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Unanswered fundamental questions

1a

t =10-33 secs
inflation...?

380,000 
years

13.7 
billion yrs

...but what is the physics of inflation?

Inflation: accelerated super-expansion; 

generates cosmic structure via quantum 
fluctuations

Big Bang

Cosmic Microwave Background (CMB)
t ∼ 400 thousand years

Epoch of Reionization (EoR)
t ∼ 400 million years

Large Scale Structure (LSS)
t ∼ 14 billion years

What is the origin of structure?

How did luminous large-scale structure form?

What is the nature of dark energy
and dark matter?

Planck Gaia LOFAR SKA DES DESI Euclid LSST
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Square Kilometre Array (SKA)
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The SKA poses a considerable big-data challenge
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Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Large Synoptic Survey Telescope (LSST)

Credit: LSST
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Astrostatistics & Astroinformatics
Closing the loop

Astrophysics Statistics / Mathematics
/ Computer Science

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)

UCL STFC CDT focused on Data Intensive Science (DIS), i.e. Data Science for Science.
https://www.hep.ucl.ac.uk/cdt-dis/

Aims:

Train next generation of leaders in the field of DIS (in both academic and industry).

Promote development and application of novel DIS techniques.

Promote knowledge transfer:

between academic fields;

between non-academic and academic organisations.

Unique opportunity to bring together DIS research from perspective of applications,
methodologies, and theoretical foundations.

Centre for Doctoral Training in 
Data Intensive Science

Tim Scanlon and Jason McEwen
Directors of Research

(19.8% mean absolute improvement in V5, 27% mean abso-
lute improvement in contralateral lung V5), heart (14.2%
mean absolute improvement in heart V40), esophagus
(6.8% mean absolute improvement in esophageal V55),

and spinal cord (9.5 Gy mean absolute improvement in spinal
cord maximal dose) than IMRT did (Table 1).

More importantly, IMPT allowed radiation dose escalation
from 63 Gy up to 83.5 Gy, with a mean MTD of 74 Gy in this

Fig. 2. Comparison between IMRT and IMPT_MTD. (A) Dose distributions for the IMRT plan at 63 Gy (left) and
IMPT_MTD plan at the MTD of 80 Gy (right). Each line delineates the PTV. Of note is that the esophagus was overlapped
by the CTV and PTV for this patient, whereas the IMPT_MTD plan was able to reduce the esophageal dose to less than 80
Gy. (B) DVHs for the IMRT plan (squares) and IMPT_MTD plan (triangles). Ips., ipsilateral; Con., contralateral.

Reduced dose and individualized radical RT by IMPT d X. ZHANG et al. 361
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)
Who we are CDT in DIS: Who We Are

Materials Screening 
Chamber

Particle Physics
Dpt. of Physics and 

Astronomy
(20 CDT Staff Members)

Atomic & Molecular 
Physics
Dpt. of Physics and Astronomy 
(2 CDT Staff Members)

Astrophysics
Dpt. of Physics and 
Astronomy
(20 CDT Staff Members)

Department of
Computer Science

(8 CDT Staff Members)

Aim to foster closer collaboration between these areas, to aid the development 
of novel DIS techniques or application to new areas

Department of
Electrical Engineering

(3 CDT Staff Members)

Department of
Statistical Science
(5 CDT Staff Members)

Department of
Mathematics
(9 CDT Staff Members)

Department of 
Space and Climate 

Science
(20 CDT Staff Members)
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Aim to foster closer collaboration between these areas to aid the development of novel
DIS techniques or applications to new areas.
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UCL Centre for Doctoral Training (CDT) in Data Intensive Science (DIS)
Industrial partners

• Provide input on training, six month internships, courses and projects

• Promote knowledge-transfer between
Ø Academic and non-academic organisations
Ø Between the partners

• Have been approached by more organisations since winning the bid
Ø UKAEA, Asos, GroupM, S&P, Illuminas and ASI

Partnership Program

IT Companies Public Sector 
Organisations

Non-Academic 
Research 

Organisations 

Public-Private 
Partnerships

Data Intensive 
Companies

09/06/2017 5

Students will undertake 6 month internships with partners on a DIS project

Promote knowledge transfer between academic and non-academic organisations.

More organisations joining since winning the bid.
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Outline

1 Distributed and parallelised algorithms

2 Online algorithms

3 Uncertainty quantification

4 Machine learning
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Radio interferometric telescopes acquire “Fourier” measurements

“Fourier”
Measurements
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Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

y = Φx+ n ,

where y are the measured visibilities, Φ is the linear measurement operator, x is the
underlying image and n is instrumental noise.

Measurement operator, e.g. Φ = GFA , may incorporate:

primary beam A of the telescope;

Fourier transform F;

convolutional de-gridding G to interpolate to continuous uv-coordinates;

direction-dependent effects (DDEs). . .

