Detection of the ISW effect and corresponding dark energy constraints (astro-ph/0602398)

Jason McEwen¹

with P. Vielva^{2,3}, M. P. Hobson¹, E. Martinez-González² and A. N. Lasenby¹

¹Cavendish Laboratory, University of Cambridge ²Instituto de Física de Cantabria, Universidad de Cantabria ³Laboratoire APC, Collège de France

Rencontres de Moriond :: 23 March 2006

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
 - Analysis procedure
- 5 Results
 - Detections
 - Dark energy constraints

A E > A E >

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
- 4 Analysis procedure
- 5 Results
 - Detections
 - Dark energy constraints
- 6) Summary

A E > A E >

- Photons blue (red) shifted when fall into (out of) potential wells
- Evolution of potential during photon propagation
 → net change in photon energy
- Large scale phenomenon (cosmic variance limited → require full-sky maps)
- Only present in non-flat universes or flat universes with dark energy

Temperature perturbation

$$\frac{\delta T}{T} = 2 \int \frac{\dot{\Phi}}{c^2} \frac{\mathrm{d}\ell}{c}$$

- Photons blue (red) shifted when fall into (out of) potential wells
- Evolution of potential during photon propagation
 → net change in photon energy
- Large scale phenomenon (cosmic variance limited → require full-sky maps)
- Only present in non-flat universes or flat universes with dark energy

Temperature perturbation

$$\frac{\delta T}{T} = 2 \int \frac{\dot{\Phi}}{c^2} \frac{\mathrm{d}\ell}{c}$$

- Photons blue (red) shifted when fall into (out of) potential wells
- Evolution of potential during photon propagation
 → net change in photon energy
- Large scale phenomenon (cosmic variance limited → require full-sky maps)
- Only present in non-flat universes or flat universes with dark energy

Temperature perturbation

$$\frac{\delta T}{T} = 2 \int \frac{\dot{\Phi}}{c^2} \frac{\mathrm{d}\ell}{c}$$

- Photons blue (red) shifted when fall into (out of) potential wells
- Evolution of potential during photon propagation
 → net change in photon energy
- Large scale phenomenon (cosmic variance limited → require full-sky maps)
- Only present in non-flat universes or flat universes with dark energy

Temperature perturbation

$$\frac{\delta T}{T} = 2 \int \frac{\dot{\Phi}}{c^2} \frac{\mathrm{d}\ell}{c}$$

 Cannot directly separate the ISW signal from CMB anisotropies

- Detected by cross-correlating CMB anisotropies with tracers of large scale structure (Crittenden & Turok 1996)
- Detections used to place constraints on dark energy
- Previous works
 - Real space angular correlation function (e.g. Boughn & Crittenden 2002)
 - Harmonic space cross-angular power spectrum (e.g. Afshordi et al. 2004)
 - Azimuthally symmetric wavelet covariance (Vielva et al. 2006)
- We extend spherical wavelet approach to directional wavelets (no reason to expect azimuthally symmetric structures

・ロト ・四ト ・ヨト ・ヨト

- Cannot directly separate the ISW signal from CMB anisotropies
- Detected by cross-correlating CMB anisotropies with tracers of large scale structure (Crittenden & Turok 1996)
- Detections used to place constraints on dark energy
- Previous works
 - Real space angular correlation function (e.g. Boughn & Crittenden 2002)
 - Harmonic space cross-angular power spectrum (e.g. Afshordi et al. 2004)
 - Azimuthally symmetric wavelet covariance (Vielva et al. 2006)
- We extend spherical wavelet approach to directional wavelets (no reason to expect azimuthally symmetric structures

・ロト ・四ト ・ヨト ・ヨト

- Cannot directly separate the ISW signal from CMB anisotropies
- Detected by cross-correlating CMB anisotropies with tracers of large scale structure (Crittenden & Turok 1996)
- Detections used to place constraints on dark energy
- Previous works
 - Real space angular correlation function (e.g. Boughn & Crittenden 2002)
 - Harmonic space cross-angular power spectrum (e.g. Afshordi et al. 2004)
 - Azimuthally symmetric wavelet covariance (Vielva et al. 2006)
- We extend spherical wavelet approach to directional wavelets (no reason to expect azimuthally symmetric structures

