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Cosmic evolution and accelerated expansion
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Artist impression of Supernova explosion
Thermonuclear explosion or core collapse
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Spectroscopic Supernova classification

Figure: Spectroscopic observations
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Photometric Supernova classification

Figure: Photometric observations
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Photometric Supernova classification

Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

Go beyond single techniques to study classes.

Feature selection

1) Template       
     -tting  

2) General light curve   
parameterisations

3) Wavelets

So far, we've identi-ed three promising approaches:

Model independence

(a) Templates

PS1 SN IIP Light Curves 5
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These parameters have the following definitions and
interpretations. The time parameters are defined where
t is the MJD epoch of an observation, t0 is the epoch of
explosion, t1 is the rest frame duration of the power law
rise phase, tp is the duration of the exponential rise phase
(ending at peak flux), t2 is the duration of the falling
component of the plateau phase, and td is the duration of
the transitional phase. The flux parameters are defined
such that M1 is the flux at the transition from the power
law to the exponential rise phases, Mp is the peak flux,
M2 is the flux at the end of the plateau phase, and Md

is the flux at the transition to the Co decay-dominated
phase. The rate parameters are defined such that ↵ is the
power law rise slope, �1 is the exponential rate constant
during the rising phase of the plateau, �2 is the rate con-
stant during the declining phase of the plateau, �dN is the
exponential decline rate of the transition phase following
the plateau, and �dC is the exponential decay constant
corresponding to 56Co to 56Fe decay. Each parameter is
defined independently for each photometric filter, with
the exception of t0. For numerical convenience, we de-
fine l in arbitrary scaled units relative to the absolute
magnitude M , such that M = �2.5 log10(107 ⇥ l).

Note that, in order for the light curve model to be con-
tinuous, not all of the parameters may be independent.
In particular, for each filter,

M1 = Mp/ exp(�1tp) (2)

M2 = Mp/ exp(��2t2) (3)

Md = M2/ exp(��dN td) (4)

Furthermore, we note that the post-peak decay rate �2

is directly related to the quantity �m15, the decline in
magnitudes of the light curve in the 15 days following
peak:

�m15 =
15 ⇥ 2.5

loge 10
�2 ⇠ 16.3 �2 (5)

Our model is similar to the linear segmented light curve
fitting approach of e.g. Patat et al. (1993), but (as we
will discuss in Section 3.2) our fitting methodology for
the knot properties is fully probabilistic rather than man-
ual. We prefer this piecewise analytic formulation to the

Figure 4. Schematic illustration of the 5-component SN II light
curve model defined in Equation 1. The gray vertical lines denote
the duration (tx) between epochs of transition between the piece-
wise components of the model. The background level (Yb) and
turnover fluxes (Mx) are marked and labeled (red points). The
power law (↵) and exponential (�x) rate constant for each phase
are labeled adjacent to each light curve segment.

additive components model used by e.g. Olivares (2008)
because it will in principal have weaker parameter inter-
actions, therefore reducing the posterior curvature and
increasing the e�ciency of Markov Chain Monte Carlo
methods for sampling from the posterior. While this pa-
rameterization is designed to capture the phenomenology
of Type IIP SNe, it is su�ciently flexible that reasonably
descriptive fits are obtained to the light curves of other
Type II SN light curves (e.g. SNe IIn and IIb).

3.2. Fitting methodology

We estimate the posterior distributions of these model
parameters using a Markov Chain Monte Carlo (MCMC)
method. We employ the C++ library Stan (Stan De-
velopment Team 2013), which implements the adaptive
Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler
of Ho↵man & Gelman (In press). For each multi-band
SN light curve, we use Stan to return 1000 samples (250
samples each from 4 independent MCMC chains) from
the posterior distribution of the model.16

In addition to the light curve parameterization outlined
in Section 3, our Stan model includes certain features
representing the data acquisition process. To account
for uncertainty in the PS1 background template subtrac-
tions, we fit for the background level in each filter using
an independent set of luminosity parameters, Yb[F ], and
an intrinsic model variance, V [F ]. We pre-compute K-
correction curves for the redshift of each object in our
sample (see Section 2.3), and apply them to the model
during the likelihood calculation using the phases corre-
sponding to the sampled explosion date at each step in
the MCMC chain.

We employ weakly informative priors (see e.g. Gelman
et al. 2008) to regularize the fitted models to the char-
acteristic SN IIP light curve shape. These prior distri-

16 The full Stan code for our statistical model is discussed in
Appendix A.

(b) Generic parameterisations

3) Wavelets
We decompose the light curve into wavelets and then apply PCA to 
select the most important wavelet coe=cients from the training set

Gaussian process -t

Wavelet decomposition

PCA

(c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)

Integrate physics into machine learning (scale and dilation invariance).

Building on foundations of deep learning.
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Importance of representative training data
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Figure: Area under ROC curve with and without representative training
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Representativeness of training data

Figure: Training (green) vs test (blue) data
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Data augmentation

Figure: Resampling Gaussian process. [Credit: Robert Schuhmann]
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