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SKA Exascale



Square Kilometre Array (SKA): next-gen radio interferometric telescope
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SKA science goals

Orders of magnitude improvement in sensitivity and resolution.

Unlock broad range of science goals.
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SKA partners
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SKA sites and data rates

SKA-mid – the SKA’s mid-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as they 
each comprise a large number of individual elements working together to form a single large 
telescope.

Compared to the JVLA, the current best 
similar instrument in the world:

5x 
more 

sensitive 

60x 
the survey 

speed

4x 
the 

resolution

Frequency range: 

350 MHz to 
15.4 GHz

with a goal of 24 GHz
Location:  
South Africa

Total 
collecting 

area: 
33,000m2

or 
126 

tennis 
courts

Maximum distance
between dishes:  

150km

197 dishes
(including 64 MeerKAT dishes)  

Data transfer rate: 

8.8 Terabits 
per second

SKA-mid

Image quality of  
SKA-mid (left) versus 
the best current facility 
operating in the same 
frequency range, the 
Jansky Very Large Array 
(JVLA) in the United 
States (right). SKA-mid’s 
resolution will be 4x 
better than JVLA.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory

Maximum distance
between stations:  

>65km

Compared to LOFAR Netherlands, the current 
best similar instrument in the world

8x 
more 

sensitive

135x 
 the survey 

speed

Frequency range: 

50 MHz to 
350 MHz

131,072
antennas spread between 

512 stations

Total 
collecting 

area: 

0.4km2

Location: Australia

25% 
better 

resolution

SKA-low – the SKA’s low-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as 
they each comprise a large number of individual elements working together to form a single 
large telescope.

Data transfer rate: 

7.2 Terabits 
per second

SKA-low

Image quality of  
SKA-low (left) versus 
the best current facility 
operating in the same 
frequency range, the LOw 
Frequency ARray (LOFAR), 
in the Netherlands (right).  
SKA-low‘s resolution will 
be similar to LOFAR.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory

Jason McEwen 4

http://www.jasonmcewen.org


Application domains more broadly

LEXCI project

Extended application areas

Learned Exascale Computational Imaging (LEXCI)

Radio Interferometry
e.g. MWA, SKA

Optical Interferometry
e.g. SPIDER

Medical Imaging
e.g. Diffusion MRI

Seismic Imaging
e.g. Mantle Plumes

Computer Graphics
e.g. Inverse Rendering

Astronomical Imaging Planetary & Climate Science Molecular Biology Optical Photography Geophysics

Acoustics Computer Vision Many Others. . .
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Imaging Strategy



Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements

⇒

Interferometric imaging is an exascale computational inverse imaging problem.
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Radio interferometric inverse problem

Radio interferometric imaging ill-posed inverse problem:

y = Φ(x) + n

y forward model←−−−−−−−−− x

y −−−−−−−−−→
inverse inference

x

for data (visibilities) y, telescope model Φ, underlying image x and noise n.

Big-Data ⇒ Big-Compute

since compute scales as O(M) for M data measurements.
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Optimisation vs sampling

Inverse problem is ill-posed⇒ inject regularising prior information.

MAP estimation

+ Based on optimisation so computationally
efficient.

− No uncertainties (traditionally).
− Hand-crafted priors (traditionally).

MCMC sampling

− Based on sampling so computationally
demanding.

+ Uncertatinties encoded in posterior.
− Hand-crafted priors (traditionally).
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Computational imaging strategy

Goals:

+ Computationally efficient (optimisation + distribution).
+ Quantifies uncertainties.
+ Data-driven AI priors (enhance reconstruction fidelity).

Achieve by combining:

1. Statistical framework: Bayesian inference and MAP estimation.
2. Mathematical theory: probability concentration theorem for log-convex distributions.
3. Constrained AI model: convex AI model with explicit potential.
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Exascale Algorithms



Exascale Algorithms
Blocking for Distribution
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Block distributed primal dual algorithm
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Block distributed primal dual algorithm with AI prior
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Exascale Algorithms
Uncertainty Quantification
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Convex probability concentration for uncertainty quantification

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α.

Consider the highest posterior density (HPD) region

C∗
α =

{
x : − log p(x) ≤ γα

}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds.

Theorem 3.1 (Pereyra 2017)
Suppose the posterior log p(x|y) ∝ logL(x) + log π(x) is log-concave on RN. Then, for any
α ∈ (4e[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : logL(x) + log π(x) ≤ γ̂α = logL(x̂MAP) + log π(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√

16 log(3/α) independent of p(x|y).

Need only evaluate logL+ log π for the MAP estimate xMAP!
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Exascale Algorithms
AI Data-Driven Prior
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Convex AI prior

Adopt neural-network-based convex regulariser R
(Goujon et al. 2022; Liaudat et al. McEwen 2024):

R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

▷ ψn are learned convex profile functions with Lipschitz continuous derivative;
▷ NC learned convolutional filters hn.

Properties:
1. Convex + explicit⇒ leverage convex UQ theory.
2. Smooth regulariser with known Lipschitz constant⇒ theoretical convergence

guarantees.
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Demonstrations



Reconstructed images
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(Liaudat et al. McEwen 2024)
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Approximate local Bayesian credible intervals

mean = 0.3844
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(Liaudat et al. McEwen 2024)
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Hypothesis testing of structure
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(Liaudat et al. McEwen 2024)
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Hypothesis testing of substructure
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Imaging 3C128 with VLA
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(Pratley, McEwen et al. 2018)
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Imaging Fornax A with MWA

Dirty image Residuals Reconstruction

(Pratley, Johnston-Hollitt & McEwen 2020)
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Code



Open-source codes

PURIFY code https://github.com/astro-informatics/purify

Next-generation radio interferometric imaging
PURIFY is a highly distributed and parallelized open-source C++ code for
radio interferometric imaging, leveraging recent developments in the field
of variational regularization, convex optimisation, and learned imaging.

SOPT code https://github.com/astro-informatics/sopt

Sparse OPTimisation
SOPT is a highly distributed and parallelized open-source C++ code for
variational regularization and convex optimisation, with learned
data-driven priors.
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Computational strategy

▷ Big data and big compute BUT small AI models (big sims to generate training data)

▷ Training and prototyping in Python on current-generation hardware

▷ Imaging (production) in C++ on exascale hardware

▷ Spack package manager

▷ Benchmarking
▷ Integrated in ExCALIBUR Benchmarking for Performance Portable ExCALIBUR Applications

(see talk by Tuomas Koskela)
▷ Tested on NVIDIA Grace Hopper on UCL Contender
▷ Tested on Intel with OmniPath network on UCL Kathleen
▷ Isambard 3 Technical Preparatory Access
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Summary

▷ Learned exascale computational inverse imaging (LEXCI) framework for the SKA
and beyond

1. Highly distributed and parallelised
2. Highly realistic telescope modelling
3. Superior reconstruction quality by using learned AI data-driven priors
4. Uncertainty quantification for exascale imaging with learned priors for the first time
5. Validated by MCMC sampling (for low-dimensional setting)

▷ Benchmarking underway…
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