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Observable Universe
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Cosmic microwave background (CMB) radiation

What is the origin of structure in our Universe?

Planck satellite CMB
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Large-scale structure of the Universe

What is the nature of dark energy?

Euclid satellite Large-scale structure
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Epoch of reionisation

How did the first luminous objects in the Universe form?

Square Kilometre Array (SKA) Ionised bubbles in neutral hydrogen
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Gravitational waves

What are the physical processes responsible for an observed gravitational wave signal?

LIGO Merging black holes
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Model selection in cosmology and astrophysics

These are questions of model selection.

In cosmology we cannot perform experiments but just have one Universe to observe.

In astrophysics, we again cannot perform experiments, but may have a small number of
observations of similar processes.

⇒ Bayesian model selection
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Outline

1. Bayesian model selection

2. Learnt harmonic mean estimator for likelihood-based model selection

3. Learnt harmonic mean estimator for simulation-based model selection

4. Proximal nested sampling for high-dimensional model selection
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Bayesian model selection



Bayesian inference: parameter estimation

Bayes’ theorem

p(θ | y,M)

posterior
=

p(y | θ,M)

likelihood
p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood
π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain Monte
Carlo (MCMC) sampling.
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Bayesian inference: model selection

By Bayes’ theorem for model Mj:

p(Mj | y) =
p(y |Mj)p(Mj)∑
j p(y |Mj)p(Mj)

.

For model selection, consider posterior model odds:

p(M1 | y)
p(M2 | y)

posterior odds

=
p(y |M1)

p(y |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the Bayesian model evidence or marginal likelihood given by the normalising
constant

z = p(y |M) =

∫
dθ L(θ) π(θ) .

→ Extremely challenging computational problem in high-dimensions.
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Occam’s razor

The Bayesian model evidence naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.
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On priors

• Physics-informed priors
e.g. mass constrained to be positive

• Uninformative prior
e.g. invariance to symmetry transformations

• Informative prior
e.g. regularize by imposing sparsity in dictionary

• Data-informed priors
e.g. prior ∼ old data, likelihood ∼ new data, posterior ∼ old and new data

• Data-driven priors
e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)

Jason McEwen 11

http://www.jasonmcewen.org


Challenge of Bayesian model selection

Naive Monte Carlo integration can be used to compute the marginal likelihood in principle.

However, the resulting estimator has very large variance, rendering it ineffective in practice
(even in relatively low dimensional settings).

Require techniques tailored to the computation of the marginal likelihood.

Challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.

Jason McEwen 12

http://www.jasonmcewen.org


Challenge of Bayesian model selection

Naive Monte Carlo integration can be used to compute the marginal likelihood in principle.

However, the resulting estimator has very large variance, rendering it ineffective in practice
(even in relatively low dimensional settings).

Require techniques tailored to the computation of the marginal likelihood.

Challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.

Jason McEwen 12

http://www.jasonmcewen.org


Challenge of Bayesian model selection

Naive Monte Carlo integration can be used to compute the marginal likelihood in principle.

However, the resulting estimator has very large variance, rendering it ineffective in practice
(even in relatively low dimensional settings).

Require techniques tailored to the computation of the marginal likelihood.

Challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.

Jason McEwen 12

http://www.jasonmcewen.org


Merging paradigms

Merging

Paradigms

Statistics

e.g. Bayesian Inference,

Quantifying Uncertainty

Applied Math

e.g. Sparsity, Proximal

Calculus, Optimization

Computer Science

e.g. Machine Learning,

Scientific Computing
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Learnt harmonic mean estimator for
likelihood-based model selection



Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

ρ = Ep(θ | y)

[
1

L(θ)

]

=

∫
dθ 1

L(θ)
p(θ | y)

=

∫
dθ 1

L(θ)
L(θ)π(θ)

z

=
1
z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1
N

N∑
i=1

1
L(θi)

, θi ∼ p(θ | y)

Very simple approach but can fail catastrophically (Neal 1994).
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Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y) .

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.

Jason McEwen 15

http://www.jasonmcewen.org


Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y)

importance sampling

.

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.

Jason McEwen 15

http://www.jasonmcewen.org


Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y)

importance sampling

.

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.

Jason McEwen 15

http://www.jasonmcewen.org


Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y)

importance sampling

.

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.

Jason McEwen 15

http://www.jasonmcewen.org


Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y)

importance sampling

.

