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Motivation (and disclaimer)

Aperture array interferometers, such as that proposed for the SKA, will see a large portion of
the sky.

Usual Fourier transform approach for simulating visibilities relies on a tangent plane
approximation that is only valid for small fields of view.

We address the forward wide field imaging problem and consider full-sky contributions to the
visibilities observed by an interferometer, ensuring that contamination due to wide sidelobes
of the primary beam is not neglected.

Disclaimer

Outline of talk

Harmonic analysis

Coordinate systems

Computing visibilities (and image reconstruction)

Preliminary simulations

Fast wavelet methods
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Spherical harmonics

A square integrable function on the sphere F ∈ L2(S2, dΩ) may be represented by the
spherical harmonic expansion

F(̂s) =

∞X
`=0

X̀
m=−`

F`mY`m (̂s) .

The spherical harmonic coefficients are given by the usual projection onto the spherical
harmonic basis functions:

F`m =

Z
S2

F(̂s) Y∗`m (̂s) dΩ(̂s) ,

where dΩ(̂s) = sin θ dθ dϕ is the usual rotation invariant measure on the sphere and
ŝ = (θ, ϕ) ∈ S2 denote spherical coordinates with colatitude θ ∈ [0, π] and longitude
ϕ ∈ [0, 2π).

Useful properties and relations
Orthogonality Z

S2
Y`m (̂s) Y∗`′m′ (̂s) dΩ(̂s) = δ``′δmm′

Addition theorem X̀
m=−`

Y`m (̂s)Y∗`m (̂s′) =
2` + 1

4π
P` (̂s · ŝ′)

Jacobi-Anger expansion

eix·y
=

∞X
`=0

(2` + 1)i`j`(‖x‖‖y‖)P` (̂x · ŷ)
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Rotations

Rotations on the sphere R characterised by the the rotation group SO(3), which we
parameterise in terms of the three Euler angles ρ = (α, β, γ) ∈ SO(3), where α ∈ [0, 2π),
β ∈ [0, π] and γ ∈ [0, 2π).

Rotation of coordinate vector performed by multiplication with 3×3 rotation matrix

R(ρ) = Rz(α)Ry(β)Rz(γ) ,

where Rz(ϑ) and Ry(ϑ) are rotation matrices representing rotations by ϑ about the z and y
axis respectively (adopt zyz Euler convention).

Rotation of function on the sphere defined by`
R(ρ)F

´
(̂s) = F

`
R−1

(ρ)̂s
´

.

Rotation of function on sphere may be performed more generally (i.e. pixelisation
independent) and accurately through harmonic space representation. Harmonic coefficients
of a rotated function are related to the coefficients of the original function by

`
R(ρ)F

´
`m =

X̀
n=−`

D`
mn(ρ) F`n ,

where the Wigner D-functions D`
mn(ρ) provide the irreducible unitary representation of the

rotation group SO(3).

For computational purposes, the Wigner functions may be decomposed as
D`

mn(α, β, γ) = e−imα d`
mn(β) e−inγ ; d`

mn(β) may then be computed rapidly using recursion
formulae (Risbo [6]).
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Coordinate systems

The complex visibility measured by an interferometer is
given by the coordinate free definition

V(u) =

Z
S2

A(σ)I(σ)e−i2πu·σ dΩ .

In this coordinate free definition, σ is the representation of ŝ
in a coordinate system centred on ŝ0. The translation
σ = ŝ− ŝ0 represents the transformation between the global
coordinate frame of ŝ and the local coordinate frame of σ.

In general, one can transform vectors between global
coordinates and local coordinates relative to ŝ0, through a
rotation by ŝ0.

The rotation R0 ≡ R(ϕ0, θ0, 0), where (θ0, ϕ0) are the
spherical coordinates of ŝ0, transforms the local coordinate
frame relative to ŝ0 to the global coordinate frame of the
celestial sky.

Local coordinates are related to global coordinates by
ŝl = R−1

0 ŝn, where R0 is the 3× 3 rotation matrix
corresponding to the rotation R0.

n̂1

n̂2

n̂3

ŝ

σ

ŝ0
dΩ

Figure: Geometry of observation of
extended source.

n̂1

n̂2

n̂3

û1

û2

û3

θ0

ϕ0

Figure: RotationR0 mapping global
coordinates of the celestial sky to local
coordinates defined relative to the pointing
direction ŝ0 .
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frame relative to ŝ0 to the global coordinate frame of the
celestial sky.

Local coordinates are related to global coordinates by
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Coordinate systems

Returning to the visibility function, we may now represent each function in its most natural
coordinate system:

The beam function is most naturally represented in local coordinates relative to the
pointing direction ŝn

0 and is denoted by Al (̂sl).

The source intensity function is most naturally represented in global coordinates and is
denoted by In (̂sn).

We may convert function Fn in global coordinates to a corresponding function Fl in local
coordinates through the rotation R0:

Fn
(̂sn

) = Fn
(R0̂sl

) = (R−1
0 Fn

)(̂sl
) = Fl

(̂sl
) , i.e. Fl

= R−1
0 Fn

.

The visibility integral may then be written

V(u) =

Z
S2

Al
(̂sl

)In
(̂sn

)e−i2πu·̂sl
dΩ(̂sl

) ,

or in local coordinates

V(u) =

Z
S2

Al
(̂sl

)(R−1
0 In

)(̂sl
)e−i2πu·̂sl

dΩ(̂sl
)

=

Z
S2

Al
(̂sl

)Il
(̂sl

)e−i2πu·̂sl
dΩ(̂sl

) .
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Computing visibilities

More general and accurate to compute full-sky visibilities in harmonic space.

