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Large-scale structure (LSS) of the Universe
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Observations of galaxies tracing large-scale structure (LSS)

Credit: SDSS
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Observations of cosmic microwave background (CMB)

Credit: WMAP
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CMB power spectrum
Theory and observational data

Credit: Planck
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Cosmic evolution of our Universe

1a

t =10-33 secs
inflation...?

380,000 
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13.7 
billion yrs

...but what is the physics of inflation?

Inflation: accelerated super-expansion; 

generates cosmic structure via quantum 
fluctuations

Big Bang

Cosmic Microwave Background (CMB)
t ∼ 400 thousand years

Epoch of Reionization (EoR)
t ∼ 400 million years

Large Scale Structure (LSS)
t ∼ 14 billion years
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Content of the Universe

Credit: Planck
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Unanswered fundamental questions
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ESA Euclid satellite

Credit: Euclid
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Euclid sky coverage
Switch on

Credit: Tom Kitching
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Euclid sky coverage
2 weeks

2 weeks!

Credit: Tom Kitching
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Euclid sky coverage
6 months

6 months!

Credit: Tom Kitching
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Euclid sky coverage
1 year

1 year!

Credit: Tom Kitching
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Euclid sky coverage
5 years
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Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge
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Cosmostatistics & Cosmoinformatics
Closing the loop

Cosmology Statistics / Mathematics

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

UCL won bid to host STFC’s first CDT.
Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/

Focused on Data Intensive Science (DIS).

Aims:

Train next generation of leaders in the field of DIS (in both academic and industry).

Promote development and application of novel DIS techniques.

Promote knowledge transfer:

between academic fields;

between non-academic and academic organisations.

Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

Centre for Doctoral Training in 
Data Intensive Science

Tim Scanlon and Jason McEwen
Directors of Research

(19.8% mean absolute improvement in V5, 27% mean abso-
lute improvement in contralateral lung V5), heart (14.2%
mean absolute improvement in heart V40), esophagus
(6.8% mean absolute improvement in esophageal V55),

and spinal cord (9.5 Gy mean absolute improvement in spinal
cord maximal dose) than IMRT did (Table 1).

More importantly, IMPT allowed radiation dose escalation
from 63 Gy up to 83.5 Gy, with a mean MTD of 74 Gy in this

Fig. 2. Comparison between IMRT and IMPT_MTD. (A) Dose distributions for the IMRT plan at 63 Gy (left) and
IMPT_MTD plan at the MTD of 80 Gy (right). Each line delineates the PTV. Of note is that the esophagus was overlapped
by the CTV and PTV for this patient, whereas the IMPT_MTD plan was able to reduce the esophageal dose to less than 80
Gy. (B) DVHs for the IMRT plan (squares) and IMPT_MTD plan (triangles). Ips., ipsilateral; Con., contralateral.

Reduced dose and individualized radical RT by IMPT d X. ZHANG et al. 361

Jason McEwen Big Data in Cosmology (Extra)

https://www.hep.ucl.ac.uk/cdt-dis/


Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

UCL won bid to host STFC’s first CDT.
Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/

Focused on Data Intensive Science (DIS).

Aims:

Train next generation of leaders in the field of DIS (in both academic and industry).

Promote development and application of novel DIS techniques.

Promote knowledge transfer:

between academic fields;

between non-academic and academic organisations.

Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

Centre for Doctoral Training in 
Data Intensive Science

Tim Scanlon and Jason McEwen
Directors of Research

(19.8% mean absolute improvement in V5, 27% mean abso-
lute improvement in contralateral lung V5), heart (14.2%
mean absolute improvement in heart V40), esophagus
(6.8% mean absolute improvement in esophageal V55),

and spinal cord (9.5 Gy mean absolute improvement in spinal
cord maximal dose) than IMRT did (Table 1).

More importantly, IMPT allowed radiation dose escalation
from 63 Gy up to 83.5 Gy, with a mean MTD of 74 Gy in this

Fig. 2. Comparison between IMRT and IMPT_MTD. (A) Dose distributions for the IMRT plan at 63 Gy (left) and
IMPT_MTD plan at the MTD of 80 Gy (right). Each line delineates the PTV. Of note is that the esophagus was overlapped
by the CTV and PTV for this patient, whereas the IMPT_MTD plan was able to reduce the esophageal dose to less than 80
Gy. (B) DVHs for the IMRT plan (squares) and IMPT_MTD plan (triangles). Ips., ipsilateral; Con., contralateral.

Reduced dose and individualized radical RT by IMPT d X. ZHANG et al. 361

Jason McEwen Big Data in Cosmology (Extra)

https://www.hep.ucl.ac.uk/cdt-dis/


Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

UCL won bid to host STFC’s first CDT.
Learn more at out temporary website: https://www.hep.ucl.ac.uk/cdt-dis/

Focused on Data Intensive Science (DIS).

Aims:

Train next generation of leaders in the field of DIS (in both academic and industry).

Promote development and application of novel DIS techniques.

Promote knowledge transfer:

between academic fields;

between non-academic and academic organisations.

Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

Centre for Doctoral Training in 
Data Intensive Science

Tim Scanlon and Jason McEwen
Directors of Research

(19.8% mean absolute improvement in V5, 27% mean abso-
lute improvement in contralateral lung V5), heart (14.2%
mean absolute improvement in heart V40), esophagus
(6.8% mean absolute improvement in esophageal V55),

and spinal cord (9.5 Gy mean absolute improvement in spinal
cord maximal dose) than IMRT did (Table 1).

More importantly, IMPT allowed radiation dose escalation
from 63 Gy up to 83.5 Gy, with a mean MTD of 74 Gy in this

Fig. 2. Comparison between IMRT and IMPT_MTD. (A) Dose distributions for the IMRT plan at 63 Gy (left) and
IMPT_MTD plan at the MTD of 80 Gy (right). Each line delineates the PTV. Of note is that the esophagus was overlapped
by the CTV and PTV for this patient, whereas the IMPT_MTD plan was able to reduce the esophageal dose to less than 80
Gy. (B) DVHs for the IMRT plan (squares) and IMPT_MTD plan (triangles). Ips., ipsilateral; Con., contralateral.

Reduced dose and individualized radical RT by IMPT d X. ZHANG et al. 361

Jason McEwen Big Data in Cosmology (Extra)

https://www.hep.ucl.ac.uk/cdt-dis/


Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)
Who we are CDT in DIS: Who We Are

Materials Screening 
Chamber

Particle Physics
Dpt. of Physics and 

Astronomy
(20 CDT Staff Members)

Atomic & Molecular 
Physics
Dpt. of Physics and Astronomy 
(2 CDT Staff Members)

Astrophysics
Dpt. of Physics and 
Astronomy
(20 CDT Staff Members)

Department of
Computer Science

(8 CDT Staff Members)

Aim to foster closer collaboration between these areas, to aid the development 
of novel DIS techniques or application to new areas

Department of
Electrical Engineering

(3 CDT Staff Members)

Department of
Statistical Science
(5 CDT Staff Members)

Department of
Mathematics
(9 CDT Staff Members)

Department of 
Space and Climate 

Science
(20 CDT Staff Members)

09/06/2017 4

Aim to foster closer collaboration between these areas to aid the development of novel
DIS techniques or applications to new areas.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)
Management team

CDT Management Team
Centre Co-Directors: Profs N. Konstantinidis & O. Lahav

Directors of Research: Drs J. McEwen & T. Scanlon

Directors of Training: Prof. J. Tennyson FRS, & C. Gryce

Admissions & Graduate Tutor: Prof. S. Viti

Partner Liaison & Placements Co-Ordinator: Dr J. Yates
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)
Industrial partners

• Provide input on training, six month internships, courses and projects

• Promote knowledge-transfer between
Ø Academic and non-academic organisations
Ø Between the partners

• Have been approached by more organisations since winning the bid
Ø UKAEA, Asos, GroupM, S&P, Illuminas and ASI

Partnership Program

IT Companies Public Sector 
Organisations

Non-Academic 
Research 

Organisations 

Public-Private 
Partnerships

Data Intensive 
Companies

09/06/2017 5

Students will undertake 6 month internships with partners on a DIS project

Promote knowledge transfer between academic and non-academic organisations.

We’ve been approached by more organisations since winning the bid
(UKAEA, Asos, GroupM, S&P, Illuminas, ASI, . . . ).
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Outline

1 Bayesian inference

2 Computational harmonic analysis

3 Machine learning

4 Inverse problems
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Bayesian inference for parameter estimation
Case study: CMB

Figure: CMB Bayesian inference pipeline.
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Bayesian inference for model selection

Nested sampling (Skilling 2005).