・ロト ・回 ト ・ヨト ・ヨト

- Cannot directly separate the ISW signal from CMB anisotropies
- Detected by cross-correlating CMB anisotropies with tracers of large scale structure (Crittenden & Turok 1996)
- Detections used to place constraints on dark energy
- Previous works
 - Real space angular correlation function (e.g. Boughn & Crittenden 2002)
 - Harmonic space cross-angular power spectrum (e.g. Afshordi et al. 2004)
 - Azimuthally symmetric wavelet covariance (Vielva et al. 2006)
- We extend spherical wavelet approach to directional wavelets (no reason to expect azimuthally symmetric structures)

ヘロン ヘアン ヘビン ヘビン

- Cannot directly separate the ISW signal from CMB anisotropies
- Detected by cross-correlating CMB anisotropies with tracers of large scale structure (Crittenden & Turok 1996)
- Detections used to place constraints on dark energy
- Previous works
 - Real space angular correlation function (e.g. Boughn & Crittenden 2002)
 - Harmonic space cross-angular power spectrum (e.g. Afshordi et al. 2004)
 - Azimuthally symmetric wavelet covariance (Vielva et al. 2006)
- We extend spherical wavelet approach to directional wavelets (no reason to expect azimuthally symmetric structures)

(4回) (日) (日)

個人 くほん くほん しほ

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
 - 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
- 4 Analysis procedure
- 5 Results
 - Detections
 - Dark energy constraints
- 6) Summary

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Spherical wavelet transform Anisotropic dilation on the sphere

- Spherical wavelet transform (Antoine and Vandergheynst 1998; Wiaux et al. 2005)
- Stereographic projection Π
- Anisotropic dilation on the sphere

 $\mathcal{D}(a,b) = \Pi^{-1} d(a,b) \Pi$

$$[\mathcal{D}(a,b)s](\omega) = [\lambda(a,b,\theta,\phi)]^{1/2} s(\omega_{1/a,1/b})$$

where

$$\begin{split} \omega_{a,b} &= (\theta_{a,b}, \phi_{a,b}), \\ \tan(\theta_{a,b}/2) &= \tan(\theta/2) \sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi} \\ \tan(\phi_{a,b}) &= \frac{b}{a} \tan(\phi) \end{split}$$

Spherical wavelet transform Anisotropic dilation on the sphere

- Spherical wavelet transform (Antoine and Vandergheynst 1998; Wiaux et al. 2005)
- Stereographic projection Π
- Anisotropic dilation on the sphere $\mathcal{D}(a,b) = \Pi^{-1} d(a,b) \Pi$

$$[\mathcal{D}(a,b)s](\omega) = [\lambda(a,b,\theta,\phi)]^{1/2} s(\omega_{1/a,1/b})$$

where

$$\begin{split} \omega_{a,b} &= (\theta_{a,b}, \phi_{a,b}), \\ \tan(\theta_{a,b}/2) &= \tan(\theta/2) \sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi} \\ \tan(\phi_{a,b}) &= \frac{b}{a} \tan(\phi) \end{split}$$

イロン 不良 とくほう 不良 とうほ

Spherical wavelet transform Anisotropic dilation on the sphere

- Spherical wavelet transform (Antoine and Vandergheynst 1998; Wiaux et al. 2005)
- Stereographic projection Π
- Anisotropic dilation on the sphere

 $\mathcal{D}(a,b) = \Pi^{-1} d(a,b) \Pi$

$$[\mathcal{D}(\boldsymbol{a},\boldsymbol{b})\boldsymbol{s}](\omega) = [\lambda(\boldsymbol{a},\boldsymbol{b},\boldsymbol{\theta},\boldsymbol{\phi})]^{1/2} \, \boldsymbol{s}(\omega_{1/\boldsymbol{a},1/\boldsymbol{b}})$$

where

$$\begin{split} \omega_{a,b} &= (\theta_{a,b}, \phi_{a,b}), \\ \tan(\theta_{a,b}/2) &= \tan(\theta/2)\sqrt{a^2\cos^2\phi + b^2\sin^2\phi} \\ \tan(\phi_{a,b}) &= \frac{b}{a}\tan(\phi) \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Spherical wavelet transform Mother wavelets on the sphere

 Stereographic projection of admissible Euclidean mother wavelets

$$\psi(\omega) = [\Pi^{-1}\psi_{\mathbb{R}^2}](\omega)$$

Figure: Spherical wavelets at scale a = b = 0.2.

