

Full-sky interferometry

Simulating full-sky interferometric observations

Jason McEwen

<http://www.mrao.cam.ac.uk/~jdm57/>

Anna Scaife

<http://www.mrao.cam.ac.uk/people/ascaife.html>

Astrophysics Group, Cavendish Laboratory University of Cambridge

<http://arxiv.org/abs/0803.2165>

KOD CONTRACT A BOAR KOD A CO

- Aperture array interferometers, such as that proposed for the SKA, will see a large portion of the sky.
- Usual Fourier transform approach for simulating visibilities relies on a tangent plane approximation that is only valid for small fields of view.
- We address the forward wide field imaging problem and consider full-sky contributions to the visibilities observed by an interferometer, ensuring that contamination due to wide sidelobes of the primary beam is not neglected.

KOD CONTRACT A BOAR KOD A CO

- **O** Disclaimer
- Outline of talk
	- **Harmonic analysis**
	- Coordinate systems
	- Computing visibilities (and image reconstruction)
	- **•** Preliminary simulations
	- **Fast wavelet methods**

A square integrable function on the sphere $F\in\mathrm{L}^2(\mathrm{S}^2,\,\mathrm{d}\Omega)$ may be represented by the spherical harmonic expansion

$$
F(\hat{\mathbf{s}}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} F_{\ell m} Y_{\ell m}(\hat{\mathbf{s}}).
$$

 \bullet The spherical harmonic coefficients are given by the usual projection onto the spherical harmonic basis functions:

$$
F_{\ell m} = \int_{S^2} F(\hat{\mathbf{s}}) Y^*_{\ell m}(\hat{\mathbf{s}}) \, d\Omega(\hat{\mathbf{s}}) ,
$$

where $d\Omega(\hat{s}) = \sin \theta \, d\theta \, d\varphi$ is the usual rotation invariant measure on the sphere and $\widehat{s}=(\theta,\varphi)\in\mathcal{S}^2$ denote spherical coordinates with colatitude $\theta\in[0,\pi]$ and longitude $\varphi \in [0, 2\pi).$

- Useful properties and relations
	- **•** Orthogonality

$$
\int_{S^2} Y_{\ell m}(\hat{s}) Y_{\ell' m'}^*(\hat{s}) d\Omega(\hat{s}) = \delta_{\ell \ell'} \delta_{mm'}
$$

Addition theorem

$$
\sum_{m=-\ell}^{\ell} Y_{\ell m}(\hat{\mathbf{s}}) Y_{\ell m}^*(\hat{\mathbf{s}}') = \frac{2\ell+1}{4\pi} P_{\ell}(\hat{\mathbf{s}} \cdot \hat{\mathbf{s}}')
$$

Jacobi-Anger expansion

$$
e^{i\mathbf{x}\cdot\mathbf{y}} = \sum_{\ell=0}^{\infty} (2\ell+1)i^{\ell} j_{\ell}(\|\mathbf{x}\|\|\mathbf{y}\|) P_{\ell}(\hat{\mathbf{x}}\cdot\hat{\mathbf{y}})
$$

A square integrable function on the sphere $F\in\mathrm{L}^2(\mathrm{S}^2,\,\mathrm{d}\Omega)$ may be represented by the spherical harmonic expansion

$$
F(\hat{\mathbf{s}}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} F_{\ell m} Y_{\ell m}(\hat{\mathbf{s}}).
$$

 \bullet The spherical harmonic coefficients are given by the usual projection onto the spherical harmonic basis functions:

$$
F_{\ell m} = \int_{S^2} F(\hat{\mathbf{s}}) Y^*_{\ell m}(\hat{\mathbf{s}}) \, d\Omega(\hat{\mathbf{s}}) ,
$$

where $d\Omega(\hat{s}) = \sin \theta \, d\theta \, d\varphi$ is the usual rotation invariant measure on the sphere and $\widehat{s}=(\theta,\varphi)\in\mathcal{S}^2$ denote spherical coordinates with colatitude $\theta\in[0,\pi]$ and longitude $\varphi \in [0, 2\pi).$

- Useful properties and relations
	- **o** Orthogonality

$$
\int_{S^2} Y_{\ell m}(\hat{s}) Y_{\ell' m'}^*(\hat{s}) d\Omega(\hat{s}) = \delta_{\ell \ell'} \delta_{mm'}
$$