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.
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Sparse regularisation
Motivated by compressive sensing

Sparse synthesis regularisation problem:

xsynthesis = Ψ× argmin
α

[∥∥y −ΦΨα
∥∥2
2
+ λ

∥∥α
∥∥
1

]

Synthesis framework

where consider sparsifying (e.g. wavelet) representation of image: x = Ψα .

Sparse analysis regularisation problem (Elad et al. 2007, Nam et al. 2012):

xanalysis = argmin
x

[∥∥y −Φx
∥∥2
2
+ λ

∥∥Ψ†x
∥∥
1

]

Analysis framework

Sparsity averaging reweighted analysis (SARA) (Carrillo, McEwen & Wiaux 2012; Carrillo, McEwen,
Van De Ville, Thiran & Wiaux 2013) with overcomplete dictionary:

Ψ =
[
Ψ1,Ψ2, . . . ,Ψq

]
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Reconstruction
VLA observation of 3C129
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Figure: 3C129 recovered images (Pratley, McEwen, et al. 2016)
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Distributed and parallelised algorithms

Solve resulting convex optimisation problems by proximal splitting.

Block inexact ADMM algorithm to split data and measurement operator:
(Carrillo, McEwen & Wiaux 2014; Onose, Carrillo, Repetti, McEwen, Thiran, Pesquet, & Wiaux 2016; Pratley,
Johnston-Hollitt & McEwen 2018; Pratley, McEwen et al. in prep.)

y =



y1
...
ynd


 , Φ =




Φ1

...
Φnd


 =




G1M1

...
GndMnd


FZ .
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Distributed and parallelised convex optimisationScalable splitting algorithms for SKA 7

Algorithm 1 Dual forward-backward ADMM.
1: given x(0), r(0)

j , s
(0)
j , q

(0)
j , Ÿ, fl, Í

2: repeat for t = 1, . . .
3: b̃

(t) = FZx(t≠1)

4: ’j œ {1, . . . , nd} set
5: b

(t)
j = Mj b̃

(t)

6: end
7: ’j œ {1, . . . , nd} distribute b

(t)
j and do in parallel

8: r
(t)
j = PBj

1
Gjb

(t)
j + s

(t≠1)
j

2

9: s
(t)
j = s

(t≠1)
j + Í

!
Gjb

(t)
j ≠ r

(t)
j

"

10: q
(t)
j = G†j

1
Gjb

(t)
j + r

(t)
j ≠ s

(t)
j

2

11: end and gather q
(t)
j

12: x̃(t) = x(t≠1) ≠ flZ†F†
ndÿ

j=1

M†
jq

(t)
j

13: x(t) = DualFB
!
x̃(t), Ÿ

"
14: until convergence

15: function DualFB
!
z, Ÿ

"

16: given d
(0)
i , ÷

17: z̄(0) = PC
!
z
"

18: repeat for k = 1, . . .
19: ’i œ {1, . . . , nb} do in parallel

20: d
(k)
i = 1

÷

3
I ≠SŸÎ�ÎS

41
÷d

(k≠1)
i + �†

i z̄
(k≠1)

2

21: d̃
(k)
i = �id

(k)
i

22: end
23: z̄(k) = PC

1
z ≠

nbÿ

i=1

d̃
(k)
i

2

24: until convergence
25: return z̄(k)

the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.

4.3 Primal-dual algorithms with randomisation

The main advantage that makes the PD algorithms attrac-
tive for solving inverse problems is their flexibility and scal-
ability. They are able to deal with both di�erentiable and
non-di�erentiable functions and are applicable to a broad
range of minimisation tasks. The inherent parallelisation on
the level of splitting the functions gives a direct approach for
solving (16). Another important aspect is given by the use of
randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
computational cost per iteration. Block coordinate compu-
tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x

f(x) + “

nbÿ

i=1

li(�†
ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
minimisation problem does not change, regardless of the
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Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.

MNRAS 000, 1–23 (2016)
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the proximity operator of the conjugates lúi with that of
the functions li, with I denoting the identity operator. The
computations involving each basis �†

i are to be performed in
parallel, locally. Distributed processing is problematic here
due to the large size of the image z̄(k) that would need to
be transmitted.
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range of minimisation tasks. The inherent parallelisation on
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randomisation, allowing the update for a given component
function to be performed less often and thus lowering the
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tations are also supported but are not explicitly used herein.