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Spherical wavelet transform

• Motion on the sphere (\equiv rotation)

$$[R(\rho)s](\omega) = s(\rho^{-1}\omega), \ \rho \in SO(3)$$

• Multi-resolution basis on the sphere

$$\{\psi_{a,b,
ho}\equiv R(
ho)\mathcal{D}(a,b)\psi;\
ho\in\mathrm{SO}(3);\ a,b\in\mathbb{R}^+_*\}$$

• Spherical wavelet transform

$$W_{\psi}(a,b,
ho)\equiv\int_{S^2}\,\mathrm{d}\Omega(\omega)\,\psi^*_{a,b,
ho}(\omega)\,s(\omega)$$

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Spherical wavelet transform

• Motion on the sphere (\equiv rotation)

$$[R(\rho)s](\omega) = s(\rho^{-1}\omega), \ \rho \in SO(3)$$

• Multi-resolution basis on the sphere

$$\{\psi_{a,b,
ho} \equiv R(
ho)\mathcal{D}(a,b)\psi; \
ho \in \mathrm{SO}(3); \ a,b \in \mathbb{R}^+_*\}$$

• Spherical wavelet transform

$$W_{\psi}(\boldsymbol{a},\boldsymbol{b},
ho)\equiv\int_{\mathcal{S}^2}\mathrm{d}\Omega(\omega)\,\psi^*_{\boldsymbol{a},\boldsymbol{b},
ho}(\omega)\,\boldsymbol{s}(\omega)$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Spherical wavelet transform

• Motion on the sphere (\equiv rotation)

$$[\mathbf{R}(\rho)\mathbf{s}](\omega) = \mathbf{s}(\rho^{-1}\omega), \ \rho \in \mathrm{SO}(3)$$

• Multi-resolution basis on the sphere

$$\{\psi_{a,b,
ho} \equiv R(
ho)\mathcal{D}(a,b)\psi; \
ho \in \mathrm{SO}(3); \ a,b \in \mathbb{R}^+_*\}$$

Spherical wavelet transform

$$W_{\psi}(\pmb{a},\pmb{b},
ho)\equiv\int_{\mathcal{S}^2}\mathrm{d}\Omega(\omega)\,\psi^*_{\pmb{a},\pmb{b},
ho}(\omega)\,\pmb{s}(\omega)$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

2

Spherical wavelet transform

• Motion on the sphere (\equiv rotation)

$$[\mathbf{R}(\rho)\mathbf{s}](\omega) = \mathbf{s}(\rho^{-1}\omega), \ \rho \in \mathrm{SO}(3)$$

• Multi-resolution basis on the sphere

$$\{\psi_{a,b,
ho} \equiv R(
ho)\mathcal{D}(a,b)\psi;
ho \in \mathrm{SO}(3); a,b \in \mathbb{R}^+_*\}$$

• Spherical wavelet transform

$$m{W}_{\psi}(m{a},m{b},
ho)\equiv\int_{m{S}^2}\,\mathrm{d}\Omega(\omega)\,\psi^*_{m{a},m{b},
ho}(\omega)\,m{s}(\omega)$$

通 とう ほうとう ほうとう

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- Oross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
 - Analysis procedure
 - 5 Results
 - Detections
 - Dark energy constraints
 - 6 Summary

< 回 > < 回 > < 回 > -

Wavelet covariance estimator

- Suitability of wavelets for detecting cross-correlations
- Wavelet covariance

$$\hat{X}_{\psi}^{\mathrm{NT}}(a,b,\gamma) = \frac{1}{N_{\alpha\beta}} \sum_{\alpha,\beta} \nu_{\alpha\beta} W_{\psi}^{\mathrm{N}}(a,b,\alpha,\beta,\gamma) W_{\psi}^{\mathrm{T}}(a,b,\alpha,\beta,\gamma)$$