MultiNest: multi-modal ellipsoidal sampling (Feroz & Hobson 2007; Feroz, Hobson & Bridges
2008).

PolyChord: multi-modal whitened slice sampling (Handley, Hobson & Lasenby 2015).

MULTINEST: efficient and robust Bayesian inference 3

(a) (b)

Figure 1. Cartoon illustrating (a) the posterior of a two dimensional prob-
lem; and (b) the transformed L(X) function where the prior volumes Xi

are associated with each likelihood Li.

function of X. Thus, if one can evaluate the likelihoods Li =
L(Xi), whereXi is a sequence of decreasing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 1, the evidence can be approximated
numerically using standard quadrature methods as a weighted sum

Z =
MX

i=1

Liwi. (7)

In the following we will use the simple trapezium rule, for which
the weights are given by wi = 1

2
(Xi−1 − Xi+1). An example of

a posterior in two dimensions and its associated function L(X) is
shown in Fig. 1.

The summation (Eq. 7) is performed as follows. The itera-
tion counter is first set to i = 0 and N ‘active’ (or ‘live’) sam-
ples are drawn from the full prior π(Θ) (which is often simply
the uniform distribution over the prior range), so the initial prior
volume is X0 = 1. The samples are then sorted in order of their
likelihood and the smallest (with likelihood L0) is removed from
the active set (hence becoming ‘inactive’) and replaced by a point
drawn from the prior subject to the constraint that the point has
a likelihood L > L0. The corresponding prior volume contained
within this iso-likelihood contour will be a random variable given
byX1 = t1X0, where t1 follows the distribution Pr(t) = NtN−1

(i.e. the probability distribution for the largest ofN samples drawn
uniformly from the interval [0, 1]). At each subsequent iteration i,
the removal of the lowest likelihood point Li in the active set, the
drawing of a replacement with L > Li and the reduction of the
corresponding prior volume Xi = tiXi−1 are repeated, until the
entire prior volume has been traversed. The algorithm thus travels
through nested shells of likelihood as the prior volume is reduced.
The mean and standard deviation of log t, which dominates the ge-
ometrical exploration, are E[log t] = −1/N and σ[log t] = 1/N .
Since each value of log t is independent, after i iterations the prior
volume will shrink down such that log Xi ≈ −(i ±

√
i)/N . Thus,

one takesXi = exp(−i/N).
The algorithm is terminated on determining the evidence to

some specified precision (we use 0.5 in log-evidence): at iteration
i, the largest evidence contribution that can be made by the remain-
ing portion of the posterior is ∆Zi = LmaxXi, where Lmax is
the maximum likelihood in the current set of active points. The
evidence estimate (Eq. 7) may then be refined by adding a final
increment from the set of N active points, which is given by

∆Z =

NX

j=1

LjwM+j , (8)

where wM+j = XM/N for all j. The final uncertainty on the cal-
culated evidence may be straightforwardly estimated from a single
run of the nested sampling algorithm by calculating the relative en-
tropy of the full sequence of samples (see FH08).

Once the evidence Z is found, posterior inferences can be eas-
ily generated using the full sequence of (inactive and active) points
generated in the nested sampling process. Each such point is simply
assigned the weight

pj =
Ljwj

Z ., (9)

where the sample index j runs from 1 to N = M + N , the total
number of sampled points. These samples can then be used to cal-
culate inferences of posterior parameters such as means, standard
deviations, covariances and so on, or to construct marginalised pos-
terior distributions.

4 ELLIPSOIDAL NESTED SAMPLING

The most challenging task in implementing the nested sampling
algorithm is drawing samples from the prior within the hard con-
straint L > Li at each iteration i. Employing a naive approach that
draws blindly from the prior would result in a steady decrease in
the acceptance rate of new samples with decreasing prior volume
(and increasing likelihood).

Ellipsoidal nested sampling (Mukherjee et al. 2006) tries to
overcome the above problem by approximating the iso-likelihood
contour L = Li by aD-dimensional ellipsoid determined from the
covariance matrix of the current set of active points. New points
are then selected from the prior within this ellipsoidal bound (usu-
ally enlarged slightly by some user-defined factor) until one is ob-
tained that has a likelihood exceeding that of the removed lowest-
likelihood point. In the limit that the ellipsoid coincides with the
true iso-likelihood contour, the acceptance rate tends to unity.

Ellipsoidal nested sampling as described above is efficient for
simple unimodal posterior distributions without pronounced degen-
eracies, but is not well suited to multimodal distributions. As advo-
cated by Shaw et al. (2007) and shown in Fig. 2, the sampling ef-
ficiency can be substantially improved by identifying distinct clus-
ters of active points that are well separated and constructing an in-
dividual (enlarged) ellipsoid bound for each cluster. In some prob-
lems, however, some modes of the posterior may exhibit a pro-
nounced curving degeneracy so that it more closely resembles a
(multi–dimensional) ‘banana’. Such features are problematic for all
sampling methods, including that of Shaw et al. (2007).

In FH08, we made several improvements to the sampling
method of Shaw et al. (2007), which significantly improved its effi-
ciency and robustness. Among these, we proposed a solution to the
above problem by partitioning the set of active points into as many
sub–clusters as possible to allow maximum flexibility in following
the degeneracy. These clusters are then enclosed in ellipsoids and
a new point is then drawn from the set of these ‘overlapping’ el-
lipsoids, correctly taking into account the overlaps. Although this
sub-clustering approach provides maximum efficiency for highly
degenerate distributions, it can result in lower efficiencies for rel-
atively simpler problems owing to the overlap between the ellip-
soids. Also, the factor by which each ellipsoid was enlarged was
chosen arbitrarily. Another problem with the our previous approach
was in separating modes with elongated curving degeneracies. We
now propose solutions to all these problems, along with some addi-
tional modifications to improve efficiency and robustness still fur-

c⃝ 2008 RAS, MNRAS 000, 1–14

(a) Nested sampling

6 F. Feroz, M.P. Hobson & M. Bridges

(a)

(b)

Figure 3. Illustrations of the ellipsoidal decompositions returned by Algo-
rithm 1: the points given as input are overlaid on the resulting ellipsoids.
1000 points were sampled uniformly from: (a) two non-intersecting ellip-
soids; and (b) a torus.

expect the ellipsoidal decomposition calculated at some earlier it-
eration to become less optimal. We therefore perform a full re-
partitioning of the active points using Algorithm 1 if F (S) ! h;
we typically use h = 1.1.

The approach outlined above allows maximum flexibility and
sampling efficiency by breaking up a posterior mode resembling
a Gaussian into relatively few ellipsoids, but a mode possesses a
pronounced curving degeneracy into a relatively large number of
small ‘overlapping’ ellipsoids. In Fig. 3 we show the results of ap-
plying Algorithm 1 to two different problems in three dimensions:
in (a) the iso-likelihood surface consists of two non-overlapping
ellipsoids, one of which contains correlations between the param-
eters; and in (b) the iso-likelihood surface is a torus. In each case,
1000 points were uniformly generated inside the iso-likelihood sur-
face are used as the starting set S in Algorithm 1. In case (a), Al-
gorithm 1 correctly partitions the point set in two non-overlapping

ellipsoids with F (S) = 1.1, while in case (b) the point set is parti-
tioned into 23 overlapping ellipsoids with F (S) = 1.2.

In our nested sampling application, it is possible that the el-
lipsoids found by Algorithm 1 might not enclose the entire iso-
likelihood contour, even though the sum of their volumes is con-
strained to exceed the prior volume X This is because the ellip-
soidal approximation to a region in the prior space might not be
perfect. It might therefore be desirable to sample from a region with
volume greater than the prior volume. This can easily be achieved
by using X/e as the desired minimum volume in Algorithm 1,
where X is the prior volume and e the desired sampling efficiency
(1/e is the enlargement factor). We also note that if the desire sam-
pling efficiency e is set to be greater than unity, then the prior can
be under-sampled. Indeed, setting e > 1 can be useful if one is not
interested in the evidence values, but wants only to have a general
idea of the posterior structure in relatively few likelihood evalua-
tions. We note that, regardless of the value of e, it is always en-
sured that the ellipsoids Ek enclosing the subsets Sk are always
the bounding ellipsoids.

