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Topology

Planck Collaboration: Planck 2013 results. XXVI. Background geometry and topology of the Universe

Fig. 1: The top row shows the correlation structure (i.e., a sin-
gle row of the correlation matrix) of a simply-connected uni-
verse with isotropic correlations. For subsequent rows, the left
and middle column show positively curved multiply-connected
spaces (left: dedocahedral, middle: octahedral) and the right col-
umn shows equal sided tori. The upper row of three maps cor-
responds to the case when the size of the fundamental domain
is of the size of the diameter to the last scattering surface and
hence the first evidence for large angle excess correlation ap-
pears. Subsequent rows correspond to decreasing fundamental
domain size with respect to the last scattering diameter, with pa-
rameters roughly chosen to maintain the same ratio between the
models.

X
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�`(kn,�⌘)�`0 (kn,�⌘)P(kn)Y`m(n̂)Y⇤`0m0 (n̂) ,

(5)

where �`(k,�⌘) is the radiation transfer function (e.g., Bond &
Efstathiou 1987; Seljak 1996). We refer to the cubic torus with
three equal sides as the T3 topology; it is also possible for the
fundamental domain to be compact in only two spatial dimen-
sions (e.g., the so-called T2 “chimney” space) or one (the T1
“slab”, similar to the “lens” spaces available in manifolds with
constant positive curvature) in which case the sum is replaced by
an integral in those directions. These models serve as approxi-
mations to modifications to the local topology of the global man-
ifold (albeit on cosmological scales): for example, the chimney
space can mimic a “handle” connecting di↵erent regions of an
approximately flat manifold.

In Fig. 1 we show rows of the pixel-space correlation matrix
for a number of multiply-connected topologies as a map, show-
ing the magnitude of the correlation within a particular pixel.
For the simply-connected case, the map simply shows the same
information as the correlation function C(✓); for the topologi-
cally non-trivial cases, we see the correlations depend on dis-
tance and direction and di↵er from pixel to pixel (i.e., from row
to row of the matrix). In Fig. 2 we show example maps of CMB
anisotropies in universes with these topologies, created by direct
realisations of Gaussian fields with the correlation matrices of
Fig. 1.

3.2. Bianchi

Bianchi cosmologies include the class of homogeneous but
anisotropic cosmologies, where the assumption of isotropy about
each point in the Universe is relaxed. For small anisotropy, as

Fig. 2: Random realisations of temperature maps for the models
in Fig. 1. The maps are smoothed with a Gaussian filter with
full-width-half-maximum FWHM = 640 0.

demanded by current observations, linear perturbation about the
standard FRW model may be applied, leading to a subdominant,
deterministic contribution to the CMB fluctuations. In this set-
ting CMB fluctuations may be viewed as the sum of a determin-
istic Bianchi contribution and the usual stochastic contribution
that arises in the ⇤CDM model. The deterministic CMB temper-
ature fluctuations that result in the Bianchi models were derived
by Barrow et al. (1985), although no dark energy component was
included. More recently, Ja↵e et al. (2006c), and independently
Bridges et al. (2007), extended these solutions for the open and
flat Bianchi VIIh models to include cosmologies with dark en-
ergy. We defer the details of the CMB temperature fluctuations
induced in Bianchi models to these works and give only a brief
description here.

Bianchi VIIh models describe a universe with overall ro-
tation, parameterized by an angular velocity, !, and a three-
dimensional rate of shear, parameterized by the antisymmetric
tensor �i j; we take these to be relative to the z axis. The model
has a free parameter, first identified by Collins & Hawking
(1973), describing the comoving length-scale over which the
principal axes of shear and rotation change orientation. The ra-
tio of this length scale to the present Hubble radius is typically
denoted x, which defines the h parameter of type VIIh models
through (Barrow et al. 1985)

x =

r
h

1 �⌦tot
, (6)

where the total energy density ⌦tot = ⌦m + ⌦⇤. The parameter
x acts to change the “tightness” of the spiral-type CMB tem-
perature contributions that arise due to the geodesic focusing of
Bianchi VIIh cosmologies. The shear modes �i j of combinations
of orthogonal coordinate axes are also required to describe a
Bianchi cosmology. The present dimensionless vorticity (!/H)0
may be related to the dimensionless shear modes (�i j/H)0 by
(Barrow et al. 1985)
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where H is the Hubble parameter. Throughout we assume equal-
ity of shear modes � = �12 = �13 (cf. Ja↵e et al. 2005). The
amplitude of the deterministic CMB temperature fluctuations in-
duced in Bianchi VIIh cosmologies may be characterised by ei-
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Figure 4:  Simulated circle matching 

The topology of the universe describes how different regions are connected and 

should therefore leave its imprint on the cosmic microwave background. For 

example, if our physical space is smaller than the observable universe (as recent 

data suggest it is) then the horizon sphere wraps around the universe and intersects 

itself. As a result, duplicated images of the cosmic microwave background (in 

which the colours represent temperature fluctuations) will intersect along a circle 

and we would observe this circle on different sides of the sky. [Credit: A 

Riazuelo] 
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Bianchi VIIh cosmologies

Relax assumptions about the global structure of spacetime by allowing anisotropy about each
point in the Universe.

