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Cosmological concordance model

Concordance model of modern cosmology emerged recently with many cosmological
parameters constrained to high precision.

General description is of a Universe undergoing accelerated expansion, containing 4%
ordinary baryonic matter, 22% cold dark matter and 74% dark energy.

Structure and evolution of the Universe constrained through cosmological observations.

[Credit: WMAP Science Team]
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Observations of the cosmic microwave background (CMB)

Full-sky observations of the cosmic microwave background (CMB).

(a) COBE (launched 1989) (b) WMAP (launched 2001) (c) Planck (launched 2009)

Each new experiment provides dramatic improvement in precision and resolution of
observations.

(cobe 2 wmap movie)

(d) COBE to WMAP [Credit: WMAP Science Team]

(planck movie)

(e) Planck observing strategy [Credit: Planck Collaboration]
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cobe2wmap.mp4
Media File (video/mp4)


664_Planck_sky-scan_HD_350x198.mov
Media File (video/quicktime)
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Cosmic microwave background (CMB)

Observations of the CMB made by WMAP have played a large role in constraining the
cosmological concordance model.

(a) Temperature anisotropies (b) Power spectrum

Figure: CMB observations [Credit: WMAP Science Team]

Although a general cosmological concordance model is now established, many details remain
unclear. Study of well-motivated extensions of the cosmological concordance model now
important.

CMB observed on spherical manifold, hence the geometry of the sphere must be taken into
account in any analysis.
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Why wavelets?

Fourier (1807) Haar (1909)

Morlet and Grossman (1981)

Figure: Fourier vs wavelet transform (credit: http://www.wavelet.org/tutorial/)
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Wavelet transform in Euclidean space

Figure: Wavelet scaling and shifting (image from http://www.wavelet.org/tutorial/)
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Continuous wavelets on the sphere

First natural wavelet construction on the sphere was derived in the seminal work of Antoine and
Vandergheynst (1998) (reintroduced by Wiaux 2005).

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of a
mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f on the
sphere is defined by

[R(ρ)f ](ω) = f (ρ−1
ω), ω = (θ, ϕ) ∈ S2

, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

The spherical dilation operator is defined through the
conjugation of the Euclidean dilation and stereographic
projection Π:

D(a) ≡ Π
−1 d(a) Π .

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Figure: Stereographic projection.
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Continuous wavelet analysis

Wavelet frame on the sphere constructed from rotations and dilations of a mother spherical
wavelet Φ:

{Φa,ρ ≡ R(ρ)D(a)Φ : ρ ∈ SO(3), a ∈ R+
∗ }.

The forward wavelet transform is given by

W f
Φ(a, ρ) = 〈f ,Φa,ρ〉 =

∫
S2

dΩ(ω) f (ω) Φ
∗
a,ρ(ω) ,

where dΩ(ω) = sin θ dθ dϕ is the usual invariant measure on the sphere.

Transform general in the sense that all orientations in the rotation group SO(3) are
considered, thus directional structure is naturally incorporated.

Fast algorithms essential (for a review see Wiaux, JDM & Vielva 2007)
Factoring of rotations: JDM et al. (2007), Wandelt & Gorski (2001)
Separation of variables: Wiaux et al. (2005)

FastCSWT code available to download: http://www.jasonmcewen.org/
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Mother wavelets

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.

Jason McEwen Cosmological Signal Processing



Cosmology Wavelets on sphere Strings Wavelets on ball CS RI Euclidean wavelets Continuous wavelets Scale-discretised wavelets

Mother wavelets

Correspondence principle between spherical and Euclidean wavelets states that the inverse
stereographic projection of an admissible wavelet on the plane yields an admissible wavelet
on the sphere (proved by Wiaux et al. 2005)

Mother wavelets on sphere constructed from the projection of mother Euclidean wavelets
defined on the plane:

Φ = Π
−1

ΦR2 ,

where ΦR2 ∈ L2(R2, d2x) is an admissible wavelet in the plane.

Directional wavelets on sphere may be naturally constructed in this setting – they are simply
the projection of directional Euclidean planar wavelets on to the sphere.

(a) SMHW (b) SBW (c) S2GDW

Figure: Spherical wavelets at scale a, b = 0.2.