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.
Jason McEwen 15

http://www.jasonmcewen.org


Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target φ(θ) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ

= Ep(θ | y)

[
φ(θ)

L(θ)π(θ)

]
=

∫
dθ φ(θ)

L(θ)π(θ)
p(θ | y)

=

∫
dθ φ(θ)

L(θ)π(θ)
L(θ)π(θ)

z

=
1
z

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1
N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ | y)
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Re-targeted harmonic mean estimator

Importance sampling interpretation:

ρ =

∫
dθ φ(θ)

L(θ)π(θ)
p(θ | y) = 1

z

∫
dθ φ(θ)

p(θ | y)p(θ | y) .

Ensure importance sampling target φ(θ) does not have fatter tails than posterior p(θ | y)
(importance sampling density).

→ How set importance sampling target distribution φ(θ)?
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How set importance sampling target distribution φ(θ)?

Variety of cases been considered:

• Multi-variate Gaussian (e.g. Chib 1995)
• Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

φoptimal(θ) =
L(θ)π(θ)

z

(resulting estimator has zero variance).

But clearly not feasible since requires knowledge of the evidence z (recall the target must be
normalised) → requires problem to have been solved already!

Jason McEwen 18
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Learnt harmonic mean estimator

Propose the learnt harmonic mean estimator
(McEwen, Wallis, Price, Docherty 2021; arXiv:2111.12720).

Matt PriceChris Wallis Matthew Docherty
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

φ(θ)
ML≃ φoptimal(θ) =

L(θ)π(θ)
z .

• Approximation not required to be highly accurate.
• Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other sanity
checks.
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Learning the target distribution

Consider a variety of machine learning approaches:

• Uniform hyper-ellipsoid
• Kernel Density Estimation (KDE)
• Modified Gaussian mixture model (MGMM)

Fit model by minimising variance of resulting estimator, while ensuring unbiased, with
possible regularisation:

min σ̂2 + λR subject to ρ̂ = µ̂1

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning model and hyperparameters.
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Rosenbrock example

Rosenbrock function is the classical example of a pronounced thin curving degeneracy, with
likelihood defined by

f(θ) =
n−1∑
i=1

[
(a − θi)

2 + b(θi+1 − θ2
i )

2
]
, log(L(θ)) = −f(θ) .

Posterior recovered by MCMC sampling.Jason McEwen 22
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Rosenbrock example

Reciprocal evidence

Variance of reciprocal evidence

Accuracy of learnt harmonic mean estimator for Rosenbrock example.

Jason McEwen 23
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Normal-Gamma example

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Data model:

yi ∼ N(µ, τ−1)

Prior model:

Mean: µ ∼ N
(
µ0, (τ0τ)

−1)
Precision: τ ∼ Ga(a0, b0)

yi

N Normal

τ

a0 b0

G Gamma

µ

µ0 τ0

NNormal

i ∈ {1, ..., n}

Hierarchical Bayesian model of Normal-Gamma example.
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Normal-Gamma example

Analytic evidence:

z = (2π)−n/2 Γ(an)

Γ(a0)

ba0
0

bann

(
τ0
τn

)1/2

where

τn = τ0 + n , an = a0 + n/2 , bn = b0 +
1
2

n∑
i=1

(yi − ȳ)2 +
τ0n(ȳ − µ0)2

2(τ0 + n) .
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Normal-Gamma example

Comparison of marginal likelihood values computed to truth for varying prior.
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Normal-Gamma example

Marginal likelihood values for Normal-Gamma example with varying prior.

τ0 10−4 10−3 10−2 10−1 100

Analytic log(z) -144.5530 -143.4017 -142.2505 -141.0999 -139.9552
Estimated log(ẑ) -144.5545 -143.3990 -142.2490 -141.1001 -139.9558
Error -0.0015 0.0027 0.0015 -0.0011 -0.0006
(learnt harmonic mean)

Error 12.2100 — 9.7900 8.5000 7.1000
(original harmonic mean)
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Radiata pine example

Radiata pine data-set has become classical benchmark
for evaluating evidence estimators:

• maximum compression strength parallel to grain yi,
• density xi,
• density adjust for resin content zi,

for i ∈ {1, . . . , n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?
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Radiata pine example

Gaussian linear models:

M1 : yi = α+ β(xi − x̄)
density

+ ϵi , ϵi ∼ N(0, τ−1) .

