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Observations of the cosmic microwave background (CMB)

Full-sky observations of the CMB ongoing.

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie)

(d) COBE to WMAP [Credit: WMAP Science Team]

(planck movie)

(e) Planck observing strategy [Credit: Planck Collaboration]


cobe2wmap.mp4
Media File (video/mp4)


664_Planck_sky-scan_HD_350x198.mov
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Observations of the cosmic microwave background (CMB)

Credit: Max Tegmark
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Observations on the sphere

Credit: Alec MacAndrew
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Observations on the three-ball (solid sphere)

Boris Leistedt & JDM (2012), Exact wavelets on the ball, submitted to IEEE Trans. Sig. Proc.,
arXiv:1205.0792.

http://arxiv.org/abs/arXiv:1205.0792
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Spherical harmonic transform

The spherical harmonics are the eigenfunctions of the Laplacian on the sphere:
∆S2 Y`m = −`(`+ 1)Y`m.

(i) ` = 4, m = 2 (j) ` = 4, m = 3

Figure: Spherical harmonic functions (real and imaginary parts).

Any square integrable scalar function on the sphere f ∈ L2(S2) may be represented by its
spherical harmonic expansion:

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

The spherical harmonic coefficients are given by the usual projection onto each basis function:

f`m = 〈f , Y`m〉 =

∫
S2

dΩ(θ, ϕ) f (θ, ϕ) Y∗`m(θ, ϕ) .
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Spherical harmonic transform

We consider signals on the sphere band-limited at L, that is signals such that f`m = 0, ∀` ≥ L
⇒ summations may be truncated at L− 1:

f (θ, ϕ) =

L−1∑
`=0

∑̀
m=−`

f`m Y`m(θ, ϕ) .

For a band-limited signal, can we compute f`m exactly?

→ Sampling theorems on the sphere.

Aside: Generalise to spin functions on the sphere.

Square integrable spin functions on the sphere sf ∈ L2(S2), with integer spin s ∈ Z, are defined by their
behaviour under local rotations. By definition, a spin function transforms as

sf ′(θ, ϕ) = e−isχ
sf (θ, ϕ)

under a local rotation by χ, where the prime denotes the rotated function.
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Driscoll & Healy (DH) sampling theorem

Canonical sampling theorem on the sphere derived by Driscoll & Healy (1994) for equiangular
grids.

Gives an explicit quadrature rule for the spherical harmonic transform:

f`m =

2L−1∑
t=0

2L−1∑
p=0

qDH(θt) f (θt, ϕp) Y∗`m(θt, ϕp) ,

where the sample positions are defined by θt = πt/2L, for t = 0, . . . , 2L− 1, and
ϕp = πp/L, for p = 0, . . . , 2L− 1

⇒ NDH = (2L− 1)2L + 1 ∼ 4L2 samples on the sphere.

The quadrature weights are defined implicitly by the solution to

2L−1∑
t=0

qDH(θt) P`(cos θt) =
2π
L
δ`0 , ∀` < 2L ,

and are given explicitly by

qDH(θt) =
2π
L2

sin θt

L−1∑
k=0

sin((2k + 1)θt)

2k + 1
.
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McEwen & Wiaux (MW) sampling theorem

A new sampling theorem (with fast algorithms) has emerged very recently by performing a
factoring of rotations and then by associating the sphere with the torus through a periodic
extension.

Similar to making a periodic extension in θ of a function f on the sphere.