Substituting the harmonic expansion of the beam-modulated source intensity function`
Al · Il´(̂sl) = Al (̂sl)Il (̂sl), visibility integral becomes

V(u) =
X
`m

`
Al · Il´

`m

Z
S2

e−i2πu·̂sl
Y`m (̂sl

) dΩ(̂sl
) .

Using the addition theorem for spherical harmonics, the Jacobi-Anger expansion and the
orthogonality of the spherical harmonics the above integral can be evaluated analytically:Z

S2
e−i2πu·̂sl

Y`m (̂sl
) dΩ(̂sl

) = 4π(−i)`j`(2π‖u‖)Y`m(û) .

The harmonic representation of the full-sky visibility function then reads:

Harmonic representation of visibility

V(u) = 4π
X
`m

(−i)`j`(2π‖u‖)Y`m(û)
`

Al · Il´
`m



Motivation Harmonic analysis Coordinate systems Computing visibilities Preliminary simulations Wavelets Summary

Image reconstruction

Full-sky image reconstruction is possible in theory:Z
S2
V(u)Y∗`m(û) dΩ(û)=4π(−i)`j`(2π‖u‖)

`
Al · Il´

`m .

But not in practise since would require full sampling of the visibility function in R3.

Instead use:

Standard Fourier transform approach for small patches.
w-projection (Cornwell et al. [2]) or faceting (e.g. Greisen [3]) approaches for wide fields
of view.

We consider only the forward problem of simulating visibilities in the full-sky setting and do not
consider the reverse problem of image reconstruction any further.
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Preliminary simulations

Challenging computational problem.

For a 50× 50 pixel image of one square degree, require a harmonic band limit of
`max ' 13, 000.

Solutions:
parallelise code;
fast methods such as wavelets (more to come on this).

Present preliminary simulations here of mock observations of synchrotron emission
(use synchrotron foreground map recovered from WMAP observations)

(a) Mollweide projection (b) Globe

Figure: Full-sky synchrotron map observed by WMAP and smoothed with a Gaussian kernel of FWHMs = 1.7◦ .
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Preliminary simulations

Low resolution simulations: baseline limit of umax = 30; `max ' 270; reconstruct 20× 20 image
(corresponds to ∼ 20◦ square patch).

Rotate to local coordinates then compute visibilities for complete uv coverage, including
full-sky contributions.

Computations take ∼5 minutes on laptop (2.2GHz processor; 2GB RAM)

Reconstructed image and tangent plane image match reasonably closely. Expected to differ
slightly since:

full-sky contributions included when simulating visibilities but use Fourier transform to
reconstruct image;
lose some high-frequency content due to low harmonic band-limit.

(a) Synchrotron map (b) Gaussian beam

Figure: Full-sky synchrotron and beam maps in local coordinates.

(a) Tangent plane (b) Full-sky simulation

Figure: Beam-modulated intensity images for a∼20◦ square patch.
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Wavelets on the sphere

Continuous wavelets on the sphere
Antoine & Vandergheynst [1], Wiaux et al. [9], McEwen et al. [5]

Analysis:

W f
Ψ(a, ρ) =

Z
S2

dΩ(̂s) f (̂s) Ψ
∗
a,ρ (̂s) .

Synthesis:

f (̂s) =

Z
SO(3)

d%(ρ)

Z ∞

0

da
a3

W f
Ψ(a, ρ) [R(ρ)bLΦΨa](̂s) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3) andbLΦ is a linear operator acting on the spherical harmonic coefficients of a function.

Discrete wavelets on the sphere (multiresolution analysis)
Schroder & Sweldens [7], McEwen & Eyers [4], Starck et al. [8], Wiaux, McEwen et al. [10]

Figure: Haar scaling function and wavelets.
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Wavelets on the sphere

Figure: Haar multiresolution decomposition.
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Fast wavelet methods

Representing the beam-modulated intensity and the plane wave in an orthogonal wavelet
basis on the sphere, with wavelets Ψj (̂s) ∈ L2(S2, dΩ):`

Al · Il´(̂sl
) =

X
j

`
Al · Il´

jΨj (̂sl
) ;

ei2πu·̂sl
=

X
k

Ek(u)Ψk (̂sl
) .

Wavelet coefficients are given by the projection onto the wavelet basis functions:`
Al · Il´

j =

Z
S2

`
Al · Il´(̂sl

)Ψ
∗
j (̂sl

) dΩ(̂sl
) ;

Ek(u) =

Z
S2

ei2πu·̂sl
Ψ
∗
k (̂sl

) dΩ(̂sl
) .

Substituting these expansions into the visibility integral we find

V(u) =
X

j

`
Al · Il´

j E∗j (u)

where we have noted the orthogonality of the wavelet basis.

Naive complexity of computing visibility for given u and ŝ0, is O(J), where J is the number of
basis functions (O(J) ∼ O(`max

2) for the spherical harmonic basis).

However, effective complexity reduced substantially by using a wavelet basis for which`
Al · Il´ is sparse.
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Summary & future work

Derived harmonic representation of visibility integral, including full-sky contributions.

Framework allows extensions to complicated beams that depend on pointing position
(although not discussed in this talk).

Preformed very preliminary simulations to demonstrate and validate methodology.

Future directions:

more realistic high-resolution simulations
(parallelise implementation, incorporate extensions, incomplete uv coverage, evaluate
effect of wide beam sidelobes);

fast wavelet methods to reduce computational requirements;

fast wavelet methods for wide field of view image reconstruction?
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