We define the minimisation task to be solved using PD
methods, similarly to (16), as

min
x

f(x) + “

nbÿ

i=1

li(�†
ix) +

ndÿ

j=1

hj(�jx), (27)

where “ is an additional tuning parameter. Note that the
minimisation problem does not change, regardless of the

S
U

T
V

¸ ˚˙ ˝
b
(t)
1 , b

(t)
2 ,..., b

(t)
nd

= FZ

S
U

T
V

Data 1

G1 r
(t)
1

y1 s
(t)
1

sequential steps

proximal step

PB1

)
······

*
¸ ˚˙ ˝

r
(t)
1

gradient ascent

s
(t)
1 =s

(t≠1)
1 + Í

!
· · ·

"

˙ ˙

Data nd

Gnd r
(t)
nd

ynd s
(t)
nd

sequential steps

proximal step

PBnd

)
······

*
¸ ˚˙ ˝

r
(t)
nd

gradient ascent

s
(t)
nd

=s
(t≠1)
nd

+ Í

!
· · ·

"

DualFB

Y
]
[

S
U

T
V≠ flZ†F†

q
(t)
1 , q

(t)
2 ,..., q

(t)
nd

˙ ˝¸ ˚S
U

T
V

Z
^
\

¸ ˚˙ ˝
sub-iterations

Sparsity 1

�1 z̄
(0)

d
(k)
1

FB step

forward step

SŸÎ�ÎS

)
· · · ·

*

backward step

˙ ˙

Sparsity nb

�nb z̄
(0)

d
(k)
nb

FB step

forward step

SŸÎ�ÎS

)
· · · ·

*

backward step

PC

Y
]
[

S
U

T
V ≠

nbÿ

i=1

d̃
(k)
1 , d̃

(k)
2 ,..., d̃

(k)
nb

˙ ˝¸ ˚

�i

S
U

T
V
Z
^
\

¸ ˚˙ ˝S
U

T
V

Z
^
\

z̄
(k)

FB step

FB step

Figure 1. The diagram of the structure of ADMM, detailed in
Algorithm 1, showcasing the parallelism capabilities and over-
all computation flow. The algorithm performs in parallel proxi-
mal and gradient updates (similarly to the CLEAN performing
major-minor cycle) for all data fidelity terms. Its structure is sub-
iterative and enforces sparsity and positivity through the dual FB
algorithm. These updates, performed in parallel for each sparsity
basis, can be again seen as analogous to clean. Thus, the whole
algorithm can be seen as composed of interlaced clean-like proxi-
mal splitting and FB updates running in parallel in multiple data,
prior, and image spaces.
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Standard algorithms
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Highly distributed and parallelised algorithms
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Highly distributed and parallelised algorithms
Reconstruction

Hybrid w-stacking and w-projection distributed and parallelised reconstruction
(Pratley, Johnston-Hollitt & McEwen 2018)

100 millions visibilities (measurements)

4096×4096 pixel image (∼17 million pixels)

17◦ field of view

w-terms of ±300 wavelengths (to account for wide fields)

Imaging with exact wide-field corrections for 100 million visibilities in 30 minutes.

0

0.05

0.1

0.15

Figure: Hybrid w-stacking w-projection distributed and parallelised reconstruction (Pratley,
Johnston-Hollitt & McEwen 2018)
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Public open-source codes

PURIFY code http://basp-group.github.io/purify/

Next-generation radio interferometric imaging
Carrillo, McEwen, Wiaux, Pratley, d’Avezac

PURIFY is an open-source code that provides functionality
to perform radio interferometric imaging, leveraging recent
developments in the field of compressive sensing and convex
optimisation.

SOPT code http://basp-group.github.io/sopt/

Sparse OPTimisation
Carrillo, McEwen, Wiaux, Kartik, d’Avezac, Pratley, Perez-Suarez

SOPT is an open-source code that provides functionality to
perform sparse optimisation using state-of-the-art convex
optimisation algorithms.

Jason McEwen AstroStatistics & AstroInformatics
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Online algorithms

Many standard astrophysical data analyses are performed offline.

Data are acquired. . . and then analysed.

Will not necessarily be possible in future.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Online radio interferometric imaging

Online radio interferometric imaging: assimilating and discarding visibilities on arrival
(Cai, Pratley, McEwen 2018)

Observe data

Observation
complete?

Load data block yk

Assimilate data

Delete data block yk

Reconstruct image

Current image x(i)

Output x∗

STOP

No

Yes

Figure: Schematic of online imaging algorithm.
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Online radio interferometric imaging

Data storage requirements reduced dramatically.