Jason McEwen Cosmological Signal Processing



Cosmology Wavelets on sphere Strings Wavelets on ball CS RI Euclidean wavelets Continuous wavelets Scale-discretised wavelets

Continuous wavelet synthesis (reconstruction)

The inverse wavelet transform given by

f (ω) =

∫ ∞
0

da
a3

∫
SO(3)

d%(ρ)W f
Φ(a, ρ) [R(ρ)L̂ΦΦa](ω) ,

where d%(ρ) = sin β dα dβ dγ is the invariant measure on the rotation group SO(3).

Perfect reconstruction is ensured provided wavelets satisfy the admissibility property:

0 < Ĉ`Φ ≡
8π2

2`+ 1

∑̀
m=−`

∫ ∞
0

da
a3
| (Φa)`m |

2
<∞, ∀` ∈ N

where (Φa)`m are the spherical harmonic coefficients of Φa(ω).

Continuous wavelets used effectively in many cosmological studies, for example:
Non-Gaussianity (e.g. Vielva et al. 2004; JDM et al. 2005, 2006, 2008)
ISW (e.g. Vielva et al. 2005, JDM et al. 2007, 2008)

BUT...

exact reconstruction not feasible in practice!
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Scale-discretised wavelets on the sphere

Wiaux, JDM, Vandergheynst, Blanc (2008)
Exact reconstruction with directional wavelets on the sphere
S2DW code
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Figure: Harmonic tiling on the sphere.

Dilation performed in harmonic space.
Following JDM et al. (2006), Sanz et al. (2006).

The scale-discretised wavelet Ψ ∈ L2(S2, dΩ) is
defined in harmonic space:

Ψ̂`m = K̃Ψ(`)SΨ
`m .

Construct wavelets to satisfy a resolution of the
identity for 0 ≤ ` < L:

Φ̃
2
Ψ(α

J
`) +

J∑
j=0

K̃2
Ψ(α

j
`) = 1.
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Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

W f
Ψ(ρ, α

j
) = 〈f ,Ψρ,αj 〉 =

∫
S2

dΩ(ω) f (ω) Ψ
∗
ρ,αj (ω) .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (ω) =
[
ΦαJ f

]
(ω) +

J∑
j=0

∫
SO(3)

d%(ρ) W f
Ψ

(
ρ, α

j
) [

R (ρ) Ld
Ψαj

]
(ω) .
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Scale-discretised wavelets

Figure: Spherical scale-discretised wavelets.
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Scale-discretised wavelet transform of the Earth

Figure: Scale-discretised wavelet transform of a topography map of the Earth.
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Codes for scale-discretised wavelets on the sphere

S2DW code
Exact reconstruction with directional wavelets on the sphere
Wiaux, JDM, Vandergheynst, Blanc (2008)

Fortran

Supports directional, steerable wavelets

S2LET code
S2LET: A code to perform fast wavelet analysis on the sphere
Leistedt, JDM, Wiaux, Vandergheynst (2012)

C, Matlab, IDL, Java

Support only axisymmetric wavelets at present

Future extensions:

Directional, steerable wavelets
Faster algorithms to perform wavelet transforms
Spin wavelets

All codes available from: http://www.jasonmcewen.org/
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Cosmic strings

Symmetry breaking phase transitions in the early Universe→ topological defects.

Cosmic strings well-motivated phenomenon that arise when axial or cylindrical symmetry is
broken→ line-like discontinuities in the fabric of the Universe.

Although we have not yet observed cosmic
strings, we have observed string-like topological
defects in other media, e.g. ice and liquid crystal.

Cosmic strings are distinct to the fundamental
superstrings of string theory.

However, recent developments in string theory
suggest the existence of macroscopic
superstrings that could play a similar role to
cosmic strings.

The detection of cosmic strings would open a
new window into the physics of the Universe!

Figure: Optical microscope photograph of a
thin film of freely suspended nematic liquid
crystal after a temperature quench. [Credit:
Chuang et al. (1991).]
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Observational signatures of cosmic strings

Spacetime about a cosmic string is canonical, with a
three-dimensional wedge removed (Vilenkin 1981).

Strings moving transverse to the line of sight induce
line-like discontinuities in the CMB (Kaiser & Stebbins
1984).

The amplitude of the induced contribution scales with Gµ,
the string tension.

Figure: Spacetime around a cosmic string.
[Credit: Kaiser & Stebbins 1984, DAMTP.]
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

High-resolution full-sky simulations created by Christophe Ringeval.