M2 : yi = γ + δ(zi − z̄)
resin-adjusted density

+ ηi , ηi ∼ N(0, λ−1) .

Priors for model 1 (similar for model 2):

α ∼ N
(
µα, (r0τ)

−1) ,
β ∼ N

(
µβ , (s0τ)

−1) ,
τ ∼ Ga(a0, b0) ,

(µα = 3000, µβ = 185, r0 = 0.06, s0 = 6, a0 = 3, b0 = 2 × 3002).
Jason McEwen 29
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Radiata pine example

yi

xi ϵi

τ

G Gamma
a0 b0

α

N Normal
µα r0

β

N Normal
µβ s0

N Normal

i ∈ {1, ..., n}

Hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).
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Radiata pine example

Analytic evidence:

z = π−n/2ba0
0
Γ(a0 + n/2)

Γ(a0)

|Q0|1/2

|M|1/2
(
yTy + µT

0 Q0µ0 − νT
0 Mν0 + 2b0

)−a0−n/2

where µ0 = (µα, µβ)
T, Q0 = diag(r0, s0), and M = XTX + Q0.
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Radiata pine example

Marginal likelihood values for Radiata Pine example.

Model M1 Model M2 logBF21

log(z1) log(z2) = log(z2)− log(z1)

Analytic -310.12829 -301.70460 8.42368
Estimated -310.12807 -301.70413 8.42394

± 0.00072 ± 0.00074 ± 0.00145
Error 0.00022 0.00047 0.00026
(learnt harmonic mean)

Error – – -0.17372
(original harmonic mean)
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Harmonic code

Github: https://github.com/astro-informatics/harmonic

Docs: https://astro-informatics.github.io/harmonic

(Seamless integration with emcee.)
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Learnt harmonic mean estimator for
simulation-based model selection



Simulation-based inference (SBI)

Consider situation where the likelihood p(y | θ,M) is unknown or intractable.

Simulation-based inference (likelihood-free inference) seeks to perform parameter inference
by estimating the posterior p(θ | yo,M) for observed data yo using simulations only.

Advantages:
• Forward modelling of complex physics, contamination, observational process.
• No assumptions on the form of the likelihood.
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Sequential neural posterior estimation (SNPE)

SNPE introduced by Papamakarios & Murray (2016).

Construct training data {(θi, yi)} where parameter drawn from proposal prior θi ∼ p̃(θ |M) and
then generate simulation yi ∼ p(y | θi).

Learn posterior
qϕ(θ | y,M) ≃ p(θ | y,M) ,

where ϕ are the parameters of the learned model.

Train by maximising the probability of the parameters vectors Πiqϕ(θi | yi,M), i.e. minimising
loss function

L(ϕ) = −
∑

i
log qϕ(θi | yi,M) .
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Efficient proposal prior

If proposal prior matches underlying prior, i.e. p̃(θ |M) = p(θ |M), then would learn an
unbiased estimate of the posterior.

BUT, this highly inefficient since learn posterior for all possible data realisations but only
interested in observational data yo.

Sequential approach: Train in runs where the proposal prior matches the intermediate learned
posterior at yo. Update proposal prior for each run.

Since do not sample from prior, end up learning

qϕ(θ | y) ≃
p̃(θ |M)

p(θ |M)
p(θ | y = yo,M) .
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Correcting the bias of SNPE

Variants of SNPE introduced to correct the bias of sampling from proposal prior.

▷ SNPE-A (Papamakarios & Murray 2016): importance weight learned distribution.
▷ SNPE-B (Lueckmann et al. 2017): adjust loss function to include importance weights.
▷ SNPE-C (Greenberg et al. 2019): reparameterise the proposal posterior objective to

recover the true posterior distribution.
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Sequential neural likelihood estimation (SNLE)

Avoid the bias issue of SNPE by learning the likelihood ⇒ SNLE (Papamakarios et al. 2019).

Define joint distribution p̃(θ, y) = p(y | θ,M)p̃(θ,M).

Learn likelihood
qψ(y | θ,M) ≃ p(y | θ,M) ,

where ψ are the parameters of the learned model.