Computational costs can also be reduced.
8 Cai, Pratley, and McEwen
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Figure 2. Comparison between the standard algorithm and the online algorithm (this work) in terms of visibility storage requirements and computational
cost. In the plots, the left vertical-axis represents the ratio of visibility storage requirements (described in the text as ⌘s = 1/B when all blocks have the
same size) between the online algorithm with different number of visibility blocks and the standard algorithm (blue solid curve); the right vertical-axis
represents the approximate ratio of computational cost between the online algorithm and the standard algorithm with different maximum iteration numbers,
i.e., imax = 50, 100, 300 and 500 (brown dashed lines). In particular, panels (a) and (b) correspond to a maximum number of visibility blocks set to 100 and
600, respectively. These plots show that as the number of visibility blocks increases the online method needs significantly less storage than the offline method.
The computational cost can also be reduced by approximately a half using the online method when both methods execute similar number of iterations.

for RI imaging, as illustrated in Algorithms 2 and 3, can dramati-
cally reduce storage requirements. In essence, if all blocks are the
same size, the storage requirement for our online algorithm is 1/B
of the total number of visibilities. In the following we analyse the
general storage requirements of our proposed online method in fur-
ther detail and discuss some more subtle points.

The online method only needs to deal with a single block of
visibilities (i.e., a subset of the visibilities) at one time. The size of
each block can be controlled as required: when a large storage vol-
ume is available, a large visibility block can be considered; other-
wise, any arbitrarily small block can be considered, to the extreme
case of just a single visibility in each block (see lines 7 and 8 re-
spectively in Algorithms 2 and 3 about the visibility block loading
and assimilation). Note that after loading and assimilating a block
by the online method, the storage used to store that block will be
released for storing another block (see line 9 in Algorithms 2 and
3 about the visibility block storage releasing). The ratio of visi-
bility storage required for the online method relative to the offline
method, which must store all M visibilities, is therefore

⌘s =
maxk{Mk}

M
. (50)

When all blocks are the same size, the storage requirement is
⌘s = 1/B of the total visibilities, which means less than 1 percent
of visibilities need to be stored when B > 100. Figure 2 (the blue
solid curve) shows the ratio of visibility storage requirements be-
tween the online algorithm and the standard algorithm for different
number of visibility blocks.

Another important advantage of the online method in terms of
storage requirement is that, due to its independence with respect
to the number of visibility blocks, it has the ability of tackling RI
imaging problems encountered with an arbitrarily large amount of
visibilities – just divide the entire visibilities into individual visibil-
ities blocks and then conquer them one-by-one online.

Finally, since the standard offline methods can only deal with
a complete set of visibilities, when new visibilities are available it is

not possible for standard methods to use the new input to improve
their reconstruction quality in a principled manner (unless the com-
putation is restarted). The online method, on the contrary, is able to
immediately process any new observed visibilities – just treat the
new input as a normal visibility block and assimilate it to update
the reconstruction.

It should be noted that storage during the image reconstruc-
tion process is not only burdened by the measurements, but also
by storing the baseline coordinates and weights, which are compa-
rable. Furthermore, the interpolation kernel for performing a two
dimensional non-uniform fast Fourier Transform can take up to 16
or more times the amount of storage from the measurements alone
(Fessler & Sutton 2003; Offringa et al. 2014; Pratley et al. 2018).
However, methods exist to reduce this storage cost. For example, it
is possible for the interpolation kernel to be calculated on-the-fly,
or to prune the interpolation kernel. Furthermore, alternative effi-
cient methods can be developed to reduce these storage costs, e.g.
by precomputing �†�.

4.3 Computational cost

We now compare the computational cost between the online
method and the standard method. Comparing to the standard
method, in addition to dramatically reducing storage costs, the on-
line method can provide considerable computational savings when
the number of visibility blocks considered is not much larger than
the number of iterations necessary for the standard method.

For both the online and standard methods, at each iteration, the
most computationally demanding part is to apply the measurement
operator {�†

k�k}b
k=1 on an image (refer to line 10 in Algorithms 2

and 3), in that the rest of the computations are highly dominated by
this step. In particular, for this step the standard method needs all
the B blocks, i.e., {�†

k�k}B
k=1, to be involved in the computation

for each iteration, whereas only the first b blocks, b < B, are used
at the b-th iteration in the online method. In other words, for the on-

MNRAS 000, 1–14 (2017)

Figure: Storage and computational costs.
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Online radio interferometric imaging

Theoretical guarantees that recover images of same fidelity as offline approach.
12 Cai, Pratley, and McEwen
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Figure 5. Image reconstruction results in SNR against iteration number. The blue line and the red dot-dashed line represent the results of the standard algorithm
and the online algorithm (our work), respectively. The magenta line with cross marks represent the 5 extra iterations of the online algorithm. In particular, for
the online algorithm, 50, 100, 200, 300 and 500 visibility blocks are tested. When the SNR of the online algorithm is less than that of the standard algorithm
after the final visibility block is assimilated, 5 extra iterations are executed (see the magenta line with cross marks). Panels (a)–(d): results for images of M31,
Cygnus A, W28 and 3C288, respectively. Panels (e)–(h): zoomed in areas of the rectangles in (a)–(d), respectively. These plots show that both the standard
and online algorithms provide reconstructed images with very similar SNR. Moreover, the results of the online algorithm with respect to differing numbers of
visibility blocks reveal that the online algorithm converges stably and is robust with respect to arbitrary numbers of visibility blocks. We emphasise again that,
for the online algorithm, the larger the number of blocks, the lower the visibility storage requirements. Even though a large number of blocks requires lots
of iterations, the first iterations are very fast due to the small amount of data used. Also, since almost all the computation is done before the data acquisition
finishes, the online method always ends its reconstruction task much faster than the standard method. In this sense, the computation time of the online method
is independent of the number of blocks. Finally, the results of the extra iterations for the online algorithm show that an improvement can indeed be achieved
but is not dramatic and therefore optional; the standard iterations of the online algorithm, basically, can ensure excellent reconstructions already.