5

FIG. 1: String-induced CMB temperature fluctuations on a 7.2 degree field with a (unrealistic) resolution of ✓res = 0.420

(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).

(or long) strings, defined as strings larger than the hori-
zon size, because they rapidly reach the scaling regime.
Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface

(a) Flat patch (Fraisse et al. 2008) (b) Full-sky (Ringeval et al. 2012)

Figure: Cosmic string simulations.

(a) CMB (b) CMB with embedded string

Figure: CMB simulation with string contribution (Gµ = 5 × 10−7) embedded .
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Observational signatures of cosmic strings

Make contact between theory and data using high-resolution simulations.

High-resolution full-sky simulations created by Christophe Ringeval.
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(1024 pixels). The upper left image shows the fluctuations induced in between the last scattering surface and the redshift
z = 36, while the upper right map represents the anisotropies produced by strings between z = 36 and z = 0.3. Due to their
cosmological scaling, most of the long strings intercept our past-light cone close to the last scattering surface. The overall
string-induced fluctuations are plotted in the bottom left panel. As can be seen in the bottom right image, the edges in the
temperature patterns of the other maps can be identified to strings intercepting our past light cone. Note that active regions
corresponding to string intersection and loop formation events lead to the bright spots in these maps. Some of these spots are
associated with ⇥ > 80 GU and saturate the color-map (see Sec. III).
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Although it has been shown in Ref. [28] that the cosmic
string loop distribution scales as well, the relaxation time
for the loops to reach such a self-similar evolution with
respect to the horizon size appears to be larger for smaller
loops. As a result, and this is inherent to all cosmic string
numerical simulations, the smaller length scales in a nu-

merical string network keep some memory of the initial
network configuration until they reach their stable cos-
mological evolution (see also Refs. [27, 59]). Note that
even if this memory e↵ect is physical, one does not expect
a physical string network at the last scattering surface to
still exhibit structures coming from its initial configura-
tion at the GUT energy scale. The change in scale factor
between the GUT redshift and the last scattering surface
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Figure: Cosmic string simulations.

(a) CMB (b) CMB with embedded string

Figure: CMB simulation with string contribution (Gµ = 5 × 10−7) embedded .
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data d by

Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and position

ρ ∈ SO(3).

Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry. Figure: Example wavelet.

Wavelet transform yields a sparse representation of the string signal→ hope to effectively separate
the CMB and string signal in wavelet space.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Motivation for using wavelets to detect cosmic strings

Adopt the scale-discretised wavelet transform on
the sphere (Wiaux, JDM et al. 2008), where we
denote the wavelet coefficients of the data d by

Wd
jρ = 〈d, Ψjρ〉 for scale j ∈ Z+ and position

ρ ∈ SO(3).

Consider an even azimuthal band-limit N = 4 to
yield wavelet with odd azimuthal symmetry. Figure: Example wavelet.
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Figure: Distribution of CMB and string signal in pixel (left) and wavelet space (right).
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Learning the statistics of the CMB and string signals in wavelet space
Need to determine statistical description of the CMB and string signals in wavelet space.

Calculate analytically the probability distribution of the CMB in wavelet space:

Pc
j (Wc

jρ) =
1√

2π(σc
j )

2
e

(
− 1

2

(
Wc

jρ
σc

j

)2)
, where (σ

c
j )

2
= 〈Wc

jρ Wc
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training
map (cf. Wiaux et al. 2009):

Ps
j (Ws

jρ |Gµ) =
υj

2GµνjΓ(υj
−1)

e

(
−

∣∣∣∣ Ws
jρ

Gµνj

∣∣∣∣υj
)
,

with scale parameter νj and shape parameter υj.

Figure: Generalised Gaussian distribution (GGD).
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 0.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 1.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 2.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

Figure: Distributions for wavelet scale j = 3.
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Learning the statistics of the CMB and string signals in wavelet space

Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Require two simulated string maps: one for training; one for testing.

(a) String1 (b) String2

Figure: Cosmic string simulations.

Compare distribution learnt from the training
simulation (string2) with the distribution of the
testing simulation (string1).

Distributions in close agreement.

We have accurately characterised the statistics of
string signals in wavelet space.

Figure: Distributions for wavelet scale j = 4.
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Spherical wavelet-Bayesian string tension estimation

We take a Bayesian approach to string tension estimation.

