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Preliminaries: spherical harmonics

A square integrable function on the sphere F ∈ L2(S2, dΩ) may be represented by the
spherical harmonic expansion

F(̂s) =
∞X
`=0

X̀
m=−`

F`mY`m (̂s) .

The spherical harmonic coefficients are given by the usual projection onto the spherical
harmonic basis functions:

F`m =

Z
S2

F(̂s) Y∗`m (̂s) dΩ(̂s) ,

where dΩ(̂s) = sin θ dθ dϕ is the usual rotation invariant measure on the sphere and
ŝ = (θ, ϕ) ∈ S2 denote spherical coordinates with colatitude θ ∈ [0, π] and longitude
ϕ ∈ [0, 2π).

Useful properties and relations
Orthogonality Z

S2
Y`m (̂s) Y∗`′m′ (̂s) dΩ(̂s) = δ``′δmm′

Addition theorem X̀
m=−`

Y`m (̂s)Y∗`m (̂s′) =
2`+ 1

4π
P` (̂s · ŝ′)

Jacobi-Anger expansion

eix·y
=

∞X
`=0

(2`+ 1)i`j`(‖x‖‖y‖)P` (̂x · ŷ)
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Preliminaries: rotations

Rotations on the sphereR characterised by the the rotation group SO(3), which we
parameterise in terms of the three Euler angles ρ = (α, β, γ) ∈ SO(3), where α ∈ [0, 2π),
β ∈ [0, π] and γ ∈ [0, 2π).

Rotation of coordinate vector performed by multiplication with 3×3 rotation matrix

R(ρ) = Rz(α)Ry(β)Rz(γ) ,

where Rz(ϑ) and Ry(ϑ) are rotation matrices representing rotations by ϑ about the z and y
axis respectively (adopt zyz Euler convention).

Rotation of function on the sphere defined by`
R(ρ)F

´
(̂s) = F

`
R−1

(ρ)̂s
´
.

Rotation of function on sphere may be performed more generally (i.e. pixelisation
independent) and accurately through harmonic space representation. Harmonic coefficients
of a rotated function are related to the coefficients of the original function by

`
R(ρ)F

´
`m =

X̀
n=−`

D`mn(ρ) F`n ,

where the Wigner D-functions D`mn(ρ) provide the irreducible unitary representation of the
rotation group SO(3).
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Coordinate systems

The complex visibility measured by an interferometer is
given by the coordinate free definition

V(u) =

Z
S2

A(σ)I(σ)e−i2πu·σ dΩ .

In this coordinate free definition, σ is the representation of ŝ
in a coordinate system centred on ŝ0. The translation
σ = ŝ− ŝ0 represents the transformation between the global
coordinate frame of ŝ and the local coordinate frame of σ.

In general, one can transform vectors between global
coordinates and local coordinates relative to ŝ0, through a
rotation by ŝ0.

The rotationR0 ≡ R(ϕ0, θ0, 0), where (θ0, ϕ0) are the
spherical coordinates of ŝ0, transforms the local coordinate
frame relative to ŝ0 to the global coordinate frame of the
celestial sky.

Local coordinates are related to global coordinates by
ŝl = R−1

0 ŝn, where R0 is the 3× 3 rotation matrix
corresponding to the rotationR0.

n̂1

n̂2

n̂3

ŝ

σ
ŝ0 dΩ

Figure: Geometry of observation of
extended source.

n̂1

n̂2

n̂3

û1

û2

û3
θ0

ϕ0

Figure: RotationR0 mapping
global coordinates of the celestial sky
to local coordinates.
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Coordinate systems

Returning to the visibility function, we may now represent each function in its most natural
coordinate system:

The beam function is most naturally represented in local coordinates relative to the
pointing direction ŝn

0 and is denoted by Al (̂sl).

The source intensity function is most naturally represented in global coordinates and is
denoted by In (̂sn).

We may convert function Fn in global coordinates to a corresponding function Fl in local
coordinates through the rotationR0:

Fn
(̂sn

) = Fn
(R0̂sl

) = (R−1
0 Fn

)(̂sl
) = Fl

(̂sl
) , i.e. Fl

= R−1
0 Fn

.

The visibility integral may then be written

V(u) =

Z
S2

Al
(̂sl

)In
(̂sn

)e−i2πu·̂sl
dΩ(̂sl

) ,

or in local coordinates

V(u) =

Z
S2

Al
(̂sl

)(R−1
0 In

)(̂sl
)e−i2πu·̂sl

dΩ(̂sl
)

=

Z
S2

Al
(̂sl

)Il
(̂sl

)e−i2πu·̂sl
dΩ(̂sl

) .
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Visibility representation

Substituting the harmonic expansion of the beam-modulated source intensity function`
Al · Il´(̂sl) = Al (̂sl)Il (̂sl), visibility integral becomes

V(u) =
X
`m

`
Al · Il´

`m

Z
S2

e−i2πu·̂sl
Y`m (̂sl

) dΩ(̂sl
) .