Average over orientations

$$\hat{X}_{\psi}^{\mathrm{NT}}(a,b) = rac{1}{N_{\gamma}} \sum_{\gamma} \hat{X}_{\psi}^{\mathrm{NT}}(a,b,\gamma)$$

• Theoretical wavelet covariance

$$X_{\psi}^{ ext{NT}}(\pmb{a},\pmb{b},\gamma) = \sum_{\ell=0}^{\infty} \left. \pmb{p}_{\ell}^2 \left. \pmb{b}_{\ell}^{ ext{N}} \left. \pmb{b}_{\ell}^{ ext{T}} \left. \pmb{C}_{\ell}^{ ext{NT}} \sum_{m=-\ell}^{\ell} \left| (\psi_{\pmb{a},\pmb{b}})_{\ell m}
ight|^2$$

< 回 > < 回 > < 回 > -

Wavelet covariance estimator

- Suitability of wavelets for detecting cross-correlations
- Wavelet covariance

$$\hat{X}_{\psi}^{\mathrm{NT}}(\boldsymbol{a}, \boldsymbol{b}, \gamma) = \frac{1}{N_{\alpha\beta}} \sum_{\alpha, \beta} \nu_{\alpha\beta} W_{\psi}^{\mathrm{N}}(\boldsymbol{a}, \boldsymbol{b}, \alpha, \beta, \gamma) W_{\psi}^{\mathrm{T}}(\boldsymbol{a}, \boldsymbol{b}, \alpha, \beta, \gamma)$$

Average over orientations

$$\hat{X}_{\psi}^{\mathrm{NT}}(a,b) = rac{1}{N_{\gamma}}\sum_{\gamma} \hat{X}_{\psi}^{\mathrm{NT}}(a,b,\gamma)$$

Theoretical wavelet covariance

$$X_{\psi}^{ ext{NT}}(\pmb{a},\pmb{b},\gamma) = \sum_{\ell=0}^{\infty} \left. \pmb{p}_{\ell}^2 \left. \pmb{b}_{\ell}^{ ext{N}} \left. \pmb{b}_{\ell}^{ ext{T}} \left. \pmb{C}_{\ell}^{ ext{NT}} \sum_{m=-\ell}^{\ell} \left| (\psi_{\pmb{a},\pmb{b}})_{\ell m}
ight|^2
ight.$$

Jason McEwen Detection of the ISW effect

通 とくほ とくほ とう

Wavelet covariance estimator

- Suitability of wavelets for detecting cross-correlations
- Wavelet covariance

$$\hat{X}_{\psi}^{\mathrm{NT}}(\boldsymbol{a},\boldsymbol{b},\gamma) = \frac{1}{N_{\alpha\beta}} \sum_{\alpha,\beta} \nu_{\alpha\beta} W_{\psi}^{\mathrm{N}}(\boldsymbol{a},\boldsymbol{b},\alpha,\beta,\gamma) W_{\psi}^{\mathrm{T}}(\boldsymbol{a},\boldsymbol{b},\alpha,\beta,\gamma)$$

Average over orientations

$$\hat{X}_{\psi}^{\mathrm{NT}}(a,b) = rac{1}{N_{\gamma}}\sum_{\gamma} \hat{X}_{\psi}^{\mathrm{NT}}(a,b,\gamma)$$

Theoretical wavelet covariance

$$X_{\psi}^{ ext{NT}}(\pmb{a},\pmb{b},\gamma) = \sum_{\ell=0}^{\infty} \left. \pmb{p}_{\ell}^2 \left. \pmb{b}_{\ell}^{ ext{N}} \left. \pmb{b}_{\ell}^{ ext{T}} \left. \pmb{C}_{\ell}^{ ext{NT}} \sum_{m=-\ell}^{\ell} \left| (\psi_{\pmb{a},\pmb{b}})_{\ell m}
ight|^2
ight.$$

伺 とくき とくき とう

Wavelet covariance estimator

- Suitability of wavelets for detecting cross-correlations
- Wavelet covariance

$$\hat{X}_{\psi}^{\mathrm{NT}}(\boldsymbol{a},\boldsymbol{b},\gamma) = \frac{1}{N_{\alpha\beta}} \sum_{\alpha,\beta} \nu_{\alpha\beta} W_{\psi}^{\mathrm{N}}(\boldsymbol{a},\boldsymbol{b},\alpha,\beta,\gamma) W_{\psi}^{\mathrm{T}}(\boldsymbol{a},\boldsymbol{b},\alpha,\beta,\gamma)$$