Yields more general solutions to Einstein’s field equations→ Bianchi cosmologies.

For small anisotropy, as already demanded by current observations, linear perturbation about
the standard FRW model may be applied.

Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded
in the usual stochastic anisotropies.

First examined by Collins & Hawking (1973) and Barrow et al. (1985), however dark energy
not included.

Focus on Bianchi VIIh using solutions derived by Anthony Lasenby that do incorporate dark
energy (also derived independently by Jaffe et al. 2006).
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Bianchi VIIh cosmologies

Bianchi VIIh models describe a universe with overall rotation, with angular velocity ω, and a
three-dimensional rate of shear, specified by the antisymmetric tensor σij. Throughout we
assume equality of shear modes σ = σ12 = σ13 (cf. Jaffe et al. 2005).

The amplitude of induced CMB temperature fluctuations may be characterised by the
dimensionless vorticity (ω/H)0, which influences the amplitude of the induced temperature
contribution only and not its morphology.

The model has a free parameter, denoted x, describing the comoving length-scale over which
the principal axes of shear and rotation change orientation.

The orientation and handedness of the coordinate system is also free.

Bianchi VIIh models may be described by the parameter vector:

ΘB =
(
Ωm, ΩΛ, x, (ω/H)0, α, β, γ

)
.
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Bianchi VIIh cosmologies

Figure: Simulated deterministic CMB temperature contributions in Bianchi VIIh cosmologies for varying x and Ωtotal
(left-to-right Ωtotal ∈ {0.10, 0.30, 0.95}; top-to-bottom x ∈ {0.1, 0.3, 0.7, 1.5}).
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Bayesian analysis of Bianchi VIIh cosmologies

Perform the Bayesian analysis described by

JDM, Thibaut Josset, Stephen Feeney, Hiranya Peiris, Anthony Lasenby (2013)
http://arxiv.org/abs/arXiv:1303.3409

and applied to WMAP previously.

Posterior distribution of the parameters Θ of model of interest M given data d, as

P(Θ | d,M) ∝ P(d |Θ,M) P(Θ |M) .

Consider open and flat cosmologies with cosmological parameters:
ΘC = (As, ns, τ, Ωbh2, Ωch2, ΩΛ, Ωk).

Recall Bianchi parameters:
ΘB =

(
Ωm, ΩΛ, x, (ω/H)0, α, β, γ

)
.

Likelihood is given by

P(d |ΘB,ΘC) ∝
1√
|X(ΘC)|

e

[
−χ2(ΘC,ΘB)/2

]
,

where

χ
2
(ΘC,ΘB) =

[
d − b(ΘB)

]† X−1
(ΘC)

[
d − b(ΘB)

]
.

Consider decoupled (phenomenological) and coupled (physical) analyses.

http://arxiv.org/abs/arXiv:1303.3409
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Bayesian analysis of Bianchi VIIh cosmologies

Bianchi VIIh templates can be computed accurately and rotated efficiently in harmonic space
→ consider harmonic space representation, where d = {d`m} and b(ΘB) = {b`m(ΘB)}.

Partial-sky analysis that handles in harmonic space a mask applied in pixel space.

Add masking noise in order to marginalise the pixel values of the data contained in the
masked region, with variance for pixel i given by

σ
2
m(ωi) =

{
Σ2

m, ωi ∈ M
0, ωi ∈ S2\M

,

where Σ2
m is a constant masking noise variance.

The covariance is then given by

X(ΘC) = C(ΘC) + M ,

where

C(ΘC) is the diagonal CMB covariance defined by the power spectrum C`(ΘC);
M is the non-diagonal noisy mask covariance matrix defined by

M`′m′
`m = 〈m`m m∗`′m′ 〉 '

∑
ωi

σ
2
m(ωi)Y∗`m(ωi) Y`′m′ (ωi) Ωpix

2
.
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Bayesian analysis of Bianchi VIIh cosmologies

Compute the Bayesian evidence to determine preferred model:

E = P(d |M) =

∫
dΘ P(d |Θ,M) P(Θ |M) .