MNRAS 000, 1–14 (2017)

Figure: Reconstruction fidelity vs iteration number.
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Proximal MCMC sampling and uncertainty quantification

Observed visibilities in RI imaging: y

Sample full posterior by
MCMC methods: p(x|y) HPD credible regions: Cα

Point estimator: x∗

Pixel-wise credible
intervals: (ξ−, ξ+)

Hypothesis testing
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MAP estimation and uncertainty quantification

Observed visibilities in RI imaging: y

MAP image
estimation: xmap

Approximate HPD
credible regions: C̃α

Approximate local credible
intervals: (ξ̃−, ξ̃+)

Hypothesis testing
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Approximate Bayesian credible regions for MAP estimation

Combine uncertainty quantification with fast sparse regularisation to scale to big-data.

Recall Cα denotes the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Analytic approximation of γα:

γ̃α = g(x?) +N(τα + 1)

where τα =
√

16 log(3/α)/N and α ∈ (4exp(−N/3), 1) (Pereyra 2016b).

Define approximate HPD regions by C̃α = {x : g(x) ≤ γ̃α}.

Compute x? by sparse regularisation, then estimate local Bayesian credible intervals and
perform hypothesis testing using approximate HPD regions.
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Local Bayesian credible intervals for MAP estimation

Local Bayesian credible intervals for sparse reconstruction
(Cai, Pereyra & McEwen 2017b)

Let Ω define the area (or pixel) over which to compute the credible interval (ξ̃−, ξ̃+) and ζ be an index
vector describing Ω (i.e. ζi = 1 if i ∈ Ω and 0 otherwise).

Consider the test image with the Ω region replaced by constant value ξ:

x
′

= x
?
(I − ζ) + ξζ .

Given γ̃α and x?, compute the credible interval by

ξ̃− = min
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
,

ξ̃+ = max
ξ

{
ξ | gy(x

′
) ≤ γ̃α, ∀ξ ∈ [−∞,+∞)

}
.
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Numerical experiments
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(grid size 10× 10 pixels) (grid size 20× 20 pixels)

Figure: Length of local credible intervals for M31 for the analysis model.
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Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Figure: Length of local credible intervals for Cygnus A for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for W28 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Figure: Length of local credible intervals for 3C288 for the analysis model.
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Computation time

Table: CPU time in minutes for Proximal MCMC sampling and MAP estimation

Image Method CPU time
Analysis Synthesis

Cygnus A
P-MALA 2274 1762
MYULA 1056 942
MAP .07 .04

M31
P-MALA 1307 944
MYULA 618 581
MAP .03 .02

W28
P-MALA 1122 879
MYULA 646 598
MAP .06 .04

3C288
P-MALA 1144 881
MYULA 607 538
MAP .03 .02
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Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Method

Perform hypothesis tests of image structure using Bayesian credible regions
(Pereyra 2016b).

Let Cα denote the highest posterior density (HPD) Bayesian credible region with
confidence level (1− α)% defined by posterior iso-contour: Cα = {x : g(x) ≤ γα}.

Hypothesis testing of physical structure

1 Remove structure of interest from recovered image x?.

2 Inpaint background (noise) into region, yielding surrogate image x′.

3 Test whether x′ ∈ Cα:
If x′ /∈ Cα then reject hypothesis that structure is an artifact with confidence
(1− α)%, i.e. structure most likely physical.

If x′ ∈ Cα uncertainly too high to draw strong conclusions about the physical
nature of the structure.

Jason McEwen AstroStatistics & AstroInformatics



Distribution Online UQ ML

Hypothesis testing
Numerical experiments

1

(a) Recovered image

(b) Surrogate with region removed

1. Reject null hypothesis

⇒ structure physical

Figure: HII region of M31
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Hypothesis testing
Comparison of numerical experiments

Table: Comparison of hypothesis tests for different methods for the analysis model.