Average over orientations

$$\hat{X}_{\psi}^{\mathrm{NT}}(a,b) = rac{1}{N_{\gamma}}\sum_{\gamma} \hat{X}_{\psi}^{\mathrm{NT}}(a,b,\gamma)$$

• Theoretical wavelet covariance

$$X_{\psi}^{\mathrm{NT}}(\boldsymbol{a},\boldsymbol{b},\gamma) = \sum_{\ell=0}^{\infty} \left. \boldsymbol{p}_{\ell}^{2} \left. \boldsymbol{b}_{\ell}^{\mathrm{N}} \right. \boldsymbol{b}_{\ell}^{\mathrm{T}} \left. \boldsymbol{C}_{\ell}^{\mathrm{NT}} \sum_{\boldsymbol{m}=-\ell}^{\ell} \left| (\psi_{\boldsymbol{a},\boldsymbol{b}})_{\ell \boldsymbol{m}} \right|^{2} \right.$$

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Comparison of wavelets

Compare predicted signal-to-noise ratio

$$ext{SNR}_{\psi}(a,b) = rac{\left\langle \hat{X}_{\psi}^{ ext{NT}}(a,b)
ight
angle}{\Delta \hat{X}_{\psi}^{ ext{NT}}(a,b)}$$

where

$$\left[\Delta \hat{X}_{\psi}^{\text{NT}}(a,b)\right]^{2} = \sum_{\ell=0}^{\infty} \frac{1}{2\ell+1} p_{\ell}^{4} (b_{\ell}^{\text{N}})^{2} (b_{\ell}^{\text{T}})^{2} \left[\sum_{m=-\ell}^{\ell} \left|(\psi_{a,b})_{\ell m}\right|^{2}\right]^{2} \left[(C_{\ell}^{\text{NT}})^{2} + C_{\ell}^{\text{TT}} C_{\ell}^{\text{NN}}\right]$$

 Similar technique used to compare real, harmonic and wavelet space techniques for detection of cross-correlations

ightarrow wavelets optimal on certain scales (Vielva et al. 2006)

(雪) (ヨ) (ヨ)

Comparison of wavelets

Compare predicted signal-to-noise ratio

$$ext{SNR}_{\psi}(a,b) = rac{\left\langle \hat{X}_{\psi}^{ ext{NT}}(a,b)
ight
angle}{\Delta \hat{X}_{\psi}^{ ext{NT}}(a,b)}$$

where

$$\left[\Delta \hat{X}_{\psi}^{\text{NT}}(a,b)\right]^{2} = \sum_{\ell=0}^{\infty} \frac{1}{2\ell+1} p_{\ell}^{4} (b_{\ell}^{\text{N}})^{2} (b_{\ell}^{\text{T}})^{2} \left[\sum_{m=-\ell}^{\ell} \left|(\psi_{a,b})_{\ell m}\right|^{2}\right]^{2} \left[(C_{\ell}^{\text{NT}})^{2} + C_{\ell}^{\text{TT}} C_{\ell}^{\text{NN}}\right]$$

 Similar technique used to compare real, harmonic and wavelet space techniques for detection of cross-correlations

 \rightarrow wavelets optimal on certain scales (Vielva et al. 2006)

< 🗇 🕨

→ E > < E >

3

Comparison of wavelets SNR plots

Figure: Expected SNR of the wavelet covariance estimator of CMB and radio source maps

• Don't consider SMW further (actually considered; as expected not effective)

프 > 프

Comparison of wavelets SNR plots

Figure: Expected SNR of the wavelet covariance estimator of CMB and radio source maps

• Don't consider SMW further (actually considered; as expected not effective)

