Bianchi VII_h cosmologies and *Planck* XXVI. Background geometry and topology of the Universe

Planck Collaboration

Presented by Jason McEwen

http://www.jasonmcewen.org/

University College London (UCL)

The Universe as seen by Planck :: 47th ESLAB Symposium :: April 2013

Bayesian Analysis

Outline

Bianchi VII_h cosmologies

Outline

2 Bianchi VII_h cosmologies

Topology ●○○

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Topology

(a) Correlations

(b) Simulations

Topology O●O

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Topology

Topology ○○●

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Topology

(a) Back-to-back circles

Тс	pp		lo	g	y
	C	C			

Bayesian Analysis

Outline

Bianchi VII_h cosmologies

Topology	Bianchi VII _h Cosmologies	Bayesian Analysis	Planck Results
	•00		
Bianchi VI	l _h cosmologies		

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the Universe.
- Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- For small anisotropy, as already demanded by current observations, linear perturbation about the standard FRW model may be applied.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies.
- First examined by Collins & Hawking (1973) and Barrow et al. (1985), however dark energy
- Focus on Bianchi VII, using solutions derived by Anthony Lasenby that do incorporate dark

lopology 000	Bianchi VII _h Cosmologies	Bayesian Analysis	Planck Results
Bianchi VI	I_h cosmologies		

- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the Universe.
- Yields more general solutions to Einstein's field equations \rightarrow Bianchi cosmologies.
- For small anisotropy, as already demanded by current observations, linear perturbation about the standard FRW model may be applied.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies.
- First examined by Collins & Hawking (1973) and Barrow et al. (1985), however dark energy not included.
- Focus on Bianchi VII, using solutions derived by Anthony Lasenby that do incorporate dark. energy (also derived independently by Jaffe et al. 2006).

Topology 000	Bianchi VII _h Cosmologies ○●○	Bayesian Analysis	Planck Results
Bianchi VII _h cosm	nologies		

- Bianchi VII_{*i*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ij} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity (ω/H)₀, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The model has a free parameter, denoted *x*, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII_h models may be described by the parameter vector:

 $\Theta_{\rm B} = \left(\Omega_{\rm m}, \ \Omega_{\Lambda}, \ x, \ (\omega/H)_0, \ \alpha, \beta, \gamma \right) ~~.$

lopology 200	Bianchi VII _{/i} Cosmologies ○●○	Bayesian Analysis	Planck Results
Bianchi VII _h cosr	nologies		

- Bianchi VII_h models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ii} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The model has a free parameter, denoted x, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- Bianchi VII_h models may be described by the parameter vector:

opology	Bianchi VII _h Cosmologies ○●○	Bayesian Analysis	Planck Results
Bianchi VII _h cosr	nologies		

- Bianchi VII_h models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ii} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity $(\omega/H)_0$, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The model has a free parameter, denoted x, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII_h models may be described by the parameter vector:

ōpology DOO	Bianchi VII _h Cosmologies ○●○	Bayesian Analysis	Planck Results
Bianchi VII $_h$ cos	mologies		

- Bianchi VII_{*i*} models describe a universe with overall rotation, with angular velocity ω , and a three-dimensional rate of shear, specified by the antisymmetric tensor σ_{ij} . Throughout we assume equality of shear modes $\sigma = \sigma_{12} = \sigma_{13}$ (cf. Jaffe *et al.* 2005).
- The amplitude of induced CMB temperature fluctuations may be characterised by the dimensionless vorticity (ω/H)₀, which influences the amplitude of the induced temperature contribution only and not its morphology.
- The model has a free parameter, denoted *x*, describing the comoving length-scale over which the principal axes of shear and rotation change orientation.
- The orientation and handedness of the coordinate system is also free.
- Bianchi VII_h models may be described by the parameter vector:

$$\Theta_{\rm B} = \left(\Omega_{\rm m}, \ \Omega_{\Lambda}, \ x, \ (\omega/H)_0, \ \alpha, \beta, \gamma\right) \ .$$

Bianchi VII_h Cosmologies

Bayesian Analysis

Bianchi VII_h cosmologies

Figure: Simulated deterministic CMB temperature contributions in Bianchi VII_h cosmologies for varying x and Ω_{total} (left-to-right $\Omega_{\text{total}} \in \{0.1, 0.3, 0.95\}$; top-to-bottom $x \in \{0.1, 0.3, 0.7, 1.5\}$).