5.3 Sampling from overlapping ellipsoids

Once the ellipsoidal bounds have been constructed at some iteration
of the nested sampling process, one must then draw a new point
uniformly from the union of these ellipsoids, many of which may be
overlapping. This is achieved using the method presented in FH08,
which is summarised below for completeness.

Suppose at iteration i of the nested sampling algorithm, one
hasK ellipsoids {Ek}. One ellipsoid is then chosen with probabil-
ity pk equal to its volume fraction

pk = V (Ek)/Vtot, (23)

where Vtot =
PK

k=1 V (Ek). Samples are then drawn uniformly
from the chosen ellipsoid until a sample is found for which the hard
constraint L > Li is satisfied, where Li is the lowest-likelihood
value among all the active points at that iteration. There is, of
course, a possibility that the chosen ellipsoid overlaps with one or
more other ellipsoids. In order to take an account of this possibil-
ity, we find the number of ellipsoids, ne, in which the sample lies
and only accept the sample with probability 1/ne. This provides a
consistent sampling procedure in all cases.

5.4 Decreasing the number of active points

For highly multimodal problems, the nested sampling algorithm
would require a large number N of active points to ensure that
all the modes are detected. This would consequently result in very
slow convergence of the algorithm. In such cases, it would be de-
sirable to decrease the number of active points as the algorithm
proceeds to higher likelihood levels, since the number of isolated
regions in the iso-likelihood surface is expected to decrease with in-
creasing likelihood. modes Fortunately, nested sampling does not
require the number of active points to remain constant, provided
the fraction by which the prior volume is decreased after each it-
eration is adjusted accordingly. Without knowing anything about
the posterior, we can use the largest evidence contribution that can
be made by the remaining portion of the posterior at the ith itera-
tion∆Zi = LmaxXi, as the guide in reducing the number of active
points by assuming that the change in∆Z is linear locally. We thus
set the number of active points Ni at the ith iteration to be

Ni = Ni−1 − Nmin
∆Zi−1 − ∆Zi

∆Zi − tol
, (24)

c⃝ 2008 RAS, MNRAS 000, 1–14

(b) Ellipsoidal sampling

Figure: Computing the marginalised likelihood (Bayesian evidence) [Credit: Feroz et al. 2008].
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Bayesian hierarchical models
Weak gravitational lensing

Figure: HBM for weak gravitational lensing (Alsing et al. 2015)
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Observations made on the celestial sphere
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Cosmic microwave background (CMB) on the celestial sphere

Credit: WMAP
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Wavelets on the sphere

Spin scale-discretised wavelet transform given by projection onto each wavelet
(McEwen et al. 2015; McEwen 2015; McEwen et al. 2013; Wiaux, McEwen et al. 2008):

W sΨj (ρ) = 〈sf, Rρ sΨj〉
projection

=

∫
S2

dΩ(θ, ϕ) sf(θ, ϕ) (Rρ sΨj)∗(θ, ϕ) .

(a) j = 3 (b) j = 4 (c) j = 5

Figure: Wavelets on sphere

Original function may be recovered exactly in practice from wavelet coefficients:

sf(ω) =
J∑
j=0

finite sum

∫
SO(3)

d%(ρ)W sΨj (ρ) (Rρ sΨj)(ω)

wavelet contribution

.
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Wavelets on the sphere
Localisation of Gaussian random fields

Wavelet localisation (McEwen et al. 2016)

Directional scale-discretised wavelets Ψ ∈ L2(S2), defined on the sphere S2 and centred on
the North pole, satisfy the localisation bound:

∣∣Ψ(j)(θ, ϕ)
∣∣ ≤ C

(j)
1(

1 + C
(j)
2 θ

)ξ
(there exist strictly positive constants C(j)

1 , C
(j)
2 ∈ R+

∗ for any ξ ∈ R+
∗ ).

Wavelet asymptotic uncorrelation (McEwen et al. 2016)

For Gaussian random fields on the sphere, directional scale-discretised wavelet coefficients
are asymptotically uncorrelated. The directional wavelet correlation satisfies the bound:

Ξ(jj′)(ρ1, ρ2) ≤ C
(j)
1(

1 + C
(j)
2 β

)ξ ,

where β ∈ [0, π) is an angular separation between Euler angles ρ1 and ρ2 (there exist strictly
positive constants C(j)

1 , C
(j)
2 ∈ R+

∗ for any ξ ∈ R+
∗ , ξ ≥ 2M , where M is the azimuthal band-limit

of the wavelet and
∣∣j − j′∣∣ < 2).
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Galaxy distribution tracing large-scale structure (LSS) on the 3D ball

Credit: SDSS
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Wavelets on the ball
Fourier-LAGuerre wavelets (flaglets)

Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet
(Leistedt & McEwen 2012):

W sΨjj
′
(r, ρ) = 〈sf, T(r,ρ) sΨjj

′ 〉
projection

=

∫
B3

d3r sf(r)(T(r,ρ) sΨjj
′
)∗(r) .

Original function may be recovered exactly in practice from wavelet coefficients:

sf(r) =
∑
j j′

finite sum

∫
SO(3)

d%(ρ)

∫
R+

dr W sΨjj
′
(r, ρ)(T(r,ρ) sΨjj

′
)(r)

wavelet contribution

.

Opens up wavelet analyses of galaxy distribution tracing the large-scale structure (LSS).
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Cosmic strings
Problem

+
Input Strings Background

Recovered Strings Strings + Background
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Cosmic strings
Typical amplitude

(a) CMB (b) CMB with embedded string contribution

Figure: CMB simulation with string contribution embedded (Gµ = 5× 10−7).
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Cosmic strings
Wavelet representation
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Cosmic strings
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Cosmic strings
Wavelet representation
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Cosmic strings
Hierarchical Bayesian model

Wd

Wss
Ψ̃
−1

Wg g
Ψ̃

C` N`

G Gaussian

νj υjGµ

G Generalised Gaussian

j ∈ {0, ..., J}

Figure: Hierarchical Bayesian model (McEwen et al. 2016)
-250 250µK -500 500µK
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Cosmic strings
Bayesian inference
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Figure: Posterior

Table: Bayes factors

Gµ truth Bayes factor
/ 10−7 [loge]

10.0 51.4
7.00 12.5
5.00 1.19
3.00 −3.87

-250 250µK(a) Ground truth -250 250µK(b) Recovered

Figure: String map
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Outline

1 Bayesian inference

2 Computational harmonic analysis

3 Machine learning

4 Inverse problems
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Galaxy morphology classification

Credit: Wikipedia
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Galaxy morphology classification

Galaxy classification with neural networks pioneered by Lahav in 1990s
(Lahav, Naim et al. 1995; Banerji, Lahav et al. 2009).

Galaxy Zoo to crowdsource galaxy classification → ∼50 million classifications / year.

For upcoming surveys with ∼1.5 billion galaxies, would take 30 years!
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Galaxy morphology classification

Use Galazy Zoo classification as training data (Lahav, Olhede, et al., ongoing).

Figure: Crowdsourcing and machine learning for galaxy classification [Credit: Lahav]
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Photometric redshift estimation

Photometric redshift estimation with neural networks pioneered by Lahav in 2000s
(Collister & Lahav 2004; Sadeh, Abdalla & Lahav 2016).

Figure: Photometric redshift estimation [Credit: Lahav]
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Artist impression of Supernova explosion
Thermonuclear explosion or core collapse
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Supernova classification
Spectroscopic classification

Figure: Spectroscopic observations
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Supernova classification
Photometric classification

Figure: Photometric observations.
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Supernova classification
Photometric classification

Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

Go beyond single techniques to study classes.

Feature selection

1) Template       
     -tting  

2) General light curve   
parameterisations

3) Wavelets

So far, we've identi-ed three promising approaches:

Model independence

(a) Templates

PS1 SN IIP Light Curves 5

l[t, . . .] =

8
>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

0,

if t < t0
M1 (t/t1)

↵,

if t0 < t < t1
M1 exp(�1(t � t1)),

if t1 < t < tp
Mp exp(��2(t � (tp + t1))),

if tp < t < t2
M2 exp(��dN (t � (t2 + tp + t1))),

if t2 < t < td
Md exp(��dC(t�

(td + t2 + tp + t1))),

if td < t

(1)

These parameters have the following definitions and
interpretations. The time parameters are defined where
t is the MJD epoch of an observation, t0 is the epoch of
explosion, t1 is the rest frame duration of the power law
rise phase, tp is the duration of the exponential rise phase
(ending at peak flux), t2 is the duration of the falling
component of the plateau phase, and td is the duration of
the transitional phase. The flux parameters are defined
such that M1 is the flux at the transition from the power
law to the exponential rise phases, Mp is the peak flux,
M2 is the flux at the end of the plateau phase, and Md

is the flux at the transition to the Co decay-dominated
phase. The rate parameters are defined such that ↵ is the
power law rise slope, �1 is the exponential rate constant
during the rising phase of the plateau, �2 is the rate con-
stant during the declining phase of the plateau, �dN is the
exponential decline rate of the transition phase following
the plateau, and �dC is the exponential decay constant
corresponding to 56Co to 56Fe decay. Each parameter is
defined independently for each photometric filter, with
the exception of t0. For numerical convenience, we de-
fine l in arbitrary scaled units relative to the absolute
magnitude M , such that M = �2.5 log10(107 ⇥ l).

