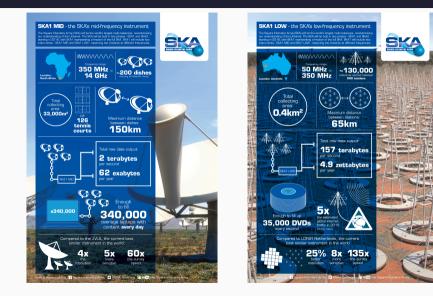
Learned Exascale Computational Imaging (LEXCI) overview

UCL ExCALIBUR Meetup

Jason D. McEwen www.jasonmcewen.org

Mullard Space Science Laboratory (MSSL), UCL


April 2022

Canonical application: Square Kilometre Array (SKA)

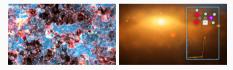
Jason McEwen

SKA sites

Jason McEwen

Next-generation of radio interferometry rapidly approaching

Next-generation of radio interferometric telescopes will provide orders of magnitude improvement in sensitivity and resolution.

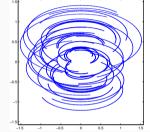

Unlock broad range of science goals.

Dark energy

General relativity

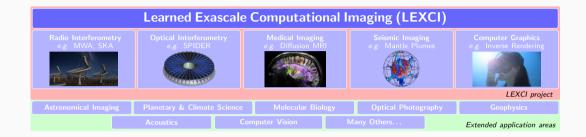
Epoch of reionization

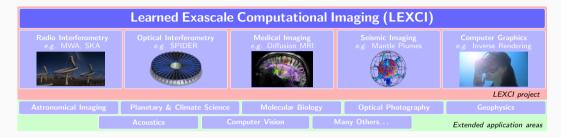
Exoplanets


SKA poses a considerable exascale computational imaging challenge

Radio interferometric telescopes acquire "Fourier" measurements

"Fourier" Measurements ⇒


Radio interferometric telescopes acquire "Fourier" measurements


Interferometric imaging is an exascale computational inverse imaging problem:

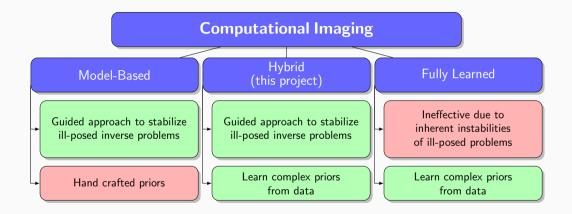
Recover an image from noisy and incomplete "Fourier" measurements.

LEXCI application domains more broadly

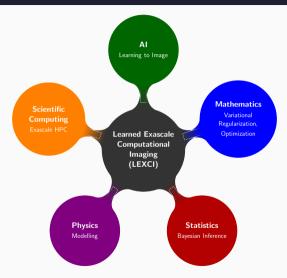
LEXCI application domains more broadly

Partners

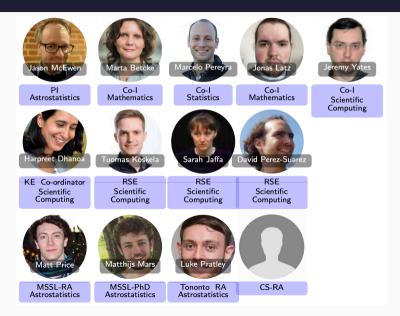
- Radio interferometry: Prof. Melanie Johnston-Hollitt (Curtin), Dr Luke Pratley (Toronto)
- SPIDER: Prof. Ben Yoo (UC Davis)
- Medical Imaging: Prof. Gary Zhang (CMIC, UCL)
- Seismic Imaging: Prof. Ana Ferreira (Earth Sciences, UCL)
- Computer Graphics & Virtual Reality: Kagenova
- (ExCALIBUR Benchmarking for AI for Science at Exascale; BASE)


Classically, inverse imaging problems solved by **variational regularization**, where an optimization problem is posed that includes data fidelity and regularization terms:

$$\underset{\mathbf{x}}{\arg\min} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2} + \lambda f(\mathbf{x}).$$


for observational model $\Phi : \mathbb{R}^N \to \mathbb{R}^M$, data y and underlying image x.

Regularization functional $f : \mathbb{R}^N \to \mathbb{R}$ encodes prior knowledge.


Typically **model-based regularizers** are used, *e.g.* $f(\mathbf{x}) = \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}$ to promote sparsity in some dictionary $\mathbf{\Psi} : \mathbb{R}^{D} \to \mathbb{R}^{N}$.

Cross-cutting research areas

LEXCI team

Jason McEwen

Methodological developments

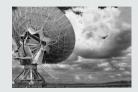
- ▷ Hybrid deep learning & model-based approach
- ▷ Learned image model
- ▷ Learned instrument model
- ▷ Learned convex models to support uncertainty quantification
- ▷ Geometric imaging (*e.g.* spherical)

Computing paradigms

- ▷ Data partitioning algorithms
- ▷ Distributed compute, storage & memory
- ▷ Stochastic distributed algorithms
- ▷ Parallelized & distributed uncertainty quantification
- ▷ Exploit mixed-precision arithmetic

ExCALIBUR use cases

- ▷ Learned computational imaging
- ▷ Efficient data IO & workflows
- \triangleright Visualization
- ▷ Mixed-precision arithmetic
- ▷ Fault tolerance
- ▷ Uncertainty quantification


- ▷ Novel Hardware/Software Architecture Testbed (University of Birmingham, NextSilicon, Lenovo)
- ▷ Cerebras Testbed (EPCC, Cerebras, HPE)
- ▷ UCL Adaptable Cluster Testbed (UCL, Mellanox)
- ▷ FPGA Testbed (EPCC, UCL, University of Warwick, Xilinx)

▷ Traditional conference: *Computational Inverse Imaging*

▷ Unconference: Applying LEXCI software to cross-cutting problems across domains

Public open-source codes

PURIFY code

https://github.com/astro-informatics/purify

Next-generation radio interferometric imaging

PURIFY is a highly distributed and parallelized open-source C++ code for radio interferometric imaging, leveraging recent developments in the field of variational regularization and convex optimisation.

SOPT code

https://github.com/astro-informatics/sopt

Sparse OPTimisation

SOPT is a highly distributed and parallelized open-source C++ code for variational regularization and convex optimisation.