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed each wavelet coefficient is independent.

The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

We take a Bayesian approach to string tension estimation.

Perform Bayesian string tension estimation in wavelet space, where the CMB and string
distributions are very different.

For each wavelet coefficient the likelihood is given by

P(Wd
jρ |Gµ) = P(Ws

jρ + Wc
jρ |Gµ) =

∫
R

dWs
jρ Pc

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ |Gµ) .

The overall likelihood of the data is given by

P(Wd |Gµ) =
∏
j,ρ

P(Wd
jρ |Gµ) ,

where we have assumed each wavelet coefficient is independent.

The wavelet coefficients are not independent but to incorporate the covariance of wavelet
coefficients would be computationally infeasible.

Instead, we compute the correlation length of wavelet coefficients, and only fold into the
likelihood calculation wavelet coefficients that are at least a correlation length apart.

Empirically we have found this approach to work well.
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 9 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 8 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 7 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 6 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 5 × 10−7).
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Spherical wavelet-Bayesian string tension estimation

We compute the string tension posterior P(Gµ |Wd) by Bayes theorem:

P(Gµ |Wd
) =

P(Wd |Gµ) P(Gµ)

P(Wd)
∝ P(Wd |Gµ) P(Gµ) .

Figure: Posterior distribution of the string tension (true Gµ = 4 × 10−7).
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Bayesian evidence for strings

Compute Bayesian evidences to compare the string model Ms discussed so far to the
alternative model Mc that the observed data is comprised of just a CMB contribution.

The Bayesian evidence of the string model is given by

Es
= P(Wd |Ms

) =

∫
R

d(Gµ) P(Wd |Gµ) P(Gµ) .

The Bayesian evidence of the CMB model is given by

Ec
= P(Wd |Mc

) =
∏
j,ρ

Pc
j (Wd

jρ) .

Compute the Bayes factor to determine the preferred model:

∆ ln E = ln(Es
/Ec

) = ln Es − ln Ec
.

Table: Log-evidence differences for a particular simulation.

Gµ/10−7 2 3 4 5 6 7 8 9

∆lnE −278 −233 −164 −56 104 341 677 1132
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Recovering string maps

Our best inference of the wavelet coefficients of the underlying string map is encoded in the
posterior probability distribution P(Ws

jρ |W
d).

Estimate the wavelet coefficients of the string map from the mean of the posterior distribution:

Ws
jρ =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
)

=

∫
R

dWs
jρ Ws

jρ

∫
R

d(Gµ) P(Ws
jρ |W

d
,Gµ) P(Gµ |Wd

)

=

∫
R

d(Gµ) P(Gµ | d) Ws
jρ(Gµ) ,

where

Ws
jρ(Gµ) =

∫
R

dWs
jρ Ws

jρ P(Ws
jρ |W

d
jρ,Gµ)

=
1

P(Wd
jρ |Gµ)

∫
R

dWs
jρ Ws

jρ Pc
j (Wd

jρ − Ws
jρ) Ps

j (Ws
jρ |Gµ) .

Recover the string map from its wavelets (possible since the scale-discretised wavelet
transform on the sphere supports exact reconstruction).

Work in progress...
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Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code

Define translation and convolution operator on
the radial line.

Dilation performed in harmonic space.

The scale-discretised wavelet Ψ ∈ L2(B3, d3r) is
defined in harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the
identity:

4π
2`+ 1

(
|Φ`0p|2+

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.

Jason McEwen Cosmological Signal Processing



Cosmology Wavelets on sphere Strings Wavelets on ball CS RI Scale-discretised wavelets

Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code

Define translation and convolution operator on
the radial line.

Dilation performed in harmonic space.

The scale-discretised wavelet Ψ ∈ L2(B3, d3r) is
defined in harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the
identity:

4π
2`+ 1

(
|Φ`0p|2+

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.

Jason McEwen Cosmological Signal Processing



Cosmology Wavelets on sphere Strings Wavelets on ball CS RI Scale-discretised wavelets

Scale-discretised wavelets on the ball

Figure: Tiling of Fourier-Laguerre space.

Leistedt & JDM (2012)
Exact wavelets on the ball
FLAGLET code

Define translation and convolution operator on
the radial line.

Dilation performed in harmonic space.