(a) Function on sphere (b) Even function on torus (c) Odd function on torus

Figure: Associating functions on the sphere and torus
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McEwen & Wiaux (MW) sampling theorem

By a factoring of rotations, a reordering of summations and a separation of variables, the
inverse transform of sf may be written:

Inverse spherical harmonic transform

sf (θ, ϕ) =

L−1∑
m=−(L−1)

sFm(θ) eimϕ

sFm(θ) =

L−1∑
m′=−(L−1)

sFmm′ eim′θ

sFmm′ = (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf `m

where ∆`
mn ≡ d`mn(π/2) are the reduced Wigner functions evaluated at π/2.
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McEwen & Wiaux (MW) sampling theorem

By a factoring of rotations, a reordering of summations and a separation of variables, the
forward transform of sf may be written:

Forward spherical harmonic transform

sf `m = (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sGmm′

sGmm′ =

∫ π

0
dθ sin θ sGm(θ) e−im′θ

sGm(θ) =

∫ 2π

0
dϕ sf (θ, ϕ) e−imϕ

JDM (2011a), Fast, exact (but unstable) spin spherical harmonic transforms

Huffenberger & Wandelt (2010), Fast and exact spin-s spherical harmonic transforms

JDM & Wiaux (2011b), A novel sampling theorem on the sphere

⇒ NMW = (L− 1)(2L− 1) + 1 ∼ 2L2 samples on the sphere.
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Comparison
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Figure: Number of samples (MW=red; DH=green; GL=blue)
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Comparison
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Figure: Numerical accuracy (MW=red; DH=green; GL=blue)
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Comparison
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Figure: Computation time (MW=red; DH=green; GL=blue)
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Comparison

DH DH MW
Divide-and-conquer Semi-naive

Pixelisation scheme equiangular equiangular equiangular

Asymptotic complexity O(L5/2 log 1/2
2 L) O(L3) O(L3)

Precomputation Y N N

Stability N Y Y

Flexibility of Wigner recursion N N Y

Spin functions N N Y

Number of samples 4L2 4L2 2L2
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Sparse signal reconstruction on the sphere

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

Many natural signals are sparse in a spatially localised measure, such as in a wavelet basis,
overcomplete dictionary, or in the magnitude of their gradient, for example.

A more efficient sampling of a band-limited signal on the sphere improves both the
dimensionality and sparsity of the signal in the spatial domain.

For a given number of measurements, a more efficient sampling theorem improves the fidelity
of sparse signal reconstruction.

We develop a framework for total variation (TV) inpainting on the sphere to demonstrate this
result.
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TV inpainting

Consider inpainting problem y = Φx + n in the context of different sampling theorems, where:
the samples of f are denoted by the concatenated vector x ∈ RN ;
N is the number of samples on the sphere of the chosen sampling theorem;
M noisy measurements y ∈ RM are acquired;
the measurement operator Φ ∈ RM×N represents a random masking of the signal;
the noise n ∈ RM is assumed to be iid Gaussian with zero mean.

Define TV norm on the sphere:

∫
S2

dΩ |∇f | '
Nθ−1∑

t=0

Nϕ−1∑
p=0

|∇f | q(θt) '
Nθ−1∑

t=0

Nϕ−1∑
p=0

√
q2(θt)

(
δθx
)2 +

q2(θt)

sin2 θt

(
δϕx

)2 ≡ ‖x‖TV .

TV inpainting problem solved directly on the sphere:

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

TV inpainting problem solved in harmonic space:

x̂′? = arg min
x̂′
‖Λ′x̂′‖TV such that ‖y− ΦΛ

′x̂′‖2 ≤ ε ,

where Λ′ represents the inverse spherical harmonic transform (while also including a
conjugate symmetry extension to impose reality) and harmonic coefficients are represented
by the concatenated vector x̂′ ∈ CL(L+1)/2.
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) Measurements

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) DH reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations

Solve TV inpainting problem on the sphere in the context of the Driscoll & Healy sampling
theorem and our new sampling theorem (at L = 32).

(a) Ground truth (b) MW reconstruction

Figure: Earth topographic data reconstructed in the harmonic domain for M/L2 = 1/2
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TV inpainting: low-resolution simulations
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TV inpainting: low-resolution simulations
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Figure: Reconstruction performance for the DH and MW sampling theorems
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TV inpainting: high-resolution simulations

Previously limited to low-resolution simulations.