Addition theorem

$$
\sum_{m=-\ell}^{\ell} Y_{\ell m}(\hat{\mathbf{s}}) Y_{\ell m}^*(\hat{\mathbf{s}}') = \frac{2\ell+1}{4\pi} P_{\ell}(\hat{\mathbf{s}} \cdot \hat{\mathbf{s}}')
$$

Jacobi-Anger expansion

$$
e^{i\mathbf{x}\cdot\mathbf{y}} = \sum_{\ell=0}^{\infty} (2\ell+1) i^{\ell} j_{\ell}(\|\mathbf{x}\| \|\mathbf{y}\|) P_{\ell}(\hat{\mathbf{x}}\cdot\hat{\mathbf{y}})
$$

- \bullet Rotations on the sphere R characterised by the the rotation group SO(3), which we parameterise in terms of the three Euler angles $\rho = (\alpha, \beta, \gamma) \in SO(3)$, where $\alpha \in [0, 2\pi)$, $\beta \in [0, \pi]$ and $\gamma \in [0, 2\pi)$.
- \bullet Rotation of coordinate vector performed by multiplication with 3×3 rotation matrix

$$
\mathbf{R}(\rho) = \mathbf{R}_z(\alpha) \mathbf{R}_y(\beta) \mathbf{R}_z(\gamma) ,
$$

where $\mathbf{R}_z(\vartheta)$ and $\mathbf{R}_y(\vartheta)$ are rotation matrices representing rotations by ϑ about the *z* and *y* axis respectively (adopt *zyz* Euler convention).

• Rotation of function on the sphere defined by

$$
(\mathcal{R}(\rho)F)(\hat{\mathbf{s}}) = F(\mathbf{R}^{-1}(\rho)\hat{\mathbf{s}}).
$$

Rotation of function on sphere may be performed more generally (*i.e.* pixelisation independent) and accurately through harmonic space representation. Harmonic coefficients

$$
\left(\mathcal{R}(\rho)F\right)_{\ell m}=\sum_{n=-\ell}^{\ell}D_{mn}^{\ell}(\rho) F_{\ell n},
$$

where the Wigner *D*-functions $D_{mn}^{\ell}(\rho)$ provide the irreducible unitary representation of the

For computational purposes, the Wigner functions may be decomposed as $D^{\ell}_{mn}(\alpha,\beta,\gamma)=\mathrm{e}^{-\mathrm{i} m\alpha}\;d^{\ell}_{mn}(\beta)\,\mathrm{e}^{-\mathrm{i} n\gamma}; d^{\ell}_{mn}(\beta)$ may then be computed rapidly using recursion

KORKARA KERKER DAGA

- \bullet Rotations on the sphere R characterised by the the rotation group SO(3), which we parameterise in terms of the three Euler angles $\rho = (\alpha, \beta, \gamma) \in SO(3)$, where $\alpha \in [0, 2\pi)$, $\beta \in [0, \pi]$ and $\gamma \in [0, 2\pi)$.
- \bullet Rotation of coordinate vector performed by multiplication with 3 \times 3 rotation matrix

$$
\mathbf{R}(\rho) = \mathbf{R}_z(\alpha) \mathbf{R}_y(\beta) \mathbf{R}_z(\gamma) ,
$$

where $\mathbf{R}_z(\vartheta)$ and $\mathbf{R}_y(\vartheta)$ are rotation matrices representing rotations by ϑ about the *z* and *y* axis respectively (adopt *zyz* Euler convention).

● Rotation of function on the sphere defined by

$$
(\mathcal{R}(\rho)F)(\hat{\mathbf{s}}) = F(\mathbf{R}^{-1}(\rho)\hat{\mathbf{s}}).
$$

Rotation of function on sphere may be performed more generally (*i.e.* pixelisation independent) and accurately through harmonic space representation. Harmonic coefficients of a rotated function are related to the coefficients of the original function by

$$
(\mathcal{R}(\rho)F)_{\ell m}=\sum_{n=-\ell}^{\ell}D_{mn}^{\ell}(\rho) F_{\ell n},
$$

where the Wigner D-functions $D^\ell_{mn}(\rho)$ provide the irreducible unitary representation of the rotation group SO(3).

• For computational purposes, the Wigner functions may be decomposed as $D^{\ell}_{mn}(\alpha,\beta,\gamma)=\mathrm{e}^{-\mathrm{i} m\alpha}\;d^{\ell}_{mn}(\beta)\;\mathrm{e}^{-\mathrm{i} n\gamma}; d^{\ell}_{mn}(\beta)$ may then be computed rapidly using recursion formulae (Risbo [\[6\]](#page-22-0)).