The scale-discretised wavelet Ψ ∈ L2(B3, d3r) is
defined in harmonic space:

Ψ
jj′
`mp ≡

√
2`+ 1

4π
κλ

(
`

λj

)
κν

(
p

ν j′

)
δm0.

Construct wavelets to satisfy a resolution of the
identity:

4π
2`+ 1
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|Φ`0p|2+

J∑
j=J0

J′∑
j′=J′0

|Ψjj′
`0p|

2

)
= 1, ∀`, p.
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Scale-discretised wavelets on the ball

(a) (j, j′) = (4, 5) (b) (j, j′) = (4, 6)

(c) (j, j′) = (5, 5) (d) (j, j′) = (5, 6)

Figure: Scale-discretised wavelets on the ball.
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Scale-discretised wavelets on the ball

The scale-discretised wavelet transform is given by the usual projection onto each wavelet:

WΨjj′
(r) ≡ (f ?Ψ

jj′
)(r) = 〈f |TrRωΨ

jj′ 〉 .

The original function may be recovered exactly in practice from the wavelet (and scaling)
coefficients:

f (r) =

∫
B3

d3r′WΦ
(r′)(TrRωΦ)(r′) +

J∑
j=J0

J′∑
j′=J′0

∫
B3

d3r′WΨjj′
(r′)(TrRωΨ

jj′
)(r′) .
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Scale-discretised wavelet denoising on the ball

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=17dB)

Figure: Denoising of a seismological Earth model.

(a) Ground truth (b) Noise (c) Noisy (SNR=5dB) (d) Denoised (SNR=11dB)

Figure: Denoising of an N-body simulation.
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Codes for scale-discretised wavelet on the ball

FLAG code
Exact wavelets on the ball
Leistedt & JDM (2012)

C, Matlab, IDL, Java

Exact Fourier-LAGuerre transform on the ball

FLAGLET code
Exact wavelets on the ball
Leistedt & JDM (2012)

C, Matlab, IDL, Java

Exact (Fourier-LAGuerre) wavelets on the ball – coined flaglets!

All codes available from: http://www.jasonmcewen.org/
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Observational signatures
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Compressive/compressed sensing/sampling (CS)

“Nothing short of revolutionary.”
– National Science Foundation

Developed by Emmanuel Candes and David Donoho (and others)

Awards for Emmanuel Candes:
James H. Wilkinson Prize in 2005
Vasil A. Popov Prize in 2006 Alan T. Waterman Award in 2006
– National Science Foundation’s highest honour
George Polya Prize in 2010
ICIAM Collatz Prize in 2011

(a) Emmanuel Candes (b) David Donoho
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Compressive sensing

Next evolution of wavelet analysis – wavelets are a key ingredient.

The mystery of JPEG compression (discrete cosine transform; wavelet transform).

Move compression to the acquisition stage→ Compressive Sensing.

(a) Architecture (b) Scene (c) Recov. (20% meas.)

Figure: Single pixel camera
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Introduction to the theory of compressive sensing

Linear operator (linear algebra) representation of wavelet decomposition:

x(t) =
∑

i

αiΨi(t) → x =
∑

i

Ψiαi =

 |Ψ0
|

α0+

 |Ψ1
|

α1+· · · → x = Ψα

Linear operator (linear algebra) representation of measurement:

yi = 〈x,Φj〉 → y =

− Φ0 −
− Φ1 −

...

 x → y = Φx

Putting it together: y = Φx = ΦΨα

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients
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Introduction to the theory of compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

The solutions of the `0 and `1
problems are often the same.

[lecture NOTES] continued

can exactly recover K-sparse signals and
closely approximate compressible signals
with high probability using only
M ≥ cK log(N/K) iid Gaussian meas-
urements [1], [2]. This is a convex opti-
mization problem that conveniently
reduces to a linear program known as
basis pursuit [1], [2] whose computation-
al complexity is about O(N 3). Other,
related reconstruction algorithms are
proposed in [6] and [7].