Note that, in order for the light curve model to be con-
tinuous, not all of the parameters may be independent.
In particular, for each filter,

M1 = Mp/ exp(�1tp) (2)

M2 = Mp/ exp(��2t2) (3)

Md = M2/ exp(��dN td) (4)

Furthermore, we note that the post-peak decay rate �2

is directly related to the quantity �m15, the decline in
magnitudes of the light curve in the 15 days following
peak:

�m15 =
15 ⇥ 2.5

loge 10
�2 ⇠ 16.3 �2 (5)

Our model is similar to the linear segmented light curve
fitting approach of e.g. Patat et al. (1993), but (as we
will discuss in Section 3.2) our fitting methodology for
the knot properties is fully probabilistic rather than man-
ual. We prefer this piecewise analytic formulation to the

Figure 4. Schematic illustration of the 5-component SN II light
curve model defined in Equation 1. The gray vertical lines denote
the duration (tx) between epochs of transition between the piece-
wise components of the model. The background level (Yb) and
turnover fluxes (Mx) are marked and labeled (red points). The
power law (↵) and exponential (�x) rate constant for each phase
are labeled adjacent to each light curve segment.

additive components model used by e.g. Olivares (2008)
because it will in principal have weaker parameter inter-
actions, therefore reducing the posterior curvature and
increasing the e�ciency of Markov Chain Monte Carlo
methods for sampling from the posterior. While this pa-
rameterization is designed to capture the phenomenology
of Type IIP SNe, it is su�ciently flexible that reasonably
descriptive fits are obtained to the light curves of other
Type II SN light curves (e.g. SNe IIn and IIb).

3.2. Fitting methodology

We estimate the posterior distributions of these model
parameters using a Markov Chain Monte Carlo (MCMC)
method. We employ the C++ library Stan (Stan De-
velopment Team 2013), which implements the adaptive
Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler
of Ho↵man & Gelman (In press). For each multi-band
SN light curve, we use Stan to return 1000 samples (250
samples each from 4 independent MCMC chains) from
the posterior distribution of the model.16

In addition to the light curve parameterization outlined
in Section 3, our Stan model includes certain features
representing the data acquisition process. To account
for uncertainty in the PS1 background template subtrac-
tions, we fit for the background level in each filter using
an independent set of luminosity parameters, Yb[F ], and
an intrinsic model variance, V [F ]. We pre-compute K-
correction curves for the redshift of each object in our
sample (see Section 2.3), and apply them to the model
during the likelihood calculation using the phases corre-
sponding to the sampled explosion date at each step in
the MCMC chain.

We employ weakly informative priors (see e.g. Gelman
et al. 2008) to regularize the fitted models to the char-
acteristic SN IIP light curve shape. These prior distri-

16 The full Stan code for our statistical model is discussed in
Appendix A.

(b) Generic parameterisations

3) Wavelets
We decompose the light curve into wavelets and then apply PCA to 
select the most important wavelet coe=cients from the training set

Gaussian process -t

Wavelet decomposition

PCA

(c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)

Integrate physics into machine learning (scale and dilation invariance).
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Supernova classification
Representativeness of training data

Figure: Training (green) vs test (blue) data
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Outline

1 Bayesian inference

2 Computational harmonic analysis

3 Machine learning

4 Inverse problems
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Synthesis and analysis frameworks

Sparse synthesis regularisation problem:

xsynthesis = Ψ× arg min
α

[∥∥y −ΦΨα
∥∥2

2
+ λ

∥∥α∥∥
1

]
Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: x = Ψα .

Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = arg min
x

[∥∥y −Φx
∥∥2

2
+ λ

∥∥Ψ†x
∥∥

1

]
Analysis framework

For orthogonal bases the two approaches are identical but otherwise very different.

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).
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Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d’Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux, Kartik, d’Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.
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Imaging observations from the VLA and ATCA with PURIFY

(a) NRAO Very Large Array (VLA)

(b) Australia Telescope Compact Array (ATCA)

Figure: Radio interferometric telescopes considered
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Proximal MCMC sampling and uncertainty quantification

See poster by Xiaohao Cai
(Cai, Pereyra & McEwen, 2017a, in prep.; Cai, Pereyra & McEwen, 2017b, in prep.)

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: P(x|y)

HPD credible regions: Cα

Point estimator: x?

Local credible
intervals: (ξ−, ξ+)

Hypothesis testing
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Sampling the full posterior distribution
Markov Chain Monte Carlo (MCMC)

Sample full posterior distribution P(x |y).

MCMC methods for high-dimensional problems (like interferometric imaging):

Gibbs sampling (sample from conditional distributions)

Hamiltonian MC (HMC) sampling (exploit gradients)

Metropolis adjusted Langevin algorithm (MALA) sampling (exploit gradients)

Require MCMC approach to support sparse priors, which shown to be highly effective.
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MCMC sampling with gradients
Langevin dynamics

Consider posteriors of the following form (and more compact notation):

P(x |y) = π(x)

Posterior

∝ exp
(
− g(x)

Smooth

)

If g(x) differentiable can adopt MALA (Langevin dynamics) or HMC (Hamiltonian
dynamics) MCMC methods.

MALA based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so cannot support sparse priors.
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MCMC sampling with gradients
Langevin dynamics
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(
− g(x)
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)
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Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MALA
MCMC sampling

Proximal Metropolis adjusted Langevin algorithm (P-MALA)
Pereyra (2016a)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
− g(x)

C
on

ve
x )

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau approximation to π:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log πλ(x) = (proxλg (x)− x)/λ

+
√
δw

(m)
.

Metropolis-Hastings accept-reject step.
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Proximal MALA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ḡ (x) = argmin

u∈RN

{
µ‖Ψ†u‖1 +

‖y −Φu‖22
2σ2

+
‖u− x‖22

δ

}
.

Taylor expansion at point x: ‖y −Φu‖22 ≈ ‖y −Φx‖22 + 2(u− x)>Φ†(Φx− y).

Then proximity operator approximated by

prox
δ/2
ḡ (x) ≈ prox

δ/2

f̄1

(
x− δΦ†(Φx− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ḡ (x) ≈ v̄ + Ψ

(
softµδ/2(Ψ†v̄)−Ψ†v̄)

)
, where v̄ = x− δΦ†(Φx− y)/2σ2.
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MYULA
MCMC sampling

Moreau-Yosida unadjusted Langevin algorithm (MYULA)
Durmus, Moulines & Pereyra (2016)

Consider log-convex posteriors: P(x |y) = π(x) ∝ exp
(
−g(x)

)
, where

g(x) = f1(x)

C
on

ve
x

+ f2(x)

Sm
oo

th

.

Langevin diffusion process L(t), with π as stationary distribution (W Brownian motion):

dL(t) =
1

2
∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0 .

Euler discretisation and apply Moreau-Yosida approximation to f1:

l
(m+1)

= l
(m)

+
δ

2
∇ log π(l

(m)
)

∇ log π(x) ≈
(
proxλf1

(x)− x
)
/λ−∇f2(x)

+
√
δw

(m)
.

No Metropolis-Hastings accept-reject step. Converges geometrically fast, where bias can be made
arbitrarily small. To achieve precision target ε requires:

Worst case: order N5 log2(ε−1)ε−2 iterations.
Strong convexity worst case: order N log(N) log2(ε−1)ε−2 iterations.
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MYULA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̄1
(x) = x+ Ψ

(
softµδ/2(Ψ†x)−Ψ†x)

)
.
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Numerical experiments
MYULA with analysis model

(a) Ground truth

(b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: Cygnus A
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: HII region of M31
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: W28 Supernova remnant
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Numerical experiments
MYULA with analysis model

(a) Ground truth (b) Dirty image (c) Mean recovered image (d) Credible interval length

Figure: 3C288
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Proximal MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: P(x|y)

HPD credible regions: Cα

Point estimator: x?