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets

Analysis procedure

- Results
 - Detections
 - Dark energy constraints
- 6) Summary

> < 三 > < 三 >

Data

- Analysis (scales; masks)
- Simulations
- Constraints on dark energy parameters

イロト イポト イヨト イヨト

Data

WMAP1

NVSS

ヘロト ヘアト ヘヨト ヘ

- Analysis (scales; masks)
- Simulations
- Constraints on dark energy parameters

Data

WMAP1

NVSS

э

・ 同 ト ・ 三 ト ・

- Analysis (scales; masks)
- Simulations
- Constraints on dark energy parameters

- Analysis (scales; masks)
- Simulations
- Constraints on dark energy parameters

< 🗇 🕨 <

ъ

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
 - 4 Analysis procedure
- 5 Results
 - Detections
 - Dark energy constraints

Summary

同 とく ヨ とく ヨ とう

Scales and detections

Scales

Scale	1	2	3	4	5	6	7
Dilation a	100'	150'	200′	250'	300'	400′	500'
Size on sky 1	282'	424'	565'	706′	847′	1130′	1410'
Size on sky 2	31.4′	47.1′	62.8′	78.5′	94.2'	126′	157'

• Wavelet covariance plots

Jason McEwen Detection of the ISW effect

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

-20

Scales and detections

Scales

Scale	1	2	3	4	5	6	7
Dilation a	100′	150'	200′	250'	300′	400′	500'
Size on sky 1	282'	424′	565'	706′	847′	1130′	1410′
Size on sky 2	31.4′	47.1′	62.8′	78.5'	94.2'	126'	157'

Wavelet covariance plots

★ E ► ★ E ►

Significance of detections

- Most significant detections
 - Wavelet covariance statistics appear Gaussian
 - ightarrow N_{σ} direct indication of significance of detections
 - symmetric SMHW: 3.6σ ; elliptical SMHW: 3.9σ ; SBW: 3.9σ
- N_{σ} plots (2 and 3σ contours)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Significance of detections

- Most significant detections
 - Wavelet covariance statistics appear Gaussian
 - ightarrow N_{σ} direct indication of significance of detections
 - symmetric SMHW: 3.6 σ ; elliptical SMHW: 3.9 σ ; SBW: 3.9 σ

• N_{σ} plots (2 and 3σ contours)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Significance of detections

- Most significant detections
 - Wavelet covariance statistics appear Gaussian
 - ightarrow N_{σ} direct indication of significance of detections
 - symmetric SMHW: 3.6 σ ; elliptical SMHW: 3.9 σ ; SBW: 3.9 σ
- N_{σ} plots (2 and 3σ contours)

Systematics and foregrounds

- Systematics: individual WMAP receiver maps
 - \rightarrow systematics not likely source of detection
- Foregrounds: foreground dominated difference maps
 → foregrounds not likely source of detection

Localised regions

- Wavelets inherently provide spatial localisation (in addition to scale localisation)
- Threshold wavelet coefficient product maps to localise most likely sources

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Localised regions

- Wavelets inherently provide spatial localisation (in addition to scale localisation)
- Threshold wavelet coefficient product maps to localise most likely sources

.≣⇒

< 🗇 > < 🖻 > .

Localised regions Removal

 Remove localised regions → ISW detection remains (Agrees with findings of Boughn and Crittenden 2004)

Examined localised regions in closer detail

- ⊒ →

Dark energy constraints

 Compute theoretical wavelet covariance for range of models (*w*, Ω_Λ)

(assume concordance model for other parameters; bias b = 1.6)

• Compare theoretical predictions with observations

 $\chi^{2}(W,\Omega_{\Lambda}) = \Delta^{\mathrm{T}} C^{-1} \Delta$

where

$$\Delta = [\hat{X}_{\psi}^{\mathrm{NT}}(a, b, \gamma) - X_{\psi}^{\mathrm{NT}}(a, b, \gamma | w, \Omega_{\Lambda})]$$

Compute likelihood

$$\mathcal{L}(w,\Omega_{\Lambda})\propto \exp[-\chi^2(w,\Omega_{\Lambda})/2]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Dark energy constraints

 Compute theoretical wavelet covariance for range of models (*w*, Ω_Λ)

(assume concordance model for other parameters; bias b = 1.6)