Using the addition theorem for spherical harmonics, the Jacobi-Anger expansion and the
orthogonality of the spherical harmonics the above integral can be evaluated analytically:Z

S2
e−i2πu·̂sl

Y`m (̂sl
) dΩ(̂sl

) = 4π(−i)`j`(2π‖u‖)Y`m(û) .

The harmonic representation of the full-sky visibility function then reads:

Harmonic representation of visibility

V(u) = 4π
X
`m

(−i)`j`(2π‖u‖)Y`m(û)
`

Al · Il´
`m
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`

Al · Il´
`m



FSI Wavelets FSI with wavelets Simulations Summary

Image reconstruction

Full-sky image reconstruction is possible in theory:Z
S2
V(u)Y∗`m(û) dΩ(û)=4π(−i)`j`(2π‖u‖)

`
Al · Il´

`m .

But not in practise since would require full sampling of the visibility function in R3.

Instead use:

Standard Fourier transform approach for small patches.
w-projection (Cornwell et al. [3]) or faceting (Cornwell & Perley [4]) approaches for wide
fields of view.

We consider only the forward problem of simulating visibilities in the full-sky setting and do not
consider the reverse problem of image reconstruction any further.
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (image from http://www.wavelet.org/tutorial/)

http://www.wavelet.org/tutorial/
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Haar wavelets on the sphere

Wavelets on the sphere

Continuous wavelets
e.g. Antoine & Vandergheynst 1998 [1], Wiaux et al. 2005 [9]

Discrete/discretised wavelets
e.g. Schroder & Sweldens 1995 [7], Barreio et al. 2000 [2], McEwen & Eyers 2008 [6],
Starck et al. 2006 [8], Wiaux et al. 2008 [10]

Define approximation spaces on the sphere Vj ⊂ L2(S2)

Construct the nested hierarchy of approximation spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ L2
(S2

) ,

where coarser (finer) approximation spaces correspond to a lower (higher) resolution level j.

For each space Vj we define a basis with basis elements given by the scaling functions
ϕj,k ∈ Vj, where the k index corresponds to a translation on the sphere.

Define detail space Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj+1 = Vj ⊕ Wj.

For each space Wj we define a basis with basis elements given by the wavelets ψj,k ∈ Wj.

Expanding the hierarchy of approximation spaces:

VJ = V1 ⊕
J−1M
j=1

Wj .
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Haar wavelets on the sphere

Relate generic multiresolution decomposition to HEALPix pixelisation.

Let Vj correspond to a HEALPix pixelised sphere with resolution parameter Nside = 2j−1.

Define the scaling function ϕj,k at level j to be constant for pixel k and zero elsewhere:

ϕj,k (̂s) ≡
(

1/
p

Aj ŝ ∈ Pj,k

0 elsewhere .

Orthonormal basis for the wavelet space Wj given by the following wavelets:

ψ
0
j,k (̂s) ≡

ˆ
ϕj+1,k0 (̂s)− ϕj+1,k1 (̂s) + ϕj+1,k2 (̂s)− ϕj+1,k3 (̂s)

˜
/2 ;

ψ
1
j,k (̂s) ≡

ˆ
ϕj+1,k0 (̂s) + ϕj+1,k1 (̂s)− ϕj+1,k2 (̂s)− ϕj+1,k3 (̂s)

˜
/2 ;

ψ
2
j,k (̂s) ≡

ˆ
ϕj+1,k0 (̂s)− ϕj+1,k1 (̂s)− ϕj+1,k2 (̂s) + ϕj+1,k3 (̂s)

˜
/2 .

Figure: Haar scaling function ϕj,k (̂s) and wavelets ψm
j,k (̂s)
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Haar wavelets on the sphere

Multiresolution decomposition of a function
defined on a HEALPix data-sphere at
resolution J, i.e. fJ ∈ VJ proceeds as follows.

Approximation coefficients at the coarser
level j are given by the projection of fj+1 onto
the scaling functions ϕj,k :

λj,k =

Z
S2

fj+1 (̂s) ϕj,k (̂s) dΩ(̂s) .

Detail coefficients at level j are given by the
projection of fj+1 onto the wavelets ψm

j,k :

γ
m
j,k =

Z
S2

fj+1 (̂s) ψm
j,k (̂s) dΩ(̂s) .

Figure: Haar multiresolution decomposition

The function fJ ∈ VJ may then be synthesised from its approximation and detail coefficients:

fJ (̂s) =

NJ0
−1X

k=0

λJ0kϕJ0k (̂s) +

J−1X
j=J0

Nj−1X
k=0

2X
m=0

γ
m
j,kψ

m
j,k (̂s) .
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The function fJ ∈ VJ may then be synthesised from its approximation and detail coefficients:

fJ (̂s) =

NJ0
−1X

k=0

λJ0kϕJ0k (̂s) +

J−1X
j=J0

Nj−1X
k=0

2X
m=0

γ
m
j,kψ

m
j,k (̂s) .
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SHW visibility representation

Representing the beam-modulated intensity and the plane wave in an orthogonal wavelet
basis on the sphere, with wavelets Ψj (̂s) ∈ L2(S2, dΩ):`

Al · Il´(̂sl
) =

X
j

`
Al · Il´

jΨj (̂sl
) ;

ei2πu·̂sl
=
X

k

Ek(u)Ψk (̂sl
) .