KORKARA KERKER DAGA

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$
\mathcal{V}(u) = \int_{S^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) e^{-i2\pi \boldsymbol{u} \cdot \boldsymbol{\sigma}} d\Omega.
$$

- **In this coordinate free definition,** σ **is the representation of** \hat{s} in a coordinate system centred on \hat{s}_0 . The translation $\sigma = \hat{s} - \hat{s}_0$ represents the transformation between the global coordinate frame ofˆ*s* and the local coordinate frame of σ.
- \bullet In general, one can transform vectors between global
- The rotation $\mathcal{R}_0 \equiv \mathcal{R}(\varphi_0, \theta_0, 0)$, where (θ_0, φ_0) are the

Local coordinates are related to global coordinates by $\widehat{s}^{\text{I}} = \mathbf{R}_{0}^{-1} \widehat{s}^{\text{n}},$ where \mathbf{R}_{0} is the 3 \times 3 rotation matrix $\mathcal{O} = \mathbf{R}_0$, \mathcal{O} , where \mathbf{R}_0 is the $\mathcal{O} \wedge \mathcal{O}$.

Figure: Geometry of observation of extended source.

KORK ERKER ADAM ADA

• The complex visibility measured by an interferometer is given by the coordinate free definition

$$
\mathcal{V}(\boldsymbol{u}) = \int_{S^2} A(\boldsymbol{\sigma}) I(\boldsymbol{\sigma}) e^{-i2\pi \boldsymbol{u} \cdot \boldsymbol{\sigma}} d\Omega.
$$

- **In this coordinate free definition,** σ **is the representation of** \hat{s} in a coordinate system centred on \hat{s}_0 . The translation $\sigma = \hat{s} - \hat{s}_0$ represents the transformation between the global coordinate frame ofˆ*s* and the local coordinate frame of σ.
- \bullet In general, one can transform vectors between global coordinates and local coordinates relative to \hat{s}_0 , through a rotation by \hat{s}_0 .
- The rotation $\mathcal{R}_0 \equiv \mathcal{R}(\varphi_0, \theta_0, 0)$, where (θ_0, φ_0) are the spherical coordinates of \hat{s}_0 , transforms the local coordinate frame relative to \hat{s}_0 to the global coordinate frame of the celestial sky.

Local coordinates are related to global coordinates by $\widehat{s}^{\text{I}} = \mathbf{R}_{0}^{-1} \widehat{s}^{\text{n}}$, where \mathbf{R}_{0} is the 3 \times 3 rotation matrix $\mathbf{C} = \mathbf{R}_0$, \mathbf{C} , where \mathbf{R}_0 is the $S \times S$.

Figure: Geometry of observation of extended source.

Figure: Rotation \mathcal{R}_0 mapping global coordinates of the celestial sky to local coordinates defined relative to the pointing direction \widehat{s}_0 .

- Returning to the visibility function, we may now represent each function in its most natural coordinate system:
	- The beam function is most naturally represented in local coordinates relative to the pointing direction \hat{s}_0^n and is denoted by $A^1(\hat{s}^1)$.
	- The source intensity function is most naturally represented in global coordinates and is denoted by $I^n(\hat{s}^n)$.
- We may convert function F^n in global coordinates to a corresponding function $F^{\rm l}$ in local coordinates through the rotation \mathcal{R}_0 :

$$
F^{n}(\hat{s}^{n}) = F^{n}(\mathbf{R}_{0}\hat{s}^{l}) = (\mathcal{R}_{0}^{-1}F^{n})(\hat{s}^{l}) = F^{l}(\hat{s}^{l}), \quad i.e. F^{l} = \mathcal{R}_{0}^{-1}F^{n}.
$$

• The visibility integral may then be written

$$
\mathcal{V}(u) = \int_{S^2} A^1(\hat{s}^1) I^n(\hat{s}^n) e^{-i2\pi \mathbf{u} \cdot \hat{\mathbf{s}}^1} d\Omega(\hat{s}^1) ,
$$

$$
\mathcal{V}(u) = \int_{S^2} A^1(\hat{s}^1) (\mathcal{R}_0^{-1} I^n) (\hat{s}^1) e^{-i2\pi \mathbf{u} \cdot \hat{S}^1} d\Omega(\hat{s}^1)
$$