э

<ロ> <同> <同> <同> <同> <同>

Bayesian Analysis

Outline

2 Bianchi VII_h cosmologies

Bayesian Analysis

Bayesian analysis of Bianchi VII_h cosmologies

Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.

• Posterior distribution of the parameters Θ of model of interest *M* given data *d*, as

 $\mathbf{P}(\Theta \mid \boldsymbol{d}, M) \propto \mathbf{P}(\boldsymbol{d} \mid \Theta, M) \, \mathbf{P}(\Theta \mid M) \; .$

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_{\rm b}h^2, \Omega_{\rm C}h^2, \Omega_{\rm A}, \Omega_{\rm k}).$
- Recall Bianchi parameters: $\Theta_{\rm B} = (\Omega_{\rm m}, \ \Omega_{\Lambda}, x, \ (\omega/H)_0, \ \alpha, \beta, \gamma).$
- Likelihood is given by

$$\mathbf{P}(\boldsymbol{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^{2}(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]}$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}}) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}}) \right]$$

• Consider decoupled (phenomenological) and coupled (physical) analyses

・ロット (雪) (日) (日)

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Bayesian analysis of Bianchi VII_h cosmologies

Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) http://arxiv.org/abs/arXiv:1303.3409

```
and applied to WMAP previously.
```

• Posterior distribution of the parameters Θ of model of interest M given data d, as

 $P(\Theta \mid \boldsymbol{d}, M) \propto P(\boldsymbol{d} \mid \Theta, M) P(\Theta \mid M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_{\rm C} h^2, \Omega_{\Lambda}, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{\rm B} = (\Omega_{\rm m}, \ \Omega_{\Lambda}, \ x, \ (\omega/H)_0, \ \alpha, \beta, \gamma).$
- Likelihood is given by

$$\mathbf{P}(d \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^{2}(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]}$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]$$

• Consider decoupled (phenomenological) and coupled (physical) analyses

・ロット (雪) (日) (日)

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Bayesian analysis of Bianchi VII_h cosmologies

Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) http://arxiv.org/abs/arXiv:1303.3409

```
and applied to WMAP previously.
```

• Posterior distribution of the parameters Θ of model of interest M given data d, as

 $P(\Theta \mid \boldsymbol{d}, M) \propto P(\boldsymbol{d} \mid \Theta, M) P(\Theta \mid M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_{\rm C} h^2, \Omega_{\Lambda}, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{B} = (\Omega_{m}, \ \Omega_{\Lambda}, x, \ (\omega/H)_{0}, \ \alpha, \beta, \gamma).$
- Likelihood is given by

$$\mathbf{P}(\boldsymbol{d} \mid \boldsymbol{\Theta}_{\mathrm{B}}, \boldsymbol{\Theta}_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\boldsymbol{\Theta}_{\mathrm{C}})|}} e^{\left[-\chi^{2}(\boldsymbol{\Theta}_{\mathrm{C}}, \boldsymbol{\Theta}_{\mathrm{B}})/2\right]} \quad ,$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]$$

• Consider decoupled (phenomenological) and coupled (physical) analyses

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Bayesian analysis of Bianchi VII_h cosmologies

Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013) http://arxiv.org/abs/arXiv:1303.3409

```
and applied to WMAP previously.
```

• Posterior distribution of the parameters Θ of model of interest M given data d, as

 $P(\Theta \mid \boldsymbol{d}, M) \propto P(\boldsymbol{d} \mid \Theta, M) P(\Theta \mid M)$.