Local credible
intervals: (ξ−, ξ+)

Hypothesis testing
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MAP estimation and uncertainty quantification

Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C̃α

Approximate local credible
intervals: (ξ̃−, ξ̃+)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior isosurface: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b). Follows by
recent results from information theory, related to a concentration property of log-concave
random vectors.

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior isosurface: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b). Follows by
recent results from information theory, related to a concentration property of log-concave
random vectors.

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Approximate Bayesian credible regions for MAP estimation
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen, in prep.)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

where

x
′

= x
?
(I − ζ) + ξζ .
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Numerical experiments
P
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(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure: Local credible interval computation for M31 for the analysis model.
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Numerical experiments
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(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure: Local credible interval computation for Cygnus A for the analysis model.
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Numerical experiments
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(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure: Local credible interval computation for W28 for the analysis model.
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Numerical experiments
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(a) point estimators
(b) local credible interval (c) local credible interval (d) local credible interval
grid size 10× 10 pixels grid size 20× 20 pixels grid size 30× 30 pixels

Figure: Local credible interval computation for 3C288 for the analysis model.
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Numerical experiments
Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image Method CPU time
Analysis Synthesis

Cygnus A
P-MALA 2274 1762
MYULA 1056 942
MAP .07 .04

M31
P-MALA 1307 944
MYULA 618 581
MAP .03 .02

W28
P-MALA 1122 879
MYULA 646 598
MAP .06 .04

3C288
P-MALA 1144 881
MYULA 607 538
MAP .03 .02
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Summary
Closing the DIS loop

Cosmology Statistics / Mathematics

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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Extra Slides

Wavelets on the sphere Wavelets on the ball

E/B separation Cosmic strings

Analysis vs synthesis Bayesian interpretations

Distribution and parallelisation PURIFY reconstructions

Proximal MCMC Hypothesis testing
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Wavelets on the sphere

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Observations made on the celestial sphere
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Wavelets on the sphere
How can we construct sparsifying transforms?

Figure: Wavelet scaling and shifting [Credit: Gao & Yan (2010)]
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Wavelets on the sphere
Dilation and translation

Construct wavelet atoms from affine transformations (dilation, translation) on the sphere of
a mother wavelet.

The natural extension of translations to the sphere are rotations. Rotation of a function f
on the sphere is defined by

[R(ρ)f ](ω) = f(R−1
ρ ω), ω = (θ, ϕ) ∈ S2, ρ = (α, β, γ) ∈ SO(3) .

How define dilation on the sphere?

Stereographic projection
Antoine & Vandergheynst (1999), Wiaux et al. (2005)

Harmonic dilation wavelets
McEwen et al. (2006), Sanz et al. (2006)

Isotropic undecimated wavelets
Starck et al. (2005), Starck et al. (2009)

Needlets
Narcowich et al. (2006), Baldi et al. (2009), Marinucci et al. (2008), Geller et al. (2008)

Scale-discretised wavelets
Wiaux, McEwen et al. (2008), McEwen et al. (2003), McEwen et al. (2015)

PSfrag replacements

x

y

z

r = 2 tan( θ
2
)

θ

φ

θ
2

ω

x

North pole

South pole

Figure: Stereographic projection
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Wavelets on the sphere
Spin scale-discretised wavelet construction

Spin scale-discretised wavelet sΨj constructed in separable form in harmonic space:

sΨ
j
`m = κj(`) ζ`m .

Admissible wavelets constructed to satisfy a resolution of the identity:

|sΦ`0|2

scaling function

+
J∑
j=0

∑̀
m=−`

|sΨj`m|2

wavelet

= 1 , ∀` .
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Figure: Harmonic tiling on the sphere.

(a) Real(sΨj) (b) Imag(sΨj) (c) Abs(sΨj)

Figure: Spin scale-discretised wavelets on the sphere.
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Wavelets on the sphere
Fast algorithms, variations, and applications

Fast algorithms critical to scale to large observational data-sets
(McEwen et al. 2015; McEwen et al. 2013; Leistedt, McEwen et al. 2013; McEwen et al. 2007).

Variety of types:
Spin (McEwen et al. 2015)
Directional (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Curvelets (Chan, Leistedt, Kitching & McEwen 2016)
Ridgelets (McEwen 2016)
Steerable (McEwen et al. 2015; Wiaux, McEwen et al. 2008)
Morphological components (McEwen et al. 2008)

Wavelets ideally suited to cosmological analysis:

Physical processes are often manifest on particular physical scales but spatially localised.

Localised covariance structure of both theory and data.

Observations typically cannot be made over entire celestial sphere.

Prevalent CMB analysis technique.

Figure: Ridgelet
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Wavelets on the sphere
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Wavelets on the ball (flaglets)
Translation and convolution on the radial line

Construct translation and convolution on radial line by analogy with infinite line.

For the standard orthogonal basis φω(x) = expiωx translation of the basis functions
defined by shift of coordinates:

(T R
u φω)(x) ≡ φω(x− u) = φ∗ω(u)φω(x) .

Define translation of the spherical Laguerre basis functions on the radial line by analogy:

(TsKp)(r) ≡ Kp(s)Kp(r) .

Convolution on the radial line defined by

(f ? h)(r) ≡ 〈f, Trh〉R+ =

∫
R+

dss2 f(s) (Trh) (s),

In harmonic space, radial convolution is given by the product

(f ? h)p = 〈f ? h,Kp〉R+ = fp hp .

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Wavelets on the ball (flaglets)
Translation and convolution on the radial line

Translation on the radial line corresponds to convolution with the Dirac delta:

(f ? δs)(r) =

∞∑
p=0

fpKp(s)Kp(r) = (Tsf)(r) .

r

A
m

pl
itu

de

Fig. 1. Band-limited Dirac delta functions plotted on the radial line at
positions s = {0.2, 0.3, 0.4} (plotted in blue, green and red, respectively).
Oscillations are caused by the finite band-limit (here P = 256); as P ! 1
oscillations vanish as the band-limited Delta converges to �s(r) = r�2�R(r�
s).

In order to recover a real space representation of the radial
translation operator we must first consider the Dirac delta
function on the radial line. We define the Dirac delta on the
radial line at position s by �s(r) ⌘ r�2�R(r� s), where �R is
the usual Dirac delta defined on the infinite line R. The Dirac
delta on the radial line satisfies the following normalisation
and sifting properties, respectively:

Z

R+

drr2�s(r) = 1; (12)
Z

R+

drr2f(r)�s(r) = f(s). (13)

The harmonic expansion of the Dirac delta is given by

�s(r) =
1X

p=0

Kp(s)Kp(r), (14)

which follows trivially by the sifting property. For the analysis
of band-limited functions, it is sufficient to consider the band-
limited Dirac delta (see Fig. 1), where the summation of
Eqn. (14) is truncated to P � 1.

With the Dirac delta function now defined on the radial line,
we show that the radial translation operator defined above is
simply the convolution of a function with the shifted Dirac
delta function:

(f ? �s)(r) =
1X

p=0

fpKp(s)Kp(r) = (Tsf)(r), (15)

where the final equality follows by Eqn. (8). Radial convo-
lution and translation are thus the natural analogues of the
respective operators defined on the infinite line.

We define the translation operator on the ball by combining
the angular and radial translation operators, giving

Tr ⌘ TrR(✓,'). (16)

The action of the radial translation operator on functions
defined on the ball is shown in Fig. 2. The convolution on the
ball of f 2 L2(B3) with an axisymmetric kernel h 2 L2(B3)
is then defined by the inner product

(f ? h)(r) ⌘ hf |TrhiB3 =

Z

B3

d3sf(s)(Trh)⇤(s), (17)

where s 2 B3. In harmonic space, axisymmetric convolution
on the ball may be written

(f ? h)`mp = hf ? h|Z`mpiB3 =

r
4⇡

2` + 1
f`mph

⇤
`0p, (18)

with f`mp = hf |Z`mpiB3 and h`0p�m0 = hh|Z`mpiB3 .

IV. FLAGLETS ON THE BALL

With an exact harmonic transform and a convolution op-
erator defined on the ball in hand, we are now in a position
to construct our exact wavelet transform on the ball, which
we call the flaglet transform (for Fourier-LAGuerre wavelet
transform) [5].