Train by maximising total log-likelihood
∑

i log qψ(yi | θi), i.e. by maximising

Ep̃(θ,y)[log qψ(y | θ,M)] = −Ep̃(θ)[DKL(p(y | θ,M), qψ(y | θ,M))] + const. ,

where DKL is the Kullback-Leibler divergence.
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Sequential approach and sampling

Adopt sequential approach for SNLE, where consider run r and update proposal prior p̃(θ |M)

to use current posterior estimate, i.e. pr(θ | yo,M) ∝ qψ(yo | θ,M)p(θ |M).

Unlike, SNPE, no adjustment is necessary to account for proposing strategy.

Sample from approximate posterior by MCMC sampling.
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Bayesian model comparison for simulation-based inference

Bayesian model comparison for simulation-based inference
(Spurio Mancini, Docherty, Price, McEwen, in prep.).

Matthew DochertyAlessio Spurio Mancini Matt Price
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Naive model evidence computation

Recall SNPE and SNLE:

qSNPE
ϕ (θ | y,M) ≃ p(θ | y,M); qSNLE

ψ (y | θ,M) ≃ p(y | θ,M) .

Naive estimate of the model evidence:

ẑ =
1
N
∑

i

qSNLE
ψ (yo | θi,M)p(θi |M)

qSNPE
ϕ (θi | yo,M)

.
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Computing model evidence by learnt harmonic mean estimator

Compute model evidence by learnt harmonic mean estimator:

ρ̂ =
1
N
∑

i

φ(θi)

qSNLE
ψ (yo | θi,M)p(θi |M)

.

• Agnostic to sampling strategy.
• If adopt SNLE only, then sample by MCMC. If adopt SNPE for samples, then still require

SNLE for likelihood.
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Linear Gaussian example

Model evidence computed in likelihood-based and likelihood-free settings.
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Radiata pine example

Model evidence computed in likelihood-based and likelihood-free settings.
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Radiata pine example

Model evidence computed in likelihood-based and likelihood-free settings.

Jason McEwen 44

http://www.jasonmcewen.org


Gravitational waves

Simulate a black-hole, black-hole merger as observed by an interferometer (e.g. LIGO).

Consider two models (Spin-Precessing Effective-One-Body Numerical Relativity and Inspiral
Ringdown Merger) and perform model comparison.

Likelihood available for validation.
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Gravitational waves

Spin-Precessing
Effective-One-Body Numerical

Relativity
(correct model)

Inspiral Ringdown Merger
(incorrect model)
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Proximal nested sampling for
high-dimensional model selection



Nested sampling: reparameterising the likelihood

Nested sampling is a clever approach to efficiently evalute the evidence (Skilling 2006).

Consider ΩL∗ = {x|L(x) ≥ L∗}, which groups the parameter space
Ω into a series of nested subspaces.

Define the prior volume ξ within ΩL∗ by ξ(L∗) =

∫
ΩL∗

π(x)dx.

The marginal likelihood integral can then be rewritten as

Z =

∫ 1

0
L(ξ)dξ,

which is a one-dimensional integral over the prior volume ξ.
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) Li and corresponding prior
volumes 0 < ξi ≤ 1.

Nested sampling (Skilling 2006)

1. Draw Nlive live samples from prior, with prior volume ξ0 = 1.
2. Remove sample with smallest likelihood, say Li.
3. Replace removed sample with new sample from the prior but constrained to a higher

likelihood than Li.
4. Estimate (stochastically) prior volume ξi enclosed by likelihood level-set Li.
5. Repeat 2–5.
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Nested sampling: estimating enclosed prior volume stochastically

Enclosed prior volume decreases exponentially at each step: ξi+1 = ti+1ξi.

Shrinkage ratio can be estimated stochastically since E(log t) = −1/Nlive.

The enclosed prior volume can then be estimated by

ξi+1 = exp(−i/Nlive) .
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {ξi}N
i=0 and corresponding likelihoods

Li = L(ξi), the model evidence can be computed numerically using standard quadrature:

Z =
N∑

i=1
Liwi ,

for quadrature weight wi (e.g. the trapezium rule with wi = (ξi−1 + ξi+1)/2).

Posterior inferences can also be computed by assigning importances weights

pi =
Liwi
Z

.
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to generate
likelihoods Li and associated prior volumes ξi.

Achieved by sampling from the prior, subject the likelihood iso-contour constraint, i.e.
sampling from the prior π(x), such that L(x) > L∗

This is the main difficulty in applying nested sampling to high-dimensional problems.
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Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems with
Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

⇒ Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

Xiaohao Cai Marcelo Pereyra
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Constrained sampling formulation

Consider case where prior and likelihood of form

π(x) = exp(−f(x))

prior

, L(x) = exp(−g(x))

likelihood

,

where f and g are convex lower semicontinuous functions on Ω.