Use MultiNest to compute the posteriors and evidences via nested sampling
(Feroz & Hobson 2008, Feroz et al. 2009).

Consider two models:

Flat-decoupled-Bianchi model: ΘC and ΘB fitted simultaneously but decoupled
→ phenomenological

Open-coupled-Bianchi model: ΘC and ΘB fitted simultaneously and coupled
→ physical
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Open-coupled-Bianchi model: ΘC and ΘB fitted simultaneously and coupled
→ physical
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Validation with simulations

(a) CMB component (b) Underlying Bianchi component (c) CMB plus Bianchi components

(d) Noisy mask realisation (e) Recovered Bianchi component

Figure: Partial-sky simulation with embedded Bianchi VIIh component at `max = 32.
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Validation with simulations

Figure: Marginalised posterior distributions recovered from partial-sky simulation at `max = 32.
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Planck results: flat-decoupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the phenomenological flat-decoupled-Bianchi
model from Planck SMICA (solid curves) and SEVEM (dashed curves) data.
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Planck results: flat-decoupled-Bianchi model

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

Model ∆lnE
SMICA SEVEM

Flat-decoupled-Bianchi (left-handed) 2.8± 0.1 1.5± 0.1
Flat-decoupled-Bianchi (right-handed) 0.5± 0.1 0.5± 0.1

On the Jeffreys (1961) scale, evidence for the inclusion of a Bianchi VIIh component would be
termed strong (significant) for SMICA (SEVEM) component-separated data.

A log-Bayes factor of 2.8 corresponds to an odds ratio of approximately 1 in 16.

Planck data favour the inclusion of a phenomenological Bianchi VIIh component.

Best-fit Bianchi VIIh template is similar to that first found in WMAP data by Jaffe et al. 2005.
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Planck results: flat-decoupled-Bianchi model

Figure: Best-fit template of flat-decoupled-Bianchi VIIh model found in Planck SMICA component-separated data.
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Planck results: flat-decoupled-Bianchi model

Figure: Planck SMICA component-separated data.
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Planck results: flat-decoupled-Bianchi model

Figure: Planck SMICA component-separated data minus best-fit template of flat-decoupled-Bianchi VIIh model.
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Planck results: flat-decoupled-Bianchi model

BUT the flat-Bianchi-decoupled model is phenomenological and not physical!

Table: Parameters recovered for flat-decoupled-Bianchi model.

Bianchi Parameter SMICA SEVEM
MAP Mean MAP Mean

ΩB
m 0.38 0.32± 0.12 0.35 0.31± 0.15

ΩB
Λ 0.20 0.31± 0.20 0.22 0.30± 0.20
x 0.63 0.67± 0.16 0.66 0.62± 0.23

(ω/H)0 8.8× 10−10 (7.1± 1.9)× 10−10 9.4× 10−10 (5.9± 2.4)× 10−10

α 38.8◦ 51.3◦ ± 47.9◦ 40.5◦ 77.4◦ ± 80.3◦

β 28.2◦ 33.7◦ ± 19.7◦ 28.4◦ 45.6◦ ± 32.7◦

γ 309.2◦ 292.2◦ ± 51.9◦ 317.0◦ 271.5◦ ± 80.7◦
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Planck results: open-coupled-Bianchi model

Figure: Posterior distributions of Bianchi parameters recovered for the physical open-coupled-Bianchi model from
Planck SMICA (solid curves) and SEVEM (dashed curves) data.
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Planck results: open-coupled-Bianchi model

Table: Bayes factor relative to equivalent ΛCDM model (positive favours Bianchi model).

Model ∆lnE
SMICA SEVEM

Open-coupled-Bianchi (left-handed) 0.0± 0.1 0.0± 0.1
Open-coupled-Bianchi (right-handed) −0.4± 0.1 −0.4± 0.1

In the physical setting where the standard cosmological and Bianchi parameters are coupled,
Planck data do not favour the inclusion of a Bianchi VIIh component.

We find no evidence for Bianchi VIIh cosmologies and constrain the vorticity of such models to
(ω/H)0 < 8.1× 10−10 (95% confidence level).
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Summary

Perform a Bayesian analysis of partial-sky Planck data for evidence of Bianchi VIIh
cosmologies.

Planck data support the inclusion of a phenomenological Bianchi template. . .

BUT this model is non-physical and the recovered cosmological parameters are inconsistent
with standard constraints!

In the physical model where the cosmological and Bianchi parameters are coupled, Planck
data do not favour the inclusion of a Bianchi VIIh component.

We constrain vorticity of Bianchi VIIh cosmologies to (ω/H)0 < 8.1× 10−10 (95% confidence
level).
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