For a function of interest f 2 L2(B3), we define its jj0-th
wavelet coefficient W jj0 2 L2(B3) by the convolution of f
with the axisymmetric wavelet, or flaglet,  jj0 2 L2(B3):

W jj0
(r) ⌘ (f ? jj0

)(r) = hf |Tr 
jj0iB3 . (19)

The scales j, j0 2 N+
0 respectively relate to angular and radial

spaces. The wavelet coefficients contain the detail information
of the signal only; a scaling function and corresponding scaling
coefficients must be introduced to represent the low-frequency,
approximate information of the signal. The scaling coefficients
W� 2 L2(B3) are defined by the convolution of f with the
scaling function � 2 L2(B3):

W�(r) ⌘ (f ? �)(r) = hf |Tr�iB3 . (20)

Provided the flaglets and scaling function satisfy an ad-
missibility property (defined below), the function f may be
reconstructed exactly from its wavelet and scaling coefficients
by

f(r) =

Z

B3

d3r0W�(r0)(Tr�)(r0)

+
JX

j=J0

J 0X

j0=J 0
0

Z

B3

d3r0W jj0
(r0)(Tr 

jj0
)(r0).

(21)

The parameters J0 and J (J 0
0 and J 0) define the minimum

and maximum wavelet scales considered respectively for the
angular (radial) space and depend on the band-limit of f and
the specific definition of the wavelets and scaling function (see
[5]).

The admissibility condition under which a band-limited
function f can be reconstructed exactly is given by the
following resolution of the identity:

4⇡

2` + 1

 
|�`0p|2 +

JX

j=J0

J0X

j0=J 0
0

| jj0

`0p|2
!

= 1, 8`, p, (22)

where �`0p�m0 = h�|Z`mpiB3 and  jj0

`0p�m0 =

h jj0 |Z`mpiB3 . We refer the reader to our previous article
[5] for an example of the construction of specific wavelets
and scaling functions that satisfy the admissibility condition,
where we construct suitable wavelets by tiling the `-p
harmonic plane. The resulting wavelets are plotted in Fig. 2.

Figure: Band limited translated Dirac delta functions
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Wavelets on the ball (flaglets)
Fourier-Laguerre translation and convolution

Translation operator on the ball defined by combining the angular and radial translation operators,
giving

Tr ≡ TrR(θ,ϕ).

Convolution on the ball of f ∈ L2(B3) with an axisymmetric kernel h ∈ L2(B3) is defined by

(f ? h)(r) ≡ 〈f, Trh〉B3 =

∫
B3

d
3
s f(s)(Trh)

∗
(s),

where s ∈ B3.

In harmonic space, axisymmetric convolution on the ball may be written

(f ? h)`mp = 〈f ? h|Z`mp〉B3 =

√
4π

2`+ 1
f`mp h

∗
`0p,

with f`mp = 〈f, Z`mp〉B3 and h`0pδm0 = 〈h, Z`mp〉B3 .
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Wavelets on the ball (flaglets)
Fourier-Laguerre translation and convolution

Angular (radial) aperture of localised functions is invariant under radial (angular)
translation.
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(a) Wavelet kernel translated by r = 0.2
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(b) Wavelet kernel translated by r = 0.4

Figure: Slices of an axisymmetric flaglet wavelet kernel plotted on the ball of radius R = 0.5.
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Wavelets on the ball (flaglets)

Real part of spin s = 2 flaglets with λ = ν = 3, I0 = J0 = 2, N = 1 Imag. part Modulus

3D with xz slices slice z = 0 slice x = 0 half sphere r = R/2 half sphere r = R/2 half sphere r = R/2

i = 2
j = 2

i = 2
j = 3

i = 3
j = 2

i = 3
j = 3

1
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Wavelets on the ball (flaglets)
Wavelet tiling

Figure: Tiling of Fourier-Laguerre space.
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E/B separation
Cosmological spin signals

Observe spin ±2 cosmological signals on the celestial sphere, with n = (θ, ϕ) ∈ S2:

±2P (n) = Q± iU

CMB polarization

±2γ(n, r) = γ1 ± iγ2

Cosmic shear

(a) CMB polarization [Credit: WMAP] (b) Cosmic shear [Credit: Ellis (2010)]

Figure: Cosmological spin signals.
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E/B separation
Parity even and odd components

Decompose ±2P into parity even and parity odd
components:

ε(n) = −1

2

[
ð̄2

2P (n) + ð2 −2P (n)
]

E
-m

od
e

β(n) =
i

2

[
ð̄2

2P (n)− ð2 −2P (n)
]

B
-m

od
e

where ð̄ and ð are spin lowering and raising
(differential) operators, respectively. Figure: E-mode (even parity) and

B-mode (odd parity) signals [Credit:
http://www.skyandtelescope.com/].

Different physical processes exhibit different symmetries.

Can exploit this property to separate signals arising from different underlying physical
mechanisms.
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E/B separation
Parity even and odd components
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where ð̄ and ð are spin lowering and raising
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B-mode (odd parity) signals [Credit:
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Different physical processes exhibit different symmetries.

Can exploit this property to separate signals arising from different underlying physical
mechanisms.
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E/B separation
Pure mode wavelet estimator

On a manifold with boundary (i.e. partial sky),
E/B decomposition not unique.

Input (observation) mask Mask for harmonic recovery Mask for wavelet recovery (scaling function) Mask for wavelet recovery (wavelet 1)

Mask for wavelet recovery (wavelet 2) Mask for wavelet recovery (wavelet 3) Mask for wavelet recovery (wavelet 4) Mask for wavelet recovery (wavelet 5)
Pure mode wavelet estimators (Leistedt, McEwen, Büttner & Peiris 2016):

Ŵ 0Ψj

ε (ρ) = − Re

 W±2Υj

±2P̃
(ρ)

pseudo

+ 2W±1Υj

±1P̃
(ρ) +W 0Υj

0P̃
(ρ)

pure correction

 ,

Ŵ 0Ψj

β (ρ) = ∓ Im

 W±2Υj

±2P̃
(ρ)

pseudo

+ 2W±1Υj

±1P̃
(ρ) +W 0Υj

0P̃
(ρ)

pure correction

 .
Correction terms require spin ±1 wavelet transforms (McEwen et al. 2015).
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E/B separation
Pure mode wavelet estimator

On a manifold with boundary (i.e. partial sky),
E/B decomposition not unique.

Input (observation) mask Mask for harmonic recovery Mask for wavelet recovery (scaling function) Mask for wavelet recovery (wavelet 1)

Mask for wavelet recovery (wavelet 2) Mask for wavelet recovery (wavelet 3) Mask for wavelet recovery (wavelet 4) Mask for wavelet recovery (wavelet 5)
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Ŵ 0Ψj

ε (ρ) = − Re

 W±2Υj

±2P̃
(ρ)
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+ 2W±1Υj

±1P̃
(ρ) +W 0Υj

0P̃
(ρ)

pure correction

 ,

Ŵ 0Ψj

β (ρ) = ∓ Im

 W±2Υj

±2P̃
(ρ)

pseudo

+ 2W±1Υj

±1P̃
(ρ) +W 0Υj

0P̃
(ρ)

pure correction

 .
Correction terms require spin ±1 wavelet transforms (McEwen et al. 2015).
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E/B separation
Results: pseudo harmonic approach

E mode error mean (pseudo harmonic recovery)

E mode error std. dev. (pseudo harmonic recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]

B mode error mean (pseudo harmonic recovery)

B mode error std. dev. (pseudo harmonic recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]
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E/B separation
Results: pure wavelet approach
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E/B separation
Pure and ambiguous modes

Pure and ambiguous modes
(Lewis et al. 2002, Bunn et al. 2003, Smith 2006, Smith & Zaldarriaga 2007, Grain et al. 2007, Ferté et al. 2013)

E-modes: vanishing curl

B-modes: vanishing divergence

Pure E-modes: orthogonal to all B-modes

Pure B-modes: orthogonal to all E-modes
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E/B separation
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E/B separation
Connections between spin and scalar wavelet coefficients

Spin wavelet transform of ±2P = Q± iU (observable):

W 2Ψ
j

±2P
(ρ) = 〈±2P , Rρ ±2Ψ

j〉

spin wavelet transform

=

∫
S2

dΩ(ω)±2P (ω)(Rρ ±2Ψ
j)∗(ω) .

Scalar wavelet transforms of E and B (non-observable):

W 0Ψ
j

ε (ρ) = 〈ε, Rρ 0Ψ
j〉

scalar wavelet transform

,

W 0Ψ
j

β (ρ) = 〈β, Rρ 0Ψ
j〉

scalar wavelet transform

,

where 0Ψj ≡ ð̄2
2Ψj .