Compare theoretical predictions with observations

$$\chi^2(\boldsymbol{w},\Omega_{\Lambda}) = \Delta^{\mathrm{T}} \boldsymbol{C}^{-1} \Delta$$

where

$$\Delta = [\hat{X}^{\mathrm{NT}}_{\psi}(\boldsymbol{a},\boldsymbol{b},\gamma) - \boldsymbol{X}^{\mathrm{NT}}_{\psi}(\boldsymbol{a},\boldsymbol{b},\gamma|\boldsymbol{w},\Omega_{\Lambda})]$$

Compute likelihood

$$\mathcal{L}(w,\Omega_{\Lambda})\propto \exp[-\chi^2(w,\Omega_{\Lambda})/2]$$

Dark energy constraints

 Compute theoretical wavelet covariance for range of models (*w*, Ω_Λ)

(assume concordance model for other parameters; bias b = 1.6)

Compare theoretical predictions with observations

$$\chi^2(\boldsymbol{w},\Omega_{\Lambda}) = \Delta^{\mathrm{T}} \boldsymbol{C}^{-1} \Delta$$

where

$$\Delta = [\hat{X}^{ ext{NT}}_{\psi}(\textit{a},\textit{b},\gamma) - X^{ ext{NT}}_{\psi}(\textit{a},\textit{b},\gamma|\textit{w},\Omega_{\Lambda})]$$

Compute likelihood

$$\mathcal{L}(\textbf{\textit{w}},\Omega_{\Lambda}) \propto \exp[-\chi^2(\textbf{\textit{w}},\Omega_{\Lambda})/2]$$

Dark energy constraints Likelihood surfaces

• Parameter estimates from mean of marginalised distributions

- $\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$; $w = -0.77^{+0.35}_{-0.36}$ using SMHW
- $\Omega_{\Lambda} = 0.52^{+0.20}_{-0.20}$; $w = -0.73^{+0.42}_{-0.46}$ using SBW

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dark energy constraints Likelihood surfaces

• Parameter estimates from mean of marginalised distributions

•
$$\Omega_{\Lambda} = 0.63^{+0.18}_{-0.17}$$
; $w = -0.77^{+0.35}_{-0.36}$ using SMHW
• $\Omega_{\Lambda} = 0.52^{+0.20}_{-0.20}$; $w = -0.73^{+0.42}_{-0.46}$ using SBW

(ロ) (四) (注) (注) (注) (二)

Dark energy constraints Parameter estimates

- Also considered case w = -1
 - $\Omega_{\Lambda} = 0.70^{+0.15}_{-0.15}$ using SMHW
 - $\Omega_{\Lambda} = 0.57^{+0.18}_{-0.18}$ using SBW
- Reject $\Omega_{\Lambda} = 0$ at > 99% significance
 - $\Omega_{\Lambda} > 0.1$ at 99.9% using SMHW
 - $\Omega_{\Lambda} > 0.1$ at 99.7% using SBW

(日本)(日本)(日本)(日本)

Dark energy constraints Parameter estimates

- Also considered case w = -1
 - $\Omega_{\Lambda} = 0.70^{+0.15}_{-0.15}$ using SMHW
 - $\Omega_{\Lambda} = 0.57^{+0.18}_{-0.18}$ using SBW
- Reject $\Omega_{\Lambda} = 0$ at > 99% significance
 - $\Omega_{\Lambda} > 0.1$ at 99.9% using SMHW
 - Ω_Λ > 0.1 at 99.7% using SBW

▶ < ∃ > ...

Outline

- Integrated Sachs-Wolfe (ISW) effect
 - Physical origin
 - Detecting the effect
- 2 The continuous spherical wavelet transform (CSWT)
 - Dilations and mother wavelets on the sphere
 - Transform
- 3 Cross-correlation in wavelet space
 - Wavelet covariance estimator
 - Comparison of wavelets
- 4 Analysis procedure
- 5 Results
 - Detections
 - Dark energy constraints

6 Summary

> < 三 > < 三 >

Summary

- Used spherical wavelets to detect ISW effect
- Detection of ISW effect made at almost 4σ
 → effectiveness of wavelets
- Foregrounds and systematics *not* likely source of detection
- Independent evidence of dark energy
- Consistent constraints on dark energy
 - Good consistency check with direct estimates from other approaches
 - Wavelets of similar performance for constraining dark energy as other ISW techniques

・ 同 ト ・ ヨ ト ・ ヨ ト