\left[-\chi^2(\Theta_C,\Theta_B)/2\right]}\right|
$$

$$
\left[\chi^2(\Theta_\mathrm{C}, \Theta_\mathrm{B}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_\mathrm{B}) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_\mathrm{C}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_\mathrm{B}) \right] \right]
$$

Consider decoupled (phenomenological) and coupled (physical) analyses.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Topology](#page-2-0) Bianchi VII*h* [Cosmologies](#page-6-0) [Bayesian Analysis](#page-14-0) [Planck Results](#page-27-0) Bayesian analysis of Bianchi VII*^h* cosmologies

• Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) <http://arxiv.org/abs/arXiv:1303.3409>

and applied to WMAP previously.

Posterior distribution of the parameters Θ of model of interest *M* given data *d*, as

 $P(\Theta | d, M) \propto P(d | \Theta, M) P(\Theta | M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \Omega_k).$
- **•** Recall Bianchi parameters: $\Theta_{\text{B}} = (\Omega_{\text{m}}, \Omega_{\Lambda}, x, (\omega/H)_0, \alpha, \beta, \gamma).$
- Likelihood is given by

$$
\left| P(d \, | \, \Theta_B, \Theta_C) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_C)|}} e^{\left[-\chi^2(\Theta_C, \Theta_B)/2 \right]} \right|
$$

$$
\left[\chi^2(\Theta_{\rm C}, \Theta_{\rm B}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\rm B}) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\rm C}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\rm B}) \right] \right]
$$

Consider decoupled (phenomenological) and coupled (physical) analyses.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• Perform the Bayesian analysis described by

```
JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
     http://arxiv.org/abs/arXiv:1303.3409
```

```
and applied to WMAP previously.
```
Posterior distribution of the parameters Θ of model of interest *M* given data *d*, as

 $P(\Theta | d, M) \propto P(d | \Theta, M) P(\Theta | M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{\text{B}} = (\Omega_{\text{m}}, \Omega_{\Lambda}, x, (\omega/H)_0, \alpha, \beta, \gamma).$
- **•** Likelihood is given by

$$
P(\textbf{\textit{d}}\,|\,\Theta_B,\Theta_C) \propto \frac{1}{\sqrt{|X(\Theta_C)|}} e^{\biggl[-\chi^2(\Theta_C,\Theta_B)/2 \biggr]} \ \Bigg| \ ,
$$

where

$$
\left[\chi^2(\Theta_C, \Theta_B) = \left[d - b(\Theta_B) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_C) \left[d - b(\Theta_B) \right] \right]
$$

Consider decoupled (phenomenological) and coupled (physical) analyses.

.

[Topology](#page-2-0) Bianchi VII*h* [Cosmologies](#page-6-0) [Bayesian Analysis](#page-14-0) [Planck Results](#page-27-0) Bayesian analysis of Bianchi VII*^h* cosmologies

• Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) <http://arxiv.org/abs/arXiv:1303.3409>

and applied to WMAP previously.

Posterior distribution of the parameters Θ of model of interest *M* given data *d*, as

 $P(\Theta | d, M) \propto P(d | \Theta, M) P(\Theta | M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_c h^2, \Omega_\Lambda, \Omega_k).$
- **•** Recall Bianchi parameters: $\Theta_{\text{B}} = (\Omega_{\text{m}}, \Omega_{\Lambda}, x, (\omega/H)_0, \alpha, \beta, \gamma).$
- **•** Likelihood is given by

$$
P(\textbf{\textit{d}} \,|\, \Theta_B, \Theta_C) \propto \frac{1}{\sqrt{|{\bf X}(\Theta_C)|}} e^{\biggl[-\chi^2(\Theta_C,\Theta_B)/2 \biggr]}\;\Biggr|
$$

where

$$
\left[\chi^2(\Theta_C, \Theta_B) = \left[d - b(\Theta_B) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_C) \left[d - b(\Theta_B) \right] \right]
$$

Consider decoupled (phenomenological) and coupled (physical) analyses.

planck

,

.