Image Test Ground Method Hypothesis
area truth test

M31 1 3
P-MALA 3
MYULA 3
MAP 3

Cygnus A 1 3
P-MALA 7
MYULA∗ 7
MAP 7

W28 1 3
P-MALA 3
MYULA 3
MAP 3

3C288

1 3
P-MALA 3
MYULA 3
MAP 3

2 7
P-MALA 7
MYULA 7
MAP 7

(∗ Can correctly detect physical structure if use median point estimator.)
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Deep learning methods for radio interferometric imaging

Fig. 1: DeepInverse learns the inverse transformation from measurement vectors y to signals x using a special deep convolu-
tional network.

As we mentioned earlier, one of the main goals of this
paper is to show that we can use deep learning framework
to recover images from undersampled measurements without
any need to divide images into small blocks and recover each
block separately. For this purpose, we use DeepInverse that
receives a signal proxy, i.e., x̃ = Φᵀy (with same dimension
as x) as its input. In addition, it has 3 layers with the follow-
ing specifications. The first layer has 64 filters, each having
1 channel of size 11 × 11. The second layer has 32 filters,
each having 64 channels of size 11 × 11. The third layer has
1 filter with 32 channels of size 11 × 11. We trained DeepIn-
verse using 64 × 64 cropped subimages of the natural images
in the ImageNet dataset [15]. Test images were drawn from
ImageNet images that were not used for training purposes.

Figure 2 shows the plot of average probability of success-
ful recovery for different undersampling ratios (M/N ) and
three different recovery algorithms: D-AMP [10], total vari-
ation (TV) minimization [16], and P-AMP [17]. Note that
we do not include any results from [11, 12] in our simula-
tion results, since these approaches are specifically designed
for block-based recovery whereas in this paper we focus on
recovering signals without subdivision.

Figure 2 compares the probability of successful recovery
as measured by 2000 Monte Carlo samples. For each under-
sampling ratio andMonte Carlo sample, we define the success
variable φδ,j = I

(
∥x̂(j)−x(j)∥2

2

∥x(j)∥2
2

≤ 0.1
)
. For small values of

undersampling ratio (e.g., 0.01) DeepInverse has better per-
formance than state-of-the-art recovery methods. However,
as the undersampling ratio increases, D-AMP outperforms
DeepInverse. Although Figure 2 shows that for every under-
sampling ratio one method works better than others, there is
not a clear winner in terms of reconstruction quality.

Figure 3 compares the average PSNR 1 of the Monte
Carlo test samples for different undersampling ratios and al-
gorithms. Figure 4 shows the histograms of the PSNRs of
the recovered test images, indicating the DeepInverse outper-
forms D-AMP for some images in the test set.

1PSNR = 10. log10

(
max2

Image

MSE

)

While Figs. 2 and 3 indicate that DeepInverse offers re-
covery probability and PSNR performance that is comparable
to state-of-the-art CS recovery algorithms, Table 1 shows that
DeepInverse has a run time that is a tiny fraction of current
algorithms. This fact makes DeepInverse especially suitable
for applications that need low-latency recovery.

Table 2 plots the images recovered by DeepInverse and
D-AMP when they are on their best and worst behavior.

Table 3 shows the effect of adding input noise on recov-
ery performance of D-AMP and DeepInverse. We can see that
for undersampling ratio of 0.1 and 20 dB input noise, Deep-
Inverse is more robust to noise comparing to D-AMP.

Finally, Figure 5 shows the convergence of the back-
propagation training algorithm over different iterations for
DeepInverse. It also shows the average PSNR of the images
in the test dataset for different methods with M/N = 0.1.
We can see that after several iterations DeepInverse starts to
outperform TV minimization and P-AMP.

Although D-AMP has better performance than a 3-layer
DeepInverse in general, we should consider two points. First,
by training an DeepInverse with more layers the network will
have a larger capacity and hence, we expect it to offer bet-
ter recovery performance. We leave studying DeepInverses
with larger capacities as a topic of our future work. Second,
DeepInverse is specially useful for applications that need low-
latency recovery and at the same timewe are not able to divide
images into smaller blocks, i.e., we need to apply a sensing
matrix to the entire signal rather than smaller blocks of it.

Table 1: Average reconstruction time of test set images for
different sampling rates and algorithms.

M
N

Reconstruction Time (s)
DeepInverse D-AMP TV P-AMP

0.2 0.01 3.41 2.53 1.53
0.1 0.01 2.93 2.34 1.23
0.01 0.01 2.56 2.26 0.94
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Deep learning methods for radio interferometric imaging

Fig. 1: DeepInverse learns the inverse transformation from measurement vectors y to signals x using a special deep convolu-
tional network.