DISCUSSION
The geometry of the compressive sensing
problem in RN helps visualize why !2
reconstruction fails to find the sparse
solution that can be identified by !1
reconstruction. The set of all K-sparse
vectors s in RN is a highly nonlinear
space consisting of all K-dimensional
hyperplanes that are aligned with the
coordinate axes as shown in Figure 2(a).
The translated null space H = N (") + s
is oriented at a random angle due to the
randomness in the matrix " as shown in
Figure 2(b). (In practice N, M, K " 3, so
any intuition based on three dimensions
may be misleading.) The !2 minimizer ̂s
from (4) is the point on H closest to the
origin. This point can be found by blow-
ing up a hypersphere (the !2 ball) until it
contacts H. Due to the random orienta-
tion of H, the closest point ̂s will live
away from the coordinate axes with high
probability and hence will be neither
sparse nor close to the correct answer s.
In contrast, the !1 ball in Figure 2(c) has
points aligned with the coordinate axes.
Therefore, when the !1 ball is blown up,
it will first contact the translated null
space H at a point near the coordinate
axes, which is precisely where the sparse
vector s is located.

While the focus here has been on dis-
crete-time signals x, compressive sensing
also applies to sparse or compressible
analog signals x(t) that can be represent-
ed or approximated using only K out of
N possible elements from a continuous
basis or dictionary {ψi(t)}N

i =1 . While
each ψi(t) may have large bandwidth
(and thus a high Nyquist rate), the signal
x(t) has only K degrees of freedom and
thus can be measured at a much lower
rate [8], [9].

PRACTICAL EXAMPLE
As a practical example, consider a sin-
gle-pixel, compressive digital camera
that directly acquires M random linear
measurements without first collecting
the N pixel values [10]. As illustrated in
Figure 3(a), the incident light-field cor-
responding to the desired image x is
reflected off a digital micromirror device
(DMD) consisting of an array of N tiny
mirrors. (DMDs are present in many
computer projectors and projection tele-
visions.) The reflected light is then col-
lected by a second lens and focused onto
a single photodiode (the single pixel).

Each mirror can be independently ori-
ented either towards the photodiode
(corresponding to a 1) or away from the
photodiode (corresponding to a 0). To
collect measurements, a random number
generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.
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[FIG3] (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64 × 64 black-and-white image ̂x of the same ball (N = 4,096
pixels) recovered from M = 1,600 random measurements taken by the camera in (a).
The images in (b) and (c) are not meant to be aligned.
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Introduction to the theory of compressive sensing
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generator (RNG) sets the mirror orienta-
tions in a pseudorandom 1/0 pattern to
create the measurement vector φ j. The
voltage at the photodiode then equals yj,
which is the inner product between φ j
and the desired image x. The process is
repeated M times to obtain all of the
entries in y.

[FIG2] (a) The subspaces containing two sparse vectors in R3 lie close to the
coordinate axes. (b) Visualization of the !2 minimization (5) that finds the non-
sparse point-of-contact ̂s between the !2 ball (hypersphere, in red) and the
translated measurement matrix null space (in green). (c) Visualization of the !1
minimization solution that finds the sparse point-of-contact ̂s with high probability
thanks to the pointiness of the !1 ball.
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Introduction to the theory of compressive sensing

Ill-posed inverse problem:
y = Φx + n = ΦΨα + n.

Solve by imposing a regularising prior that the signal to be recovered is sparse in Ψ, i.e. solve
the following `0 optimisation problem:

α
?

= arg min
α
‖α‖0 such that ‖y− ΦΨα‖2 ≤ ε ,

where the signal is synthesising by x? = Ψα?.

Recall norms given by

‖α‖0 = no. non-zero elements ‖α‖1 =
∑

i

|αi| ‖α‖2 =
(∑

i

|αi|2
)1/2

Solving this problem is difficult (combinatorial).

Instead, solve the `1 optimisation problem (convex):

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε .

The solutions of the `0 and `1
problems are often the same.

[lecture NOTES] continued
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Introduction to the theory of compressive sensing

In the absence of noise, compressed sensing is exact!

Number of measurements required to achieve exact reconstruction is given by

M ≥ cµ2K log N ,

where K is the sparsity and N the dimensionality.

The coherence between the measurement and sparsity basis is given by

µ =
√

N max
i,j
|〈Ψi,Φj〉| .

3. Inverse Problems
Idea: Recover signal from available measurements

- little or no control over sensing modality )

coefficient
vector

nonzero
coefficients

Robust to noise.

Many new developments (e.g. analysis vs synthesis, cosparsity, structured sparsity) and new
applications.
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Next-generation of radio interferometry rapidly approaching

Square Kilometre Array (SKA) first observations
planned for 2019.