HFi PLANCK

- **Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space** \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}\$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}\$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the

$$
\sigma_m^2(\omega_i) = \begin{cases} \Sigma_m^2, & \omega_i \in \mathbb{M} \\ 0, & \omega_i \in \mathbb{S}^2 \backslash \mathbb{M} \end{cases}
$$

where Σ_m^2 is a constant masking noise variance.

• The covariance is then given by

$$
\boxed{\textbf{X}(\Theta_C)=C(\Theta_C)+\textbf{M}}\enspace,
$$

- \bullet C($\Theta_{\rm C}$) is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_{\rm C});$
- M is the non-diagonal noisy mask covariance matrix defined by

$$
\mathbf{M}^{\ell'm'}_{\ell m}\,=\,\langle m_{\ell m}\,m^*_{\ell'm'}\rangle\,\simeq\,\sum_{\omega_i}\sigma^2_m(\omega_i)\,Y^*_{\ell m}(\omega_i)\,Y_{\ell'm'}(\omega_i)\,\Omega_{\rm pix}{}^2\,.
$$

 299

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. \end{array}$

- **Bianchi VII_h** templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}\$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}\$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by

$$
\sigma_m^2(\omega_i) = \begin{cases} \Sigma_m^2, & \omega_i \in \mathbb{M} \\ 0, & \omega_i \in \mathbb{S}^2 \backslash \mathbb{M} \end{cases}
$$

where \sum_m^2 is a constant masking noise variance.

• The covariance is then given by

 $\boxed{\mathbf{X}(\Theta_{\mathrm{C}}) = \mathbf{C}(\Theta_{\mathrm{C}}) + \mathbf{M}}$,

- \bullet **C**(Θ_c) is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_c)$;
- M is the non-diagonal noisy mask covariance matrix defined by

 $\mathbf{M}^{\ell'm'}_{\ell m} = \langle m_{\ell m} \, m^*_{\ell' m'} \rangle \simeq \sum \sigma^2_m(\omega_i) Y^*_{\ell m}(\omega_i) \, Y_{\ell' m'}(\omega_i) \, {\Omega_{\text{pix}}}^2 \, .$

 \Rightarrow

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- **•** Bianchi VII_{*h*} templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}\$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}\$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by

$$
\sigma_m^2(\omega_i) = \begin{cases} \Sigma_m^2, & \omega_i \in \mathbb{M} \\ 0, & \omega_i \in \mathbb{S}^2 \backslash \mathbb{M} \end{cases}
$$

where \sum_m^2 is a constant masking noise variance.

• The covariance is then given by

$$
X(\Theta_C) = C(\Theta_C) + M \Big| ,
$$

where

- \bullet C($\Theta_{\rm C}$) is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_{\rm C});$
- M is the non-diagonal noisy mask covariance matrix defined by

$$
\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} m_{\ell' m'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) Y_{\ell' m'}(\omega_i) \Omega_{\text{pix}}^2.
$$

planck

 2990

 H \overline{H} \overline{H} $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• Compute the Bayesian evidence to determine preferred model:

$$
E = P(d | M) = \int d\Theta P(d | \Theta, M) P(\Theta | M)
$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz *et al.* 2009).
- **Consider two models:**
	- **•** Flat-decoupled-Bianchi model: Θ_C and Θ_B fitted simultaneously but decoupled
	- Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled

• Compute the Bayesian evidence to determine preferred model:

$$
E = P(d | M) = \int d\Theta P(d | \Theta, M) P(\Theta | M)
$$
.

Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz *et al.* 2009).

- **Consider two models:**
	- Flat-decoupled-Bianchi model: Θ_C and Θ_B fitted simultaneously but decoupled
	- Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled

• Compute the Bayesian evidence to determine preferred model:

$$
E = P(d | M) = \int d\Theta P(d | \Theta, M) P(\Theta | M)
$$
.