Spin wavelet coefficients of ±2P are connected to scalar wavelet coefficients of E/B:

W 0Ψ
j

ε (ρ) = −Re
[
W 2Ψ

j

±2P
(ρ)
]

and W 0Ψ
j

β (ρ) = ∓Im
[
W 2Ψ

j

±2P
(ρ)
]
.
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E/B separation
Exploiting wavelets

General approach to recover E/B signals using scale-discretised wavelets

1 Compute spin wavelet transform of ±2P = Q+ iU :

±2P (ω)
Spin wavelet transform
−−−−−−−−−→

S2LET
W 2Ψ

j

±2P
(ρ)

2 Account for mask in wavelet domain (simultaneous harmonic and spatial localisation):

W 2Ψ
j

±2P
(ρ)

Mitigate mask
−−−−−→ W̄ 2Ψ

j

±2P
(ρ)

3 Construct E/B maps:

(a) W 0Ψ
j

ε (ρ) = −Re
[
W̄ 2Ψ

j

±2P
(ρ)
] Inverse scalar wavelet transform

−−−−−−−−−−−−→
S2LET

ε(ω)

(b) W 0Ψ
j

β (ρ) = ∓Im
[
W̄ 2Ψ

j

±2P
(ρ)
] Inverse scalar wavelet transform

−−−−−−−−−−−−→
S2LET

β(ω)
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E/B separation
Results: pseudo harmonic approach

E mode error mean (pseudo harmonic recovery)

E mode error std. dev. (pseudo harmonic recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]

B mode error mean (pseudo harmonic recovery)

B mode error std. dev. (pseudo harmonic recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

E/B separation
Results: pure harmonic approach
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E/B separation
Results: pseudo wavelet approach
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E/B separation
Results: pure wavelet approach

E mode error mean (pure wavelet recovery)

E mode error std. dev. (pure wavelet recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]

B mode error mean (pure wavelet recovery)

B mode error std. dev. (pure wavelet recovery)

−0.015 0.000 0.015

[µK]

−0.15 0.00 0.15

[µK]

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Extra Slides
Cosmic strings

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Cosmic strings
Wavelet space distributions

Calculate analytically the probability distribution of the CMB in wavelet space:

P
c
j(W

c
jρ) =

1√
2π(σcj )2

exp

(
− 1

2

(
W c
jρ

σcj

)2)
, where (σ

c
j )

2
= 〈W c

jρ W
c
jρ
∗〉 =

∑
`m

C` |(Ψj)`m|
2
.

Fit a generalised Gaussian distribution (GGD) for the wavelet coefficients of a string training map:

P
s
j(W

s
jρ |Gµ) =

υj

2GµνjΓ(υj−1)
exp

(
−
∣∣∣∣ W s

jρ

Gµνj

∣∣∣∣υj) ,
with scale parameter νj and shape parameter υj .

Figure: Generalised Gaussian distribution (GGD).
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Cosmic strings
Cosmic string distributions in wavelet space
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Figure: Distribution of the cosmic string maps in wavelet space for each wavelet scale j.
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Cosmic strings
Cosmic string distributions in wavelet space
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Figure: Bayesian thresholding functions for each wavelet scale j.
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SARA algorithm

Sparsity averaging reweighted analysis (SARA)
(Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen, Van De Ville, Thiran & Wiaux 2013).

Overcomplete dictionary composed of a concatenation of orthonormal bases:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
with following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity);
Daubechies wavelets two to eight ⇒ concatenation of 9 bases.

Promote average sparsity by solving the constrained reweighted `1 analysis problem:

min
x∈RN

‖WΨ†x‖1 subject to ‖y −Φx‖2 ≤ ε and x ≥ 0

SA
R
A
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Analysis vs synthesis

Typically sparsity assumption is justified by analysing example signals in terms of atoms of
the dictionary.

Different to synthesising signals from atoms.

Suggests an analysis-based framework (Elad et al. 2007, Nam et al. 2012):

x? = arg min
x

‖Ωx‖1 subject to ‖y − Φx‖2 ≤ ε .

analysis

Contrast with synthesis-based approach:

x? = Ψ · arg min
α

‖α‖1 subject to ‖y − ΦΨα‖2 ≤ ε .

synthesis

For orthogonal bases Ω = Ψ† and the two approaches are identical.
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Analysis vs synthesis
Comparison

Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ Rm×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, !, ε) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ε, ‖Ωx∗‖0 ≤ p − ! (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, !, ε), does there exist x∗ satisfying (16)?” is NP [25]:
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Figure: Analysis- and synthesis-based approaches [Credit: Nam et al. (2012)].
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Analysis vs synthesis
Comparison

Synthesis-based approach is more general, while analysis-based approach more restrictive.

More restrictive analysis-based approach may make it more robust to noise.

The greater descriptive power of the synthesis-based approach may provide better signal
representations (too descriptive?).
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Bayesian interpretations
One Bayesian interpretation of the synthesis-based approach

Consider the inverse problem:
y = ΦΨα+ n .

Assume Gaussian noise, yielding the likelihood:

P(y |α) ∝ exp
(
‖y −ΦΨα‖22/(2σ2)

)
.

Consider the Laplacian prior:

P(α) ∝ exp
(
−β‖α‖1

)
.

The maximum a-posteriori (MAP) estimate (with λ = 2βσ2) is

x?MAP-synthesis = Ψ · arg max
α

P(α |y) = Ψ · arg min
α

‖y − ΦΨα‖22 + λ‖α‖1 .

synthesis

One possible Bayesian interpretation!

Signal may be `0-sparse, then solving `1 problem finds the correct `0-sparse solution!
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Bayesian interpretations
Other Bayesian interpretations of the synthesis-based approach

Other Bayesian interpretations are also possible (Gribonval 2011).

Minimum mean square error (MMSE) estimators

⊂ synthesis-based estimators with appropriate penalty function,
i.e. penalised least-squares (LS)

⊂ MAP estimators

MMSE

Penalised LS

MAP
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Bayesian interpretations
One Bayesian interpretation of the analysis-based approach

Analysis-based MAP estimate is

x?MAP-analysis = Ω† · arg min
γ∈column space Ω

‖y − ΦΩ†γ‖22 + λ‖γ‖1 .

analysis

Different to synthesis-based approach if analysis operator Ω is not an orthogonal basis.

Analysis-based approach more restrictive than synthesis-based.

Similar ideas promoted by Maisinger, Hobson & Lasenby (2004) in a Bayesian framework
for wavelet MEM (maximum entropy method).
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Distributed and parallelised convex optimisation

Solve resulting convex optimisation problems by proximal splitting.

Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, et al. 2016)

y =

 y1

...
ynd

 , Φ =

 Φ1

...
Φnd

 =

 G1M1

...
GndMnd

FZ .
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Distributed and parallelised convex optimisationScalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j

1
Gjb

(t)
j + r

(t)
j ≠ s

(t)
j

2

11: end and gather q
(t)
j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
jq

(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel

20: d
(k)
i = 1

÷

3
I ≠SŸÎ�ÎS

41
÷d

(k≠1)
i + �†

i z̄
(k≠1)

2

21: d̃
(k)
i = �id

(k)
i

22: end
23: z̄(k) = PC

1
z ≠

nbÿ

i=1

d̃
(k)
i

2

24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
range of minimisation tasks. The inherent parallelisation on
the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x

f(x) + “

nbÿ

i=1

li(�†
ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
minimisation problem does not change, regardless of the
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Scalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j

1
Gjb

(t)
j + r

(t)
j ≠ s

(t)
j

2

11: end and gather q
(t)
j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
jq

(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel

20: d
(k)
i = 1
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3
I ≠SŸÎ�ÎS

41
÷d
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i z̄
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21: d̃
(k)
i = �id

(k)
i

22: end
23: z̄(k) = PC

1
z ≠

nbÿ

i=1

d̃
(k)
i

2

24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
range of minimisation tasks. The inherent parallelisation on
the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x

f(x) + “

nbÿ

i=1

li(�†
ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
minimisation problem does not change, regardless of the
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.