- Consider open and flat cosmologies with cosmological parameters: $\Theta_{\rm C} = (A_s, n_s, \tau, \Omega_b h^2, \Omega_{\rm C} h^2, \Omega_{\Lambda}, \Omega_k).$
- Recall Bianchi parameters: $\Theta_{B} = (\Omega_{m}, \ \Omega_{\Lambda}, x, \ (\omega/H)_{0}, \ \alpha, \beta, \gamma).$
- Likelihood is given by

$$\mathbf{P}(\boldsymbol{d} \mid \boldsymbol{\Theta}_{\mathrm{B}}, \boldsymbol{\Theta}_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\boldsymbol{\Theta}_{\mathrm{C}})|}} e^{\left[-\chi^{2}(\boldsymbol{\Theta}_{\mathrm{C}}, \boldsymbol{\Theta}_{\mathrm{B}})/2\right]} \, ,$$

where

$$\chi^{2}(\Theta_{\mathrm{C}},\Theta_{\mathrm{B}}) = \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]^{\dagger} \mathbf{X}^{-1}(\Theta_{\mathrm{C}}) \left[\boldsymbol{d} - \boldsymbol{b}(\Theta_{\mathrm{B}})\right]$$

Consider decoupled (phenomenological) and coupled (physical) analyses.

・ロト・西ト・ヨト ・日・ うろの

HEI PLANCK

planck

Bayesian Analysis

Bayesian analysis of Bianchi VII_h cosmologies

- Bianchi VII_{*h*} templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by

$$\sigma^2_m(\omega_i) = egin{cases} \Sigma^2_m, & \omega_i \in \mathbb{M} \ 0, & \omega_i \in \mathbb{S}^2 ackslash \mathbb{M} \end{cases},$$

where Σ_m^2 is a constant masking noise variance.

• The covariance is then given by

$$X(\Theta_C) = C(\Theta_C) + M \quad,$$

where

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} m_{\ell' m'}^* \rangle \simeq \sum_{\omega_l} \sigma_m^2(\omega_l) Y_{\ell m}^*(\omega_l) |Y_{\ell' m'}(\omega_l) |\Omega_{\mathrm{pix}}|^2 \,.$$

Planck Results

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space
 - \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by

$$\sigma_m^2(\omega_i) = egin{cases} \Sigma_m^2, & \omega_i \in \mathbb{M} \ 0, & \omega_i \in \mathbb{S}^2 ackslash \mathbb{M} \end{cases},$$

where Σ_m^2 is a constant masking noise variance.

• The covariance is then given by

 $X(\Theta_C) = C(\Theta_C) + M$,

where

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} m_{\ell' m'}^* \rangle \simeq \sum_{\omega_l} \sigma_m^2(\omega_l) Y_{\ell m}^*(\omega_l) | Y_{\ell' m'}(\omega_l) | \Omega_{\mathrm{pix}}^2 \,.$$

Bayesian analysis of Bianchi VII_h cosmologies

- Bianchi VII_h templates can be computed accurately and rotated efficiently in harmonic space \rightarrow consider harmonic space representation, where $d = \{d_{\ell m}\}$ and $b(\Theta_B) = \{b_{\ell m}(\Theta_B)\}$.
- Partial-sky analysis that handles in harmonic space a mask applied in pixel space.
- Add masking noise in order to marginalise the pixel values of the data contained in the masked region, with variance for pixel *i* given by

$$\sigma_m^2(\omega_i) = egin{cases} \Sigma_m^2, & \omega_i \in \mathbb{M} \ 0, & \omega_i \in \mathbb{S}^2 ackslash \mathbb{M} \end{cases},$$

where Σ_m^2 is a constant masking noise variance.