To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Fast adjoint inverse spherical harmonic transform

s f̃
†
(θt, ϕp) =

{
sf (θt, ϕp) , t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

sFmm′
†

=

2L−2∑
t=0

2L−2∑
p=0

s f̃
†
(θt, ϕp) e−i(m′θt+mϕp)

sf`m
†

= (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sFmm′

†



Harmonic analysis Sampling theorems Sparse signal reconstruction Summary

TV inpainting: high-resolution simulations

Previously limited to low-resolution simulations.

To solve high-resolution problem we require fast adjoint spherical harmonic transform
operators in addition to fast forward spherical harmonic transforms to solve optimisation
problems.

Superiority of new sampling theorem clear, hence develop fast adjoints for this case only.

Fast adjoint inverse spherical harmonic transform

s f̃
†
(θt, ϕp) =

{
sf (θt, ϕp) , t ∈ {0, 1, . . . , L− 1}
0 , t ∈ {L, . . . , 2L− 2}

sFmm′
†

=

2L−2∑
t=0

2L−2∑
p=0

s f̃
†
(θt, ϕp) e−i(m′θt+mϕp)

sf`m
†

= (−1)
s im+s

√
2`+ 1

4π

L−1∑
m′=−(L−1)

∆
`
m′m ∆

`
m′,−s sFmm′

†



Harmonic analysis Sampling theorems Sparse signal reconstruction Summary

TV inpainting: high-resolution simulations

Fast adjoint forward spherical harmonic transform

sGmm′
†

= (−1)
s i−(m+s)

L−1∑
`=0

√
2`+ 1

4π
∆
`
m′m ∆

`
m′,−s sf`m

sFmm′′
†

= 2π
L−1∑

m′=−(L−1)

sGmm′
† w(m′ − m′′)

sF̃m
†
(θt) =

1
2L− 1

L−1∑
m′=−(L−1)

sFmm′
† eim′θt

sFm
†
(θt) =

{
sF̃m
†(θt) + (−1)m+s

sF̃m
†(θ2L−2−t) , t ∈ {0, 1, . . . , L− 2}

sF̃m
†(θt) , t = L− 1

sf
†
(θt, ϕp) =

1
2L− 1

L−1∑
m=−(L−1)

sFm
†
(θt) eimϕp
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TV inpainting: high-resolution simulations

Figure: Ground truth (L = 128)
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TV inpainting: high-resolution simulations

Figure: Measurements (M/L2 = 1/4; L = 128)
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TV inpainting: high-resolution simulations

Figure: Reconstruction (M/L2 = 1/4; L = 128; SNR = 29dB)
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Summary

New MW sampling theorem on the sphere which captures all of the information content of a
band-limited signal in only 2L2 samples (compared to 4L2 for the DH sampling theorem).

A reduction in the number of samples required to represent a band-limited signal on the
sphere has important implications for sparse signal reconstruction.

For signals sparse in a spatially localised representation, a more efficient sampling of the
sphere improves the fidelity of sparse signal reconstruction.

We develop a framework for total variation (TV) inpainting on the sphere to demonstrate this
result→ superiority of the MW sampling theorem for sparse signal reconstruction clear.

Develop fast adjoint spherical harmonic transforms for the MW sampling theorem to solve
sparse signal reconstruction problems on the sphere at high-resolution.

Papers

McEwen & Wiaux, A novel sampling theorem on the sphere, IEEE Trans. Sig. Proc., 59, 12, 5876–5887,
arXiv:1110.6298, 2011.

McEwen, Puy, Thiran, Vandergheynst, Van De Ville & Wiaux, Sparse signal reconstruction on the sphere:
implications of a new sampling theorem, IEEE Trans. Sig. Proc., submitted, arXiv:1205.1013, 2012.

Code

SSHT Code to compute fast and exact, forward and adjoint (spin) spherical harmonic transforms
based on the MW sampling theorem
(Fortran, C, Matlab)

Available under the GPL from http://www.ssht.org.uk/

http://arxiv.org/abs/arXiv:1110.6298
http://arxiv.org/abs/arXiv:1205.1013
http://www.ssht.org.uk/
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