MNRAS 000, 1–23 (2016)

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Standard algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

 

 

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Output Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Highly distributed and parallelised algorithms

CPU

Many Cores 
(CPU, GPU, Xeon Phi)

Raw Data

 

 

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Output Data

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Extra Slides
PURIFY reconstructions

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129

Figure: VLA visibility coverage for 3C129
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of 3C129 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of 3C129 images by CLEAN (uniform)

m
Jy

/B
ea

m

0

0.5

1

1.5

2

2.5

3

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of 3C129 images by PURIFY
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PURIFY reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A

Figure: VLA visibility coverage for Cygnus A
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PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of Cygnus A imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of Cygnus A images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of Cygnus A images by PURIFY

Jy
/P

ix
el

0

0.1

0.2

0.3

0.4

0.5

0.6

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

PURIFY reconstruction
VLA observation of Cygnus A
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Figure: Cygnus A recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0334-39

Figure: VLA visibility coverage for PKS J0334-39
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PURIFY reconstruction
ATCA observation of PKS J0334-39
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Figure: PKS J0334-39 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0334-39 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0334-39 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0334-39

m
Jy

/B
ea

m

0

10

20

30

40

50

60

70

80

90

100

m
Jy

/B
ea

m

-3

-2

-1

0

1

2

3

mJy/Beam
-3 -2 -1 0 1 2 3

P
ix

el
s

0

500

1000

1500

2000

2500

(a) CLEAN (natural)

m
Jy

/B
ea

m

0

2

4

6

8

10

12

14

16

18

20

m
Jy

/B
ea

m

-3

-2

-1

0

1

2

3

mJy/Beam
-1 -0.5 0 0.5 1

P
ix

el
s

0

500

1000

1500

2000

2500

3000

3500

(b) CLEAN (uniform)

m
Jy

/P
ix

el

0

5

10

15

m
Jy

/B
ea

m

-3

-2

-1

0

1

2

3

mJy/Beam
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

P
ix

el
s

0

500

1000

1500

2000

2500

3000

3500

4000

(c) PURIFY

Figure: PKS J0334-39 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
ATCA observation of PKS J0116-473

Figure: ATCA visibility coverage for Cygnus A
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PURIFY reconstruction
ATCA observation of PKS J0116-473
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Figure: PKS J0116-473 recovered images (Pratley, McEwen, et al. 2016)
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PURIFY reconstruction
VLA observation of PKS J0116-473 imaged by CLEAN (natural)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by CLEAN (uniform)
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PURIFY reconstruction
VLA observation of PKS J0116-473 images by PURIFY
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PURIFY reconstruction
ATCA observation of PKS J0116-473

m
Jy

/B
ea

m

0

10

20

30

40

50

60

70

80

90

100

m
Jy

/B
ea

m

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

mJy/Beam
-5 0 5

P
ix

el
s

0

1000

2000

3000

4000

5000

6000

7000

(a) CLEAN (natural)

m
Jy

/B
ea

m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
Jy

/B
ea

m

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

mJy/Beam
-1 -0.5 0 0.5 1

P
ix

el
s

0

2000

4000

6000

8000

10000

12000

14000

(b) CLEAN (uniform)

m
Jy

/P
ix

el

0

2

4

6

8

10

12

14

16

18

20

m
Jy

/B
ea

m

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

mJy/Beam
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ix

el
s

0

1000

2000

3000

4000

5000

6000

(c) PURIFY

Figure: PKS J0116-473 recovered images and residuals (Pratley, McEwen, et al. 2016)
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PURIFY reconstructions

Table: Root-mean-square of residuals of each reconstruction (units in mJy/Beam)

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36

PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24
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Proximity operators
A brief aside

Define proximity operator:

proxλg (x) = arg min
u

[
g(u) + ‖u− x‖2/2λ

]
Generalisation of projection operator:

PC(x) = arg min
u

[
ıC(u) + ‖u− x‖2/2

]
,

where ıC(u) =∞ if u /∈ C and zero otherwise.

Figure: Illustration of proximity operator [Credit: Parikh & Boyd (2013)]
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Proximal MCMC methods

Exploit proximal calculus.

“Replace gradients with sub-gradients”.

Figure: Illustration of sub-gradients [Credit: Wikipedia (Maksim)]
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Proximal MALA
Moreau approximation

Moreau approximation of f(x) ∝ exp(−g(x)):

fMA
λ (x) = sup

u∈RN
f(u) exp

(
−‖u− x‖

2

2λ

)

Important properties of fMA
λ (x):

1 As λ→ 0, fMA
λ (x)→ f(x)

2 ∇ log fMA
λ (x) = (proxλg (x)− x)/λ

Figure: Illustration of Moreau approximations [Credit: Pereyra 2016a]
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Proximal MALA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ḡ (x) = argmin

u∈RN

{
µ‖Ψ†u‖1 +

‖y −Φu‖22
2σ2

+
‖u− x‖22

δ

}
.

Taylor expansion at point x: ‖y −Φu‖22 ≈ ‖y −Φx‖22 + 2(u− x)>Φ†(Φx− y).

Then proximity operator approximated by

prox
δ/2
ḡ (x) ≈ prox

δ/2

f̄1

(
x− δΦ†(Φx− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ḡ (x) ≈ v̄ + Ψ

(
softµδ/2(Ψ†v̄)−Ψ†v̄)

)
, where v̄ = x− δΦ†(Φx− y)/2σ2.
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Proximal MALA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Must solve an optimisation problem for each iteration!

prox
δ/2
ĝ (a) = argmin

u∈RL

{
µ‖u‖1 +

‖y −ΦΨu‖22
2σ2

+
‖u− a‖22

δ

}
.

Taylor expansion at point a: ‖y −ΦΨu‖22 ≈ ‖y −ΦΨa‖22 + 2(u− a)>Ψ†Φ†(ΦΨa− y).

Then proximity operator approximated by

prox
δ/2
ĝ (a) ≈ prox

δ/2

f̂1

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.

Single forward-backward iteration
Analytic approximation:

prox
δ/2
ĝ (a) ≈ softµδ/2

(
a− δΨ†Φ†(ΦΨa− y)/2σ2

)
.
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MYULA
Moreau-Yosida approximation

Moreau-Yosida approximation (Moreau envelope) of f :

fMY
λ (x) = inf

u∈RN
f(u) +

‖u− x‖2
2λ

Important properties of fMY
λ (x):

1 As λ→ 0, fMY
λ (x)→ f(x)

2 ∇fMY
λ (x) = (x− proxλf (x))/λ

Figure: Illustration of Moreau-Yosida envelope of |x| for varying λ [Credit: Stack exchange (ubpdqn)]
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MYULA
Computing proximity operators for the analysis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ḡ(x) = f̄1(x) + f̄2(x), where f̄1(x) = µ‖Ψ†x‖1
Prior

and f̄2(x) = ‖y −Φx‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̄1
(x) = x+ Ψ

(
softµδ/2(Ψ†x)−Ψ†x)

)
.
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MYULA
Computing proximity operators for the synthesis case

Recall posterior: π(x) ∝ exp
(
−g(x)

)
.

Let ĝ(x(a)) = f̂1(a) + f̂2(a), where f̂1(a) = µ‖a‖1
Prior

and f̂2(a) = ‖y −ΦΨa‖22/2σ2

Likelihood

.

Only need to compute proximity operator of f1, which can be computed analytically
without any approximation:

prox
δ/2

f̂1
(a) = softµδ/2(a) .
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Extra Slides
Hypothesis testing
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Hypothesis testing
Method

Is structure in an image physical or an artifact?

Perform hypothesis tests using Bayesian credible regions (Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior isosurface: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Cut out region containing structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.
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Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Hypothesis testing
Numerical experiments

1

(a) Recovered image (b) Surrogate with region removed

1. Reject null hypothesis
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Hypothesis testing
Numerical experiments

1

(a) Recovered image (b) Surrogate with region removed

1. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: Cygnus A
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Hypothesis testing
Numerical experiments

1

(a) Recovered image (b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: Supernova remnant W28

Jason McEwen Big Data in Cosmology (Extra)



Bayesian Inference Computational Harmonic Analysis Machine Learning Inverse Problems

Hypothesis testing
Numerical experiments

1

2

(a) Recovered image (b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

2. Cannot reject null
hypothesis

⇒ cannot make strong
statistical statement about

origin of structure

Figure: 3C288
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Hypothesis testing
Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image Test Ground Method Hypothesis
area truth test

M31 1 3
P-MALA 3
MYULA 3
MAP 3

Cygnus A 1 3
P-MALA 7
MYULA∗ 7
MAP 7

W28 1 3
P-MALA 3
MYULA 3
MAP 3

3C288

1 3
P-MALA 3
MYULA 3
MAP 3

2 7
P-MALA 7
MYULA 7
MAP 7

(∗ Can correctly detect physical structure if use median point estimator.)
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