=
$$
\int_{S^2} A^1(\hat{s}^1) I^1(\hat{s}^1) e^{-i2\pi \mathbf{u} \cdot \hat{S}^1} d\Omega(\hat{s}^1) .
$$

- Returning to the visibility function, we may now represent each function in its most natural coordinate system:
	- The beam function is most naturally represented in local coordinates relative to the pointing direction \hat{s}_0^n and is denoted by $A^1(\hat{s}^1)$.
	- The source intensity function is most naturally represented in global coordinates and is denoted by $I^n(\hat{s}^n)$.
- We may convert function F^n in global coordinates to a corresponding function $F^{\rm l}$ in local coordinates through the rotation \mathcal{R}_0 :

$$
F^{n}(\hat{s}^{n}) = F^{n}(\mathbf{R}_{0}\hat{s}^{l}) = (\mathcal{R}_{0}^{-1}F^{n})(\hat{s}^{l}) = F^{l}(\hat{s}^{l}), \quad i.e. F^{l} = \mathcal{R}_{0}^{-1}F^{n}.
$$

• The visibility integral may then be written

$$
\mathcal{V}(\boldsymbol{u}) = \int_{S^2} A^l(\boldsymbol{\hat{s}}^l) \boldsymbol{I}^n(\boldsymbol{\hat{s}}^n) e^{-i2\pi \boldsymbol{\mathcal{U}} \cdot \boldsymbol{\hat{s}}^l} d\Omega(\boldsymbol{\hat{s}}^l) ,
$$

or in local coordinates

$$
\mathcal{V}(u) = \int_{S^2} A^l(\hat{s}^l) (\mathcal{R}_0^{-1} I^n) (\hat{s}^l) e^{-i2\pi \boldsymbol{\mu} \cdot \hat{\boldsymbol{S}}^l} d\Omega(\hat{s}^l)
$$

=
$$
\int_{S^2} A^l(\hat{s}^l) I^l(\hat{s}^l) e^{-i2\pi \boldsymbol{\mu} \cdot \hat{\boldsymbol{S}}^l} d\Omega(\hat{s}^l) .
$$

- More general and accurate to compute full-sky visibilities in harmonic space.
- Substituting the harmonic expansion of the beam-modulated source intensity function $(A^1 \cdot I^1)(\hat{s}^1) = A^1(\hat{s}^1)I^1(\hat{s}^1)$, visibility integral becomes

$$
\mathcal{V}(u) = \sum_{\ell m} \left(A^1 \cdot I^1\right)_{\ell m} \int_{S^2} e^{-i2\pi \boldsymbol{u} \cdot \hat{S}^1} Y_{\ell m}(\hat{S}^1) d\Omega(\hat{S}^1) .
$$

Using the addition theorem for spherical harmonics, the Jacobi-Anger expansion and the orthogonality of the spherical harmonics the above integral can be evaluated analytically:

$$
\int_{S^2} e^{-i2\pi \boldsymbol{u} \cdot \boldsymbol{\hat{s}}^{\mathbf{l}}} Y_{\ell m}(\boldsymbol{\hat{s}}^{\mathbf{l}}) d\Omega(\boldsymbol{\hat{s}}^{\mathbf{l}}) = 4\pi (-i)^{\ell} j_{\ell} (2\pi ||\boldsymbol{u}||) Y_{\ell m}(\boldsymbol{\hat{u}}).
$$

The harmonic representation of the full-sky visibility function then reads:

Harmonic representation of visibility

$$
\mathcal{V}(\boldsymbol{u}) = 4\pi \sum_{\ell m} (-\mathrm{i})^{\ell} j_{\ell} (2\pi \|\boldsymbol{u}\|) Y_{\ell m}(\boldsymbol{\hat{u}}) \big(A^{\mathrm{l}} \cdot \boldsymbol{I}^{\mathrm{l}}\big)_{\ell m}
$$

KORKARA KERKER DAGA

Full-sky image reconstruction is possible in theory:

$$
\int_{S^2} \mathcal{V}(u) Y_{\ell m}^*(\hat{u}) d\Omega(\hat{u}) = 4\pi (-i)^{\ell} j_{\ell} (2\pi ||u||) (A^1 \cdot I^1)_{\ell m}.
$$

- But not in practise since would require full sampling of the visibility function in \mathbb{R}^3 .
- **O** Instead use:
	- Standard Fourier transform approach for small patches.
	- *w*-projection (Cornwell *et al.* [\[2\]](#page-22-1)) or faceting (*e.g.* Greisen [\[3\]](#page-22-2)) approaches for wide fields of view.