As we mentioned earlier, one of the main goals of this
paper is to show that we can use deep learning framework
to recover images from undersampled measurements without
any need to divide images into small blocks and recover each
block separately. For this purpose, we use DeepInverse that
receives a signal proxy, i.e., x̃ = Φᵀy (with same dimension
as x) as its input. In addition, it has 3 layers with the follow-
ing specifications. The first layer has 64 filters, each having
1 channel of size 11 × 11. The second layer has 32 filters,
each having 64 channels of size 11 × 11. The third layer has
1 filter with 32 channels of size 11 × 11. We trained DeepIn-
verse using 64 × 64 cropped subimages of the natural images
in the ImageNet dataset [15]. Test images were drawn from
ImageNet images that were not used for training purposes.

Figure 2 shows the plot of average probability of success-
ful recovery for different undersampling ratios (M/N ) and
three different recovery algorithms: D-AMP [10], total vari-
ation (TV) minimization [16], and P-AMP [17]. Note that
we do not include any results from [11, 12] in our simula-
tion results, since these approaches are specifically designed
for block-based recovery whereas in this paper we focus on
recovering signals without subdivision.

Figure 2 compares the probability of successful recovery
as measured by 2000 Monte Carlo samples. For each under-
sampling ratio andMonte Carlo sample, we define the success
variable φδ,j = I

(
∥x̂(j)−x(j)∥2

2

∥x(j)∥2
2

≤ 0.1
)
. For small values of

undersampling ratio (e.g., 0.01) DeepInverse has better per-
formance than state-of-the-art recovery methods. However,
as the undersampling ratio increases, D-AMP outperforms
DeepInverse. Although Figure 2 shows that for every under-
sampling ratio one method works better than others, there is
not a clear winner in terms of reconstruction quality.

Figure 3 compares the average PSNR 1 of the Monte
Carlo test samples for different undersampling ratios and al-
gorithms. Figure 4 shows the histograms of the PSNRs of
the recovered test images, indicating the DeepInverse outper-
forms D-AMP for some images in the test set.

1PSNR = 10. log10

(
max2

Image

MSE

)

While Figs. 2 and 3 indicate that DeepInverse offers re-
covery probability and PSNR performance that is comparable
to state-of-the-art CS recovery algorithms, Table 1 shows that
DeepInverse has a run time that is a tiny fraction of current
algorithms. This fact makes DeepInverse especially suitable
for applications that need low-latency recovery.

Table 2 plots the images recovered by DeepInverse and
D-AMP when they are on their best and worst behavior.

Table 3 shows the effect of adding input noise on recov-
ery performance of D-AMP and DeepInverse. We can see that
for undersampling ratio of 0.1 and 20 dB input noise, Deep-
Inverse is more robust to noise comparing to D-AMP.

Finally, Figure 5 shows the convergence of the back-
propagation training algorithm over different iterations for
DeepInverse. It also shows the average PSNR of the images
in the test dataset for different methods with M/N = 0.1.
We can see that after several iterations DeepInverse starts to
outperform TV minimization and P-AMP.

Although D-AMP has better performance than a 3-layer
DeepInverse in general, we should consider two points. First,
by training an DeepInverse with more layers the network will
have a larger capacity and hence, we expect it to offer bet-
ter recovery performance. We leave studying DeepInverses
with larger capacities as a topic of our future work. Second,
DeepInverse is specially useful for applications that need low-
latency recovery and at the same timewe are not able to divide
images into smaller blocks, i.e., we need to apply a sensing
matrix to the entire signal rather than smaller blocks of it.

Table 1: Average reconstruction time of test set images for
different sampling rates and algorithms.

M
N

Reconstruction Time (s)
DeepInverse D-AMP TV P-AMP

0.2 0.01 3.41 2.53 1.53
0.1 0.01 2.93 2.34 1.23
0.01 0.01 2.56 2.26 0.94
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Artist impression of Supernova explosion
Thermonuclear explosion or core collapse
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Supernova classification
Spectroscopic classification

Figure: Spectroscopic observations
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Supernova classification
Photometric classification

Figure: Photometric observations.
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Supernova classification
Photometric classification

Photometric Supernova classification by machine learning
(Lochner, McEwen, Peiris, Lahav & Winter 2016)

Limited training data.

Go beyond single techniques to study classes.