Many other pathfinder telescopes under
construction, e.g. LOFAR, ASKAP, MeerKAT,
MWA.

New modelling and imaging techniques required
to ensure the next-generation of interferometric
telescopes reach their full potential.

Figure: Artist impression of SKA dishes. [Credit: SKA Organisation]

(a) Dark-energy (b) GR (c) Cosmic magnetism (d) EoR (e) Exoplanets

Figure: SKA science goals. [Credit: SKA Organisation]
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Radio interferometry

The complex visibility measured by an interferometer is given by

y(u,w) =

∫
D2

A(l) xp(l) e−i2π[u·l+w (n(l)−1)] d2l
n(l)

=

∫
D2

A(l) xp(l) C(‖l‖2) e−i2πu·l d2l
n(l)

,

where l = (l,m), ‖l‖2 + n2(l) = 1 and the w-component C(‖l‖2) is given by

C(‖l‖2) ≡ ei2πw
(

1−
√

1−‖l‖2
)
.

Various assumptions are often made regarding the size of the field-of-view (FoV):
Small-field with ‖l‖2 w� 1 ⇒ C(‖l‖2) ' 1

Small-field with ‖l‖4 w� 1 ⇒ C(‖l‖2) ' eiπw‖l‖2

Wide-field ⇒ C(‖l‖2) = ei2πw
(

1−
√

1−‖l‖2
)

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Radio interferometric inverse problem

Consider the resulting ill-posed inverse problem posed in the discrete setting:

y = Φx + n ,

with:
incomplete Fourier measurements taken by the interferometer y;
linear measurement operator Φ;
underlying image x;
noise n.

Measurement operator Φ = M F C A incorporates:
primary beam A of the telescope;
w-component modulation C (responsible for the spread spectrum phenomenon);
Fourier transform F;
masking M which encodes the incomplete measurements taken by the interferometer.
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Interferometric imaging with compressed sensing

Solve by applying a prior on sparsity of the signal in a sparsifying basis Ψ or in the magnitude
of its gradient.

Recover image by solving:

Basis Pursuit denoising problem

α
?

= arg min
α
‖α‖1 such that ‖y− ΦΨα‖2 ≤ ε ,

where the image is synthesising by x? = Ψα?;

Total Variation (TV) denoising problem

x? = arg min
x
‖x‖TV such that ‖y− Φx‖2 ≤ ε .

`1-norm ‖ · ‖1 is given by the sum of the absolute values of the signal.

TV norm ‖ · ‖TV is given by the `1-norm of the gradient of the signal.

Tolerance ε is related to an estimate of the noise variance.
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SARA for RI imaging

Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, JDM & Wiaux 2012)

Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

Ψ =
1
√

q
[Ψ1,Ψ2, . . . ,Ψq],

thus Ψ ∈ RN×D with D = qN.

We consider the following bases:
Dirac, i.e. pixel basis
Haar wavelets (promotes gradient sparsity)
Daubechies wavelet bases two to eight.

⇒ concatenation of 9 bases

Promote average sparsity by solving the reweighted `1 analysis problem:

min
x̄∈RN

‖WΨ
T x̄‖1 subject to ‖y− Φx̄‖2 ≤ ε and x̄ ≥ 0 ,

where W ∈ RD×D is a diagonal matrix with positive weights.

Solve a sequence of reweighted `1 problems using the solution of the previous problem as the
inverse weights→ approximate the `0 problem.
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SARA for RI imaging
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Figure: Reconstruction example of M31 from 30% of visibilities.
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SARA for RI imaging
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Figure: Reconstruction example of 30Dor from 30% of visibilities.
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SARA for RI imaging
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Figure: Reconstruction fidelity vs visibility coverage.
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Future work

Now that the effectiveness of these techniques has been demonstrated, it is of paramount
importance to adapt them to realistic interferometric configurations.

Continuous visibility coverage→ incorporate a gridding operator in the measurement
operator.

Visibility coverage due to real interferometric observing strategies.

Study the spread spectrum phenomenon due to wide fields of view in the presence of
varying w (using the w-projection algorithm).

Study the spread spectrum phenomenon in the presence of other direction dependent effects.

Develop a new code in a low-level programming language (e.g. C) to go to big data-sets of
real interferometric observations.
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