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz *et al.* 2009).
- **Consider two models:**
	- **Flat-decoupled-Bianchi model:** Θ_C and Θ_B fitted simultaneously but decoupled \rightarrow phenomenological
	- \bullet Open-coupled-Bianchi model: $\Theta_{\rm C}$ and $\Theta_{\rm B}$ fitted simultaneously and coupled \rightarrow physical

Validation with simulations

Figure: Partial-sky simulation with embedded Bianchi VII_{*h*} component at $\ell_{\text{max}} = 32$.

 290

K ロメ K 御 K K 君 K K 君

Validation with simulations

Figure: Marginalised posterior distributions recovered from partial-sky simulation at $\ell_{\text{max}} = 32$.

≣

Þ \mathbf{b} ×.

 $2Q$

← ロ ⊁ ← (型)→ ←

Ξ

Bianchi VII*^h* [cosmologies](#page-6-0)

Planck results: flat-decoupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the phenomenological flat-decoupled-Bianchi model from *Planck* SMICA (solid curves) and SEVEM (dashed curves) data.

(ロ) (伊)

Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII*^h* component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.
- *Planck* data favour the inclusion of a phenomenological Bianchi VII*^h* component.
- Best-fit Bianchi VII*^h* template is similar to that first found in WMAP data by Jaffe *et al.* 2005.

Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII*^h* component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.
- *Planck* data favour the inclusion of a phenomenological Bianchi VII*^h* component.
- Best-fit Bianchi VII*^h* template is similar to that first found in WMAP data by Jaffe *et al.* 2005.

Planck results: flat-decoupled-Bianchi model

Figure: Best-fit template of flat-decoupled-Bianchi VII*^h* model found in *Planck* SMICA component-separated data.

Planck results: flat-decoupled-Bianchi model

Figure: *Planck* SMICA component-separated data.

 $2Q$

K ロメ K 御 K K 君 K K 君

Planck results: flat-decoupled-Bianchi model

Figure: *Planck* SMICA component-separated data minus best-fit template of flat-decoupled-Bianchi VII*^h* model.

Planck results: flat-decoupled-Bianchi model

BUT the flat-Bianchi-decoupled model is phenomenological and **not physical!**

Table: Parameters recovered for flat-decoupled-Bianchi model.

Planck results: open-coupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the physical open-coupled-Bianchi model from *Planck* SMICA (solid curves) and SEVEM (dashed curves) data.

4 ロ ▶ 4 伊 \mathbf{h} $2Q$

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

- In the physical setting where the standard cosmological and Bianchi parameters are coupled, *Planck* data do not favour the inclusion of a Bianchi VII*^h* component.
- We find no evidence for Bianchi VII*^h* cosmologies and constrain the vorticity of such models to $(\omega/H)_0 < 8.1 \times 10^{-10}$ (95% confidence level).

- Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII*^h* cosmologies.
- Planck data support the inclusion of a phenomenological Bianchi template. . .
- **BUT** this model is non-physical and the recovered cosmological parameters are inconsistent with standard constraints!
- In the physical model where the cosmological and Bianchi parameters are coupled, *Planck*
- We constrain vorticity of Bianchi VII*^h* cosmologies to (ω/*H*)⁰ < 8.1 × 10−¹⁰ (95% confidence

- Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII*^h* cosmologies.
- Planck data support the inclusion of a phenomenological Bianchi template. . .
- **BUT** this model is non-physical and the recovered cosmological parameters are inconsistent with standard constraints!
- In the physical model where the cosmological and Bianchi parameters are coupled, *Planck* **data do not favour the inclusion of a Bianchi VII***^h* **component**.
- \bullet We constrain vorticity of Bianchi VII_{*h*} cosmologies to $(\omega/H)_0 < 8.1 \times 10^{-10}$ (95% confidence level).

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