We consider only the forward problem of simulating visibilities in the full-sky setting and do not consider the reverse problem of image reconstruction any further.

- Challenging computational problem.
- For a 50×50 pixel image of one square degree, require a harmonic band limit of $\ell_{\rm max} \simeq 13,000$.
- Solutions:
	- parallelise code;
	- fast methods such as wavelets (more to come on this).
- **•** Present preliminary simulations here of mock observations of synchrotron emission (use synchrotron foreground map recovered from WMAP observations)

Figure: Full-sky synchrotron map observed by WMAP and smoothed with a Gaussian kernel of FWHM_s = 1.7° .

KORKARA KERKER DAGA

- \bullet Low resolution simulations: baseline limit of $u_{\text{max}} = 30$; $\ell_{\text{max}} \simeq 270$; reconstruct 20 \times 20 image (corresponds to $\sim 20^{\circ}$ square patch).
- \bullet Rotate to local coordinates then compute visibilities for complete uv coverage, including
- Computations take ∼5 minutes on laptop (2.2GHz processor; 2GB RAM)
- Reconstructed image and tangent plane image match reasonably closely. Expected to differ
	- full-sky contributions included when simulating visibilities but use Fourier transform to

lose some high-frequency content due to low harmonic band-limit.

- \bullet Low resolution simulations: baseline limit of $u_{\text{max}} = 30$; $\ell_{\text{max}} \simeq 270$; reconstruct 20 \times 20 image (corresponds to $\sim 20^{\circ}$ square patch).
- Rotate to local coordinates then compute visibilities for complete *uv* coverage, including full-sky contributions.
- Computations take ∼5 minutes on laptop (2.2GHz processor; 2GB RAM)
- Reconstructed image and tangent plane image match reasonably closely. Expected to differ
	- full-sky contributions included when simulating visibilities but use Fourier transform to

lose some high-frequency content due to low harmonic band-limit.

Figure: Full-sky synchrotron and beam maps in local coordinates.

- \bullet Low resolution simulations: baseline limit of $u_{\text{max}} = 30$; $\ell_{\text{max}} \simeq 270$; reconstruct 20×20 image (corresponds to $\sim 20^{\circ}$ square patch).
- Rotate to local coordinates then compute visibilities for complete *uv* coverage, including full-sky contributions.
- Computations take ∼5 minutes on laptop (2.2GHz processor; 2GB RAM)
- Reconstructed image and tangent plane image match reasonably closely. Expected to differ slightly since:
	- full-sky contributions included when simulating visibilities but use Fourier transform to reconstruct image;
	- lose some high-frequency content due to low harmonic band-limit.

(a) Synchrotron map (b) Gaussian beam

(a) Tangent plane (b) Full-sky simulation

Figure: Full-sky synchrotron and beam maps in local coordinates.

Figure: Beam-modulated intensity images for a [∼]20◦ square patch.

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Figure: Fourier vs wavelet transform (image from <http://www.wavelet.org/tutorial/>)

Morlet and Grossman (1981)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Figure: Fourier vs wavelet transform (image from <http://www.wavelet.org/tutorial/>)

● Continuous wavelets on the sphere

Antoine & Vandergheynst [\[1\]](#page-22-3), Wiaux *et al.* [\[9\]](#page-22-4), McEwen *et al.* [\[5\]](#page-22-5)

Analysis:

$$
\mathcal{W}_{\Psi}^{f}(a, \rho) = \int_{\mathbb{S}^{2}} d\Omega(\hat{\mathbf{s}}) f(\hat{\mathbf{s}}) \Psi_{a, \rho}^{*}(\hat{\mathbf{s}}).
$$

• Synthesis:

$$
f(\hat{\mathbf{s}}) = \int_{\text{SO}(3)} \,\mathrm{d}\varrho(\rho) \int_0^\infty \, \frac{\mathrm{d}a}{a^3} \,\, \mathcal{W}_{\Psi}^f(a,\rho) \, [\mathcal{R}(\rho)\widehat{L}_{\Phi} \Psi_a](\hat{\mathbf{s}}) \,,
$$

where $d\rho(\rho) = \sin \beta \, d\alpha \, d\beta \, d\gamma$ is the invariant measure on the rotation group SO(3) and \widehat{L}_{Φ} is a linear operator acting on the spherical harmonic coefficients of a function.