Let ιL∗(x) and χL∗(x) be the indicator and characteristic functions:

ιL∗(x) =
{

1, L(x) > L∗,

0, otherwise,
and χL∗(x) =

{
0, L(x) > L∗,

+∞, otherwise.
(1)

Then let πL∗(x) = π(x)ιL∗(x) represent the prior distribution with the hard likelihood
constraint.
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Constrained sampling formulation

Taking the logarithm, we can write

− log πL∗(x) = f(x) + χBτ
(x) ,

where χBτ (x) is the characteristic function associated with the convex set

Bτ := {x|g(x) < τ},

for τ = − log L∗.
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MCMC sampling with Langevin dynamics

Consider posteriors of the following form:

p(x | y) = π(x) ∝ exp
(
−p(x)

)
.

If p(x) differentiable can adopt Langevin dynamics.

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) = 1
2∇ log π

(
L(t)

)
dt + dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so not directly applicable.
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Moreau-Yosida approximation

Moreau-Yosida approximation (envelope) of
f:

fλ(x) = infu∈RN
f(u) + ∥u − x∥2

2λ

Important properties of fλ(x):

1. As λ→ 0, fλ(x) → f(x)
2. ∇fλ(x) = (x − proxλf (x))/λ

Moreau-Yosida envelope of |x| for varying λ

[Credit: Stack exchange (ubpdqn)]
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Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

• Constrained sampling formulation
• Langevin MCMC sampling
• Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

x(k+1) = x(k) − δ

2∇f(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+

√
δw(k+1) .
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain:

x(k+1) = x(k) − δ

2∇f(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]

+
√
δw(k+1).

1. x(k) is already in Bτ : term
[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the convex
set Bτ . Acts to push the Markov chain back into the
constraint set Bτ if it wanders outside of it.
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[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the convex
set Bτ . Acts to push the Markov chain back into the
constraint set Bτ if it wanders outside of it.

Likelihood

constraint set
χBτ

x(k)

x(k−1)

x(k−2)
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Proximal nested sampling

A subsequent Metropolis-Hastings step guarantees hard likelihood constraint is satisfied.

In practice need to compute proxχBτ
(x(k)), including measurement operator.

For sparsity-promoting non-differentiable priors f(x), can also make Moreau-Yosida
approximation fλ(x) and leverage prox to compute gradient ∇fλ.

Many further details regarding explicit forms of proximal nested sampling for common
priors and likelihoods and how to compute proximity operators efficiently
(Cai, McEwen & Pereyra 2021; arXiv:2106.03646).
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Measurement model misspecification experiment

Consider ground truth model Φ = MtruthF to simulate observational data y.

However, when solving the inverse problem consider misspecified models Mγ , where γ > 0
encodes the level of misspecification (mimics incorrectly specified wavelength).

Compute the model evidence using proximal nested sampling, using evidence to distinguish
correct model.
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Measurement model misspecification experiment

Dirty map Φ = M0.12F Φ = M0.09F

Φ = M0.06F Φ = M0.03F Φ = MtruthF
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Measurement model misspecification experiment

Model logZ RMSE (Requires ground truth)

Φ = MtruthF −4.47 × 103±0.08 3.40
Φ = M0.03F −4.88 × 103±0.08 7.85
Φ = M0.06F −5.63 × 103±0.08 12.01
Φ = M0.09F −9.21 × 103±0.07 15.71
Φ = M0.12F −1.44 × 104±0.08 18.08

Evidence computed by proximal nested sampling correctly classifies models.
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Summary

Many science questions are questions of model comparison.

In cosmology we have only one Universe to observe ⇒ Bayesian model selection.

Many outstanding challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.
• Learned data-driven priors.

1. Learnt harmonic mean estimator for Bayesian model comparison
(McEwen, Wallis, Price, Docherty 2021; arXiv:2111.12720)

2. Bayesian model comparison for simulation-based inference
(Spurio Mancini, Docherty, Price, McEwen, in prep.).

3. Proximal nested sampling for high-dimensional Bayesian model comparison
(Cai, McEwen & Pereyra 2021; arXiv:2106.03646)
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