Feature selection

1) Template       
     -tting  

2) General light curve   
parameterisations

3) Wavelets

So far, we've identi-ed three promising approaches:

Model independence

(a) Templates

PS1 SN IIP Light Curves 5

l[t, . . .] =

8
>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

0,

if t < t0
M1 (t/t1)

↵,

if t0 < t < t1
M1 exp(�1(t � t1)),

if t1 < t < tp
Mp exp(��2(t � (tp + t1))),

if tp < t < t2
M2 exp(��dN (t � (t2 + tp + t1))),

if t2 < t < td
Md exp(��dC(t�

(td + t2 + tp + t1))),

if td < t

(1)

These parameters have the following definitions and
interpretations. The time parameters are defined where
t is the MJD epoch of an observation, t0 is the epoch of
explosion, t1 is the rest frame duration of the power law
rise phase, tp is the duration of the exponential rise phase
(ending at peak flux), t2 is the duration of the falling
component of the plateau phase, and td is the duration of
the transitional phase. The flux parameters are defined
such that M1 is the flux at the transition from the power
law to the exponential rise phases, Mp is the peak flux,
M2 is the flux at the end of the plateau phase, and Md

is the flux at the transition to the Co decay-dominated
phase. The rate parameters are defined such that ↵ is the
power law rise slope, �1 is the exponential rate constant
during the rising phase of the plateau, �2 is the rate con-
stant during the declining phase of the plateau, �dN is the
exponential decline rate of the transition phase following
the plateau, and �dC is the exponential decay constant
corresponding to 56Co to 56Fe decay. Each parameter is
defined independently for each photometric filter, with
the exception of t0. For numerical convenience, we de-
fine l in arbitrary scaled units relative to the absolute
magnitude M , such that M = �2.5 log10(107 ⇥ l).

Note that, in order for the light curve model to be con-
tinuous, not all of the parameters may be independent.
In particular, for each filter,

M1 = Mp/ exp(�1tp) (2)

M2 = Mp/ exp(��2t2) (3)

Md = M2/ exp(��dN td) (4)

Furthermore, we note that the post-peak decay rate �2

is directly related to the quantity �m15, the decline in
magnitudes of the light curve in the 15 days following
peak:

�m15 =
15 ⇥ 2.5

loge 10
�2 ⇠ 16.3 �2 (5)

Our model is similar to the linear segmented light curve
fitting approach of e.g. Patat et al. (1993), but (as we
will discuss in Section 3.2) our fitting methodology for
the knot properties is fully probabilistic rather than man-
ual. We prefer this piecewise analytic formulation to the

Figure 4. Schematic illustration of the 5-component SN II light
curve model defined in Equation 1. The gray vertical lines denote
the duration (tx) between epochs of transition between the piece-
wise components of the model. The background level (Yb) and
turnover fluxes (Mx) are marked and labeled (red points). The
power law (↵) and exponential (�x) rate constant for each phase
are labeled adjacent to each light curve segment.

additive components model used by e.g. Olivares (2008)
because it will in principal have weaker parameter inter-
actions, therefore reducing the posterior curvature and
increasing the e�ciency of Markov Chain Monte Carlo
methods for sampling from the posterior. While this pa-
rameterization is designed to capture the phenomenology
of Type IIP SNe, it is su�ciently flexible that reasonably
descriptive fits are obtained to the light curves of other
Type II SN light curves (e.g. SNe IIn and IIb).

3.2. Fitting methodology

We estimate the posterior distributions of these model
parameters using a Markov Chain Monte Carlo (MCMC)
method. We employ the C++ library Stan (Stan De-
velopment Team 2013), which implements the adaptive
Hamiltonian Monte Carlo (HMC) No-U-Turn Sampler
of Ho↵man & Gelman (In press). For each multi-band
SN light curve, we use Stan to return 1000 samples (250
samples each from 4 independent MCMC chains) from
the posterior distribution of the model.16

In addition to the light curve parameterization outlined
in Section 3, our Stan model includes certain features
representing the data acquisition process. To account
for uncertainty in the PS1 background template subtrac-
tions, we fit for the background level in each filter using
an independent set of luminosity parameters, Yb[F ], and
an intrinsic model variance, V [F ]. We pre-compute K-
correction curves for the redshift of each object in our
sample (see Section 2.3), and apply them to the model
during the likelihood calculation using the phases corre-
sponding to the sampled explosion date at each step in
the MCMC chain.

We employ weakly informative priors (see e.g. Gelman
et al. 2008) to regularize the fitted models to the char-
acteristic SN IIP light curve shape. These prior distri-

16 The full Stan code for our statistical model is discussed in
Appendix A.

(b) Generic parameterisations

3) Wavelets
We decompose the light curve into wavelets and then apply PCA to 
select the most important wavelet coe=cients from the training set

Gaussian process -t

Wavelet decomposition

PCA

(c) Wavelets (non-parametric)

Figure: Feature selection classes (in order of increasing model independence)

Integrate physics into machine learning (scale and dilation invariance).

Understand physical requirements: representative training, redshift.
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Astrostatistics & Astroinformatics
Closing the loop

Astrophysics Statistics / Mathematics
/ Computer Science

Extracting weak observational signatures of fundamental
physics from complex data-sets requires sensitive, robust and
principled analysis techniques.

Constructing appropriate analysis techniques requires a deep
understanding of cosmological problems and methodological
foundations.
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