• Discrete wavelets on the sphere (multiresolution analysis) Schroder & Sweldens [\[7\]](#page-22-6), McEwen & Eyers [\[4\]](#page-22-7), Starck *et al.* [\[8\]](#page-22-8), Wiaux, McEwen *et al.* [\[10\]](#page-22-9)

Figure: Haar scaling function and wavelets.

KORKAR KERKER DI VOOR

Figure: Haar multiresolution decomposition.

Representing the beam-modulated intensity and the plane wave in an orthogonal wavelet basis on the sphere, with wavelets $\Psi_j(\widehat{s}) \in \mathrm{L}^2(\mathrm{S}^2,\,\mathrm{d}\Omega)$:

$$
(A1 \cdot I1)(\hat{s}1) = \sum_j (A1 \cdot I1)_j \Psi_j(\hat{s}1) ;
$$

$$
e^{i2\pi \mathbf{u} \cdot \hat{s}1} = \sum_k E_k(\mathbf{u}) \Psi_k(\hat{s}1) .
$$

Wavelet coefficients are given by the projection onto the wavelet basis functions:

$$
(A1 \cdot I1)j = \int_{S2} (A1 \cdot I1) (\hat{s}1) \Psij* (\hat{s}1) d\Omega (\hat{s}1) ;
$$

$$
Ek(u) = \int_{S2} e{i2πu \cdot \hat{s}1} \Psik* (\hat{s}1) d\Omega (\hat{s}1) .
$$

● Substituting these expansions into the visibility integral we find

$$
\mathcal{V}(\boldsymbol{u}) = \sum_j \left(A^1 \cdot I^1\right)_j E_j^*(\boldsymbol{u})
$$

where we have noted the orthogonality of the wavelet basis.

- \bullet Naive complexity of computing visibility for given *u* and \hat{s}_0 , is $\mathcal{O}(J)$, where *J* is the number of basis functions ($\mathcal{O}(J) \sim \mathcal{O}(\ell_{\max}^2)$ for the spherical harmonic basis).
- \bullet However, effective complexity reduced substantially by using a wavelet basis for which $(A^1 \cdot I^1)$ is sparse. **KORKARA KERKER DAGA**

- Derived harmonic representation of visibility integral, including full-sky contributions.
- **•** Framework allows extensions to complicated beams that depend on pointing position (although not discussed in this talk).
- Preformed very preliminary simulations to demonstrate and validate methodology.
- **e** Future directions:
	- more realistic high-resolution simulations (parallelise implementation, incorporate extensions, incomplete *uv* coverage, evaluate effect of wide beam sidelobes);

- fast wavelet methods to reduce computational requirements;
- • fast wavelet methods for wide field of view image reconstruction?

- [1] J.-P. Antoine and P. Vandergheynst. Wavelets on the n-sphere and related manifolds. *J. Math. Phys.*, 39(8):3987–4008, 1998.
- [2] T. J. Cornwell, K. Golap, and S. Bhatnagar. Wide Field Imaging: Fourier and Fresnel. In *Astronomical Society of the Pacific Conference Series*, volume 345, pages 350–+, December 2005.
- [3] E. Greisen. Wide field imaging in clasical AIPS. In *URSI General Assembly*, August 2002.
- [4] J. D. McEwen and D. M. Evers. Compression on the sphere. *In preparation*, 2008.
- [5] J. D. McEwen, M. P. Hobson, and A. N. Lasenby. A directional continuous wavelet transform on the sphere. *ArXiv*, 2006.
- [6] T. Risbo. Fourier transform summation of Legendre series and *D*-functions. *J. Geodesy*, 70(7):383–396, 1996.
- [7] P. Schröder and W. Sweldens. Spherical wavelets: efficiently representing functions on the sphere. In *Computer Graphics Proceedings (SIGGRAPH '95)*, pages 161–172, 1995.
- [8] J.-L. Starck, Y. Moudden, P. Abrial, and M. Nguyen. Wavelets, ridgelets and curvelets on the sphere. *Astron. & Astrophys.*, 446:1191–1204, February 2006.
- [9] Y. Wiaux, L. Jacques, and P. Vandergheynst. Correspondence principle between spherical and Euclidean wavelets. *Astrophys. J.*, 632:15–28, 2005.
- [10] Y. Wiaux, J. D. McEwen, P. Vandergheynst, and O. Blanc. Exact reconstruction with directional wavelets on the sphere. *Mon. Not. Roy. Astron. Soc.*, 2007.