• The covariance is then given by

$$X(\Theta_C) = C(\Theta_C) + M$$
,

where

- $C(\Theta_C)$ is the diagonal CMB covariance defined by the power spectrum $C_{\ell}(\Theta_C)$;
- M is the non-diagonal noisy mask covariance matrix defined by

$$\mathbf{M}_{\ell m}^{\ell' m'} = \langle m_{\ell m} \, m_{\ell' m'}^* \rangle \simeq \sum_{\omega_i} \sigma_m^2(\omega_i) Y_{\ell m}^*(\omega_i) \, Y_{\ell' m'}(\omega_i) \, \Omega_{\mathrm{pix}}^2 \, .$$

Topology 000	Bianchi VII _h Cosmologies	Bayesian Analysis 00●00	Planck Results
Bayesian analysi	s of Bianchi VII _{h} cosmolo	gies	

• Compute the Bayesian evidence to determine preferred model:

$$E = P(\boldsymbol{d} \mid \boldsymbol{M}) = \int d\Theta P(\boldsymbol{d} \mid \Theta, \boldsymbol{M}) P(\Theta \mid \boldsymbol{M}) \quad .$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).
- Consider two models:
 - \bullet Flat-decoupled-Bianchi model: \ominus_C and \ominus_B fitted simultaneously but decoupled \to phenomenological
 - Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \rightarrow physical

Topology	Bianchi VII _h Cosmologies	Bayesian Analysis	Planck Results
		00000	
Bayesian	analysis of Bianchi VII $_h$ co	osmologies	

• Compute the Bayesian evidence to determine preferred model:

$$E = \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{M}) = \int \left| \mathbf{d} \Theta \, \mathbf{P}(\boldsymbol{d} \mid \Theta, \boldsymbol{M}) \, \mathbf{P}(\Theta \mid \boldsymbol{M}) \right| \,.$$

• Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).

- Consider two models:
 - \bullet Flat-decoupled-Bianchi model: \ominus_C and \ominus_B fitted simultaneously but decoupled \to phenomenological
 - \bullet Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \rightarrow physical

Topology	Bianchi VIIh Cosmologies	Bayesian Analysis	Planck Results
000	000	00000	00000000
Bavesian analysi	s of Bianchi VII ¹ cosmoloo	pies	

• Compute the Bayesian evidence to determine preferred model:

$$E = \mathbf{P}(\boldsymbol{d} \mid \boldsymbol{M}) = \int \left| \mathbf{d} \Theta \, \mathbf{P}(\boldsymbol{d} \mid \Theta, \boldsymbol{M}) \, \mathbf{P}(\Theta \mid \boldsymbol{M}) \right| \,.$$

- Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).
- Consider two models:
 - Flat-decoupled-Bianchi model: Θ_C and Θ_B fitted simultaneously but decoupled \rightarrow phenomenological
 - \bullet Open-coupled-Bianchi model: Θ_C and Θ_B fitted simultaneously and coupled \to physical

Тс	pp		lo	g	y
	C	C			

Bianchi VII_h Cosmologies

Bayesian Analysis

Validation with simulations

Figure: Partial-sky simulation with embedded Bianchi VII_h component at $\ell_{max} = 32$.

Bianchi VII_h Cosmologies

Bayesian Analysis

Validation with simulations

Figure: Marginalised posterior distributions recovered from partial-sky simulation at $\ell_{max} = 32$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ●

Bayesian Analysis

Outline

Bianchi VII_h cosmologies

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the phenomenological flat-decoupled-Bianchi model from *Planck* SMICA (solid curves) and SEVEM (dashed curves) data.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta \ln E$		
	SMICA	SEVEM	
Flat-decoupled-Bianchi (left-handed) Flat-decoupled-Bianchi (right-handed)	$\begin{array}{c} 2.8 \pm 0.1 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \\ 0.5 \pm 0.1 \end{array}$	

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII_h component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.
- Planck data favour the inclusion of a phenomenological Bianchi VII_h component.
- Best-fit Bianchi VII_h template is similar to that first found in WMAP data by Jaffe et al. 2005.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ACDM model (positive favours Bianchi model).

