Cheap deep learning for photometric Supernova classification

Jason McEwen (MSSL), Ofer Lahav (P&A), Denise Gorse (Computer Science)

University College London (UCL)

UCL Data Intensive Science CDT Research Festival, 9 June 2017

・ロト ・ 日本・ ・ 日本・

Cosmic evolution and accelerated expansion

Artist impression of Supernova explosion Thermonuclear explosion or core collapse

Jason McEwen, Ofer Lahav, Denise Gorse

Spectroscopic Supernova classification

Jason McEwen, Ofer Lahav, Denise Gorse

SN classification

э

Photometric Supernova classification

Jason McEwen, Ofer Lahav, Denise Gorse SN classification

æ

< ∃→

3 ×

Photometric Supernova classification

- Photometric Supernova classification by machine learning (Lochner, McEwen, Peiris, Lahav & Winter 2016)
- Go beyond single techniques to study classes.

- Integrate physics into machine learning (scale and dilation invariance).
- Building on foundations of deep learning.

< 🗇 🕨

Importance of representative training data

Figure: Area under ROC curve with and without representative training

Representativeness of training data

Figure: Training (green) vs test (blue) data

э

< 17 b

Data augmentation

Figure: Resampling Gaussian process. [Credit: Robert Schuhmann]

Jason McEwen, Ofer Lahav, Denise Gorse

SN classification

∃ >