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Signals and noise

“One person’s noise is another’s signal.”
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Cosmic evolution
Signals and noise
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Denoising and related inverse problems

Ill-posed denoising inverse problem:

y = x+ n ,

where y are observations, x is the underlying signal of interest, and n is noise.

Ill-posed inverse problem:

y = Φx+ n ,

where Φ is a linear (measurement) operator.
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CMB foreground separation
Observations at different frequencies
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CMB foreground separation
Recovered CMB map

SILC (N = 1)
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CMB foreground separation
Related papers
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Cosmic strings
Problem

+
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Recovered Strings Strings + Background

Jason McEwen Denoising and related inverse problems



Cosmic strings
Hierarchical Bayesian model
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Cosmic strings
Bayesian inference
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Figure: Posterior

Table: Bayes factors

Gµ truth Bayes factor
/ 10−7 [loge]

10.0 51.4
7.00 12.5
5.00 1.19
3.00 −3.87

-250 250µK(a) Ground truth -250 250µK(b) Recovered

Figure: String map
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Cosmic strings
Related papers
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Anisotropic cosmologies
Bianchi models of universal rotation
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Anisotropic cosmologies
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Cosmic bubble collisions and the multiverse
Bianchi models of universal rotation
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Cosmic bubble collisions and the multiverse
Optimal filtering and Bayesian inference
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Cosmic bubble collisions and the multiverse
Related papers
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Mass mapping
Weak gravitational lensing

[Credit: Tyson]
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Mass mapping
Mass mapping is a linear inverse problem

Cosmic shear 2γ related to convergence 0κ (integrated mass) by:

2γ = 2ð2
(
ðð̄ + ð̄ð

)−1
0κ

Differential form

2γ(n) =

∫

S2
dΩ(n′) 0κ(n′)(Rn 2K)(n′)

Integral form

Mass mapping is a spherical inverse problem.

Solve mass mapping problem in spherical setting, avoiding planar approximations
(e.g. Wallis et al.).
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Mass mapping
Related papers
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Radio interferometric imaging
Observational process

“Fourier”
Measurements
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Radio interferometric imaging
Compressive sensing and sparse regularisation

Compressed sensing motivates sparse regularisation, imposing sparse prior in some
representation α (e.g. wavelets), where x = Ψα:

α? = arg min
α

∥∥α
∥∥
1
s.t.

∥∥y −ΦΨα
∥∥
2
≤ ε

Synthesis framework
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Radio interferometric imaging
PURIFY reconstruction of observations of 3C129 by the VLA
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Figure: 3C129 (Pratley, McEwen, et al. 2016)
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Radio interferometric imaging
Uncertainty quantification

(a) Recovered image (b) Surrogate with region removed

Reject null hypothesis

⇒ structure physical

Figure: Supernova remnant W28
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Radio interferometric imaging
Deep learning

Fig. 1: DeepInverse learns the inverse transformation from measurement vectors y to signals x using a special deep convolu-
tional network.

As we mentioned earlier, one of the main goals of this
paper is to show that we can use deep learning framework
to recover images from undersampled measurements without
any need to divide images into small blocks and recover each
block separately. For this purpose, we use DeepInverse that
receives a signal proxy, i.e., x̃ = Φᵀy (with same dimension
as x) as its input. In addition, it has 3 layers with the follow-
ing specifications. The first layer has 64 filters, each having
1 channel of size 11 × 11. The second layer has 32 filters,
each having 64 channels of size 11 × 11. The third layer has
1 filter with 32 channels of size 11 × 11. We trained DeepIn-
verse using 64 × 64 cropped subimages of the natural images
in the ImageNet dataset [15]. Test images were drawn from
ImageNet images that were not used for training purposes.

Figure 2 shows the plot of average probability of success-
ful recovery for different undersampling ratios (M/N ) and
three different recovery algorithms: D-AMP [10], total vari-
ation (TV) minimization [16], and P-AMP [17]. Note that
we do not include any results from [11, 12] in our simula-
tion results, since these approaches are specifically designed
for block-based recovery whereas in this paper we focus on
recovering signals without subdivision.

Figure 2 compares the probability of successful recovery
as measured by 2000 Monte Carlo samples. For each under-
sampling ratio andMonte Carlo sample, we define the success
variable φδ,j = I

(
∥x̂(j)−x(j)∥2

2

∥x(j)∥2
2

≤ 0.1
)
. For small values of

undersampling ratio (e.g., 0.01) DeepInverse has better per-
formance than state-of-the-art recovery methods. However,
as the undersampling ratio increases, D-AMP outperforms
DeepInverse. Although Figure 2 shows that for every under-
sampling ratio one method works better than others, there is
not a clear winner in terms of reconstruction quality.

Figure 3 compares the average PSNR 1 of the Monte
Carlo test samples for different undersampling ratios and al-
gorithms. Figure 4 shows the histograms of the PSNRs of
the recovered test images, indicating the DeepInverse outper-
forms D-AMP for some images in the test set.

1PSNR = 10. log10

(
max2

Image

MSE

)

While Figs. 2 and 3 indicate that DeepInverse offers re-
covery probability and PSNR performance that is comparable
to state-of-the-art CS recovery algorithms, Table 1 shows that
DeepInverse has a run time that is a tiny fraction of current
algorithms. This fact makes DeepInverse especially suitable
for applications that need low-latency recovery.

Table 2 plots the images recovered by DeepInverse and
D-AMP when they are on their best and worst behavior.

Table 3 shows the effect of adding input noise on recov-
ery performance of D-AMP and DeepInverse. We can see that
for undersampling ratio of 0.1 and 20 dB input noise, Deep-
Inverse is more robust to noise comparing to D-AMP.

Finally, Figure 5 shows the convergence of the back-
propagation training algorithm over different iterations for
DeepInverse. It also shows the average PSNR of the images
in the test dataset for different methods with M/N = 0.1.
We can see that after several iterations DeepInverse starts to
outperform TV minimization and P-AMP.

Although D-AMP has better performance than a 3-layer
DeepInverse in general, we should consider two points. First,
by training an DeepInverse with more layers the network will
have a larger capacity and hence, we expect it to offer bet-
ter recovery performance. We leave studying DeepInverses
with larger capacities as a topic of our future work. Second,
DeepInverse is specially useful for applications that need low-
latency recovery and at the same timewe are not able to divide
images into smaller blocks, i.e., we need to apply a sensing
matrix to the entire signal rather than smaller blocks of it.

Table 1: Average reconstruction time of test set images for
different sampling rates and algorithms.

M
N

Reconstruction Time (s)
DeepInverse D-AMP TV P-AMP

0.2 0.01 3.41 2.53 1.53
0.1 0.01 2.93 2.34 1.23
0.01 0.01 2.56 2.26 0.94
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Radio interferometric imaging
Standard algorithms
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Radio interferometric imaging
Highly distributed and parallelized algorithms
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Radio interferometric imaging
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