Model	$\Delta \ln E$		
	SMICA	SEVEM	
Flat-decoupled-Bianchi (left-handed) Flat-decoupled-Bianchi (right-handed)	$\begin{array}{c} 2.8 \pm 0.1 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \\ 0.5 \pm 0.1 \end{array}$	

- On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VII_h component would be termed strong (significant) for SMICA (SEVEM) component-separated data.
- A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.
- Planck data favour the inclusion of a phenomenological Bianchi VII_h component.
- Best-fit Bianchi VII_h template is similar to that first found in WMAP data by Jaffe et al. 2005.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Figure: Best-fit template of flat-decoupled-Bianchi VII_h model found in *Planck* SMICA component-separated data.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Figure: Planck SMICA component-separated data.

ヘロア 人間 アメヨアメヨ

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: flat-decoupled-Bianchi model

Figure: Planck SMICA component-separated data minus best-fit template of flat-decoupled-Bianchi VII_h model.

Planck results: flat-decoupled-Bianchi model

• BUT the flat-Bianchi-decoupled model is phenomenological and not physical!

Bianchi Parameter	SMICA		SEVEM	
	MAP	Mean	MAP	Mean
$\Omega_{\rm m}^{\rm B}$	0.38	0.32 ± 0.12	0.35	0.31 ± 0.15
Ω^{B}_{Λ}	0.20	0.31 ± 0.20	0.22	0.30 ± 0.20
x	0.63	0.67 ± 0.16	0.66	0.62 ± 0.23
$(\omega/H)_0$	8.8×10^{-10}	$(7.1 \pm 1.9) \times 10^{-10}$	9.4×10^{-10}	$(5.9 \pm 2.4) \times 10^{-10}$
α	38.8°	$51.3^{\circ} \pm 47.9^{\circ}$	40.5°	$77.4^{\circ} \pm 80.3^{\circ}$
β	28.2°	$33.7^{\circ} \pm 19.7^{\circ}$	28.4°	$45.6^{\circ} \pm 32.7^{\circ}$
γ	309.2°	$292.2^\circ\pm51.9^\circ$	317.0°	$271.5^\circ\pm80.7^\circ$

Table: Parameters recovered for flat-decoupled-Bianchi model.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: open-coupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the physical open-coupled-Bianchi model from Planck SMICA (solid curves) and SEVEM (dashed curves) data.

Bianchi VII_h Cosmologies

Bayesian Analysis

Planck Results

Planck results: open-coupled-Bianchi model

Table: Bayes factor relative to equivalent Λ CDM model (positive favours Bianchi model).

Model	$\Delta \ln E$	
	SMICA	SEVEM
Open-coupled-Bianchi (left-handed) Open-coupled-Bianchi (right-handed)	$\begin{array}{c} 0.0\pm0.1\\ -0.4\pm0.1 \end{array}$	$0.0 \pm 0.1 \\ -0.4 \pm 0.1$

- In the physical setting where the standard cosmological and Bianchi parameters are coupled, *Planck* data do not favour the inclusion of a Bianchi VII_h component.
- We find no evidence for Bianchi VII_h cosmologies and constrain the vorticity of such models to $(\omega/H)_0 < 8.1 \times 10^{-10}$ (95% confidence level).

Summary

- Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII_h cosmologies.
- Planck data support the inclusion of a phenomenological Bianchi template...
- BUT this model is non-physical and the recovered cosmological parameters are inconsistent with standard constraints!
- In the physical model where the cosmological and Bianchi parameters are coupled, *Planck* data do not favour the inclusion of a Bianchi VII_h component.
- We constrain vorticity of Bianchi VII_h cosmologies to $(\omega/H)_0 < 8.1 \times 10^{-10}$ (95% confidence level).

Summary

- Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VII_h cosmologies.
- Planck data support the inclusion of a phenomenological Bianchi template...
- BUT this model is non-physical and the recovered cosmological parameters are inconsistent with standard constraints!
- In the physical model where the cosmological and Bianchi parameters are coupled, *Planck* data do not favour the inclusion of a Bianchi VII_h component.
- We constrain vorticity of Bianchi VII_h cosmologies to $(\omega/H)_0 < 8.1 \times 10^{-10}$ (95% confidence level).

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ◆ ● ●