Wavelet coefficients are given by the projection onto the wavelet basis functions:`
Al · Il´

j =

Z
S2

`
Al · Il´(̂sl

)Ψ
∗
j (̂sl

) dΩ(̂sl
) ;

Ek(u) =

Z
S2

ei2πu·̂sl
Ψ
∗
k (̂sl

) dΩ(̂sl
) .

Substituting these expansions into the visibility integral, and noting the orthogonality of the
wavelet basis, we find:

SHW representation of visibility

V(u) =
X

j

`
Al · Il´

j E∗j (u)
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Fast wavelet algorithms

Computing visibilities from the SHW representation naively is no more efficient than the
spherical harmonic representation.

However,
`

Al · Il´ is sparse in the wavelet basis.

By exploiting sparsity many wavelet coefficients can be ignored, reducing the computational
cost of the calculation significantly.

Consider a number of algorithms to determine wavelet coefficients that contain non-negligible
information content and compute visibilities using only these coefficients:

Hard thresholding
Annealing thresholding strategies to favour coarser levels
→ quadratic annealing most effective

Naive complexity of computing visibility for given u is O(J), where J is the number of basis
functions used in the representation.

For the spherical harmonic basis O(J) ∼ O(`max
2) ∼ O(u2

max)

For the SHW basis typically O(J) ∼ O(un
max) for n . 1
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Low-resolution simulations

Perform low-resolution simulations of mock observations of synchrotron emission
(use synchrotron foreground map recovered from WMAP observations)

Low-resolution simulations: baseline limit of umax = 30; reconstruct 20× 20 image
(corresponds to ∼ 20◦ square patch).

Rotate to local coordinates then compute visibilities for complete uv coverage, including
full-sky contributions.

Assume Gaussian beam of FWHMb ' 18◦.

(a) Synchrotron map (global coord.)

(b) Synchrotron map (local coord.) (c) Gaussian beam (local coord.)

Figure: Synchrotron emission and beam maps
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Low-resolution simulations

Simulate visibilities using all methods and reconstruct images simply using Fourier transform.

Reconstructed images and tangent plane image all in close agreement
(expect some difference since full-sky contributions included when simulating visibilities but tangent plane
approximation assumed to recover images).

(a) Tangent plane image (b) Direct quadrature (c) Spherical harmonics

(d) Naive SHW (e) Thresholded SHW
(constant threshold)

(f) Thresholded SHW
(annealing strategy)

Figure: Original and reconstructed images.
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Low-resolution simulations

Compare performance of the methods for simulating interferometric observations in the
full-sky setting (on laptop with 2.2GHz Intel Core 2 Duo processor and 2GB of memory).

Method ComplexityO(un
max) Coefficients retained Execution time

Direct quadrature n = 2 100.00% 207.6s
Spherical harmonic n = 2 100.00% 263.7s
Naive SHW n = 2 100.00% 238.9s
Fast SHW (constant threshold) n . 1 0.70% 75.8s
Fast SHW (annealing strategy) n . 1 0.35% 73.0s

Typically less than 1% of SHW coefficients required to represent the information content of the
beam-modulated intensity map accurately.

The already slow performance of the quadrature and spherical harmonic techniques and their
poor scaling render these methods computationally infeasible for high-resolution problems.

Fast SHW methods have much better scaling properties and are already considerably faster
at this low-resolution, rendering realistic high-resolution simulations feasible.
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High-resolution simulations

Illustrate fast SHW simulations on higher resolution simulation of 94GHz FDS map of
predicted submillimeter and microwave emission of diffuse interstellar Galactic dust [5].

High-resolution simulations: baseline limit of umax = 100; reconstruct 20× 20 image
(corresponds to ∼ 6◦ square patch).

Assume Gaussian beam of FWHMb ' 3◦.

(a) Global coord. (b) Local coord.

Figure: Full-sky 94GHz FDS map of predicted emission of diffuse interstellar Galactic dust.
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High-resolution simulations

Original and reconstructed images in close agreement.
Expect some difference since:

Full-sky contributions incorporated when simulating visibilities, however flat-patch approximation is
assumed when synthesising the image
Fast SHW method introduces small error by discarding wavelet coefficients with minimal information

Execution time of 290s (estimate ∼3000s for spherical harmonic method).

Fast SHW algorithm therefore essential to compute full-sky interferometric contributions in
realistic high-resolution simulations.

Fast SHW algorithm also highly parallelisable.

(a) Tangent plane image (b) Fast SHW simulated image

Figure: Original and reconstructed images.
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Summary & future work

Derived spherical harmonic and SHW representation of visibility integral, including full-sky
contributions.

Developed fast SHW algorithms to render full-sky interferometric simulations feasible for
realistic, high-resolution settings.

Demonstrated and verified algorithms on simulated observations.

Future work:

More realistic high-resolution simulations
(incomplete, realistic uvw coverage; time varying beams; parallelise implementation)

Study impact of ignoring full-sky effects

Incorporate wide field-of-view contributions when reconstructing images
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