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Observable Universe
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Cosmic microwave background (CMB) radiation

What is the origin of structure in our Universe?

Planck satellite CMB
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Epoch of reionisation

How did the first luminous objects in the Universe form?

Square Kilometre Array (SKA) Ionised bubbles in neutral hydrogen
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Large-scale structure of the Universe

What is the nature of dark energy?

Euclid satellite Large-scale structure
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Gravitational waves

What are the physical processes responsible for an observed gravitational wave signal?

LIGO Merging black holes
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Model selection in cosmology and astrophysics

These are questions of model selection.

In cosmology we cannot perform experiments but just have one Universe to observe.

In astrophysics, we again cannot perform experiments, but may have a small number of
observations of similar processes.

⇒ Bayesian model selection
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Outline

1. Bayesian model selection

2. Learnt harmonic mean estimator for likelihood-based model selection

3. Learnt harmonic mean estimator for simulation-based model selection

4. Proximal nested sampling for high-dimensional model selection

Jason McEwen 7

http://www.jasonmcewen.org


Bayesian model selection



Bayesian inference: parameter estimation

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.
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Bayesian inference: model selection

By Bayes’ theorem for model Mj:

p(Mj | y) =
p(y |Mj)p(Mj)∑
j p(y |Mj)p(Mj)

.

For model selection, consider posterior model odds:

p(M1 | y)
p(M2 | y)

posterior odds

=
p(y |M1)

p(y |M2)

Bayes factor

× p(M1)

p(M2)

prior odds

.

Must compute the Bayesian model evidence or marginal likelihood given by the
normalising constant

z = p(y |M) =

∫
dθ L(θ) π(θ) .

→ Extremely challenging computational problem in high-dimensions.
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Occam’s razor

The Bayesian model evidence naturally incorporates Occam’s razor, trading off model
complexity and goodness of fit.

Gh
ah

ra
m
an

i(
20

13
);
M
ac

Ka
y
(1
99

1)

Jason McEwen 10

http://www.jasonmcewen.org


On priors

• Physics-informed priors
e.g. mass constrained to be positive

• Uninformative prior
e.g. invariance to symmetry transformations

• Informative prior
e.g. regularize by imposing sparsity in dictionary

• Data-informed priors
e.g. prior ∼ old data, likelihood ∼ new data, posterior ∼ old and new data

• Data-driven priors
e.g. empirical Bayes (estimate prior from data), learn by machine learning (generative models)
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Challenge of Bayesian model selection

Naive Monte Carlo integration can be used to compute the marginal likelihood in
principle.

However, the resulting estimator has very large variance, rendering it ineffective in
practice (even in relatively low dimensional settings).

Require techniques tailored to the computation of the marginal likelihood.

Challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.
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Merging paradigms

Merging

Paradigms

Statistics

e.g. Bayesian Inference,

Quantifying Uncertainty

Applied Math

e.g. Sparsity, Proximal

Calculus, Optimization

Computer Science

e.g. Machine Learning,

Scientific Computing
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Learnt harmonic mean estimator for
likelihood-based model selection



Original harmonic mean estimator

Harmonic mean relationship (Newton & Raftery 1994)

ρ = Ep(θ | y)

[
1

L(θ)

]

=

∫
dθ 1

L(θ)
p(θ | y)

=

∫
dθ 1

L(θ)
L(θ)π(θ)

z

=
1
z

Original harmonic mean estimator (Newton & Raftery 1994)

ρ̂ =
1
N

N∑
i=1

1
L(θi)

, θi ∼ p(θ | y)

Very simple approach but can fail catastrophically (Neal 1994).
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Importance sampling interpretation of harmonic mean estimator

Alternative interpretation of harmonic mean relationship:

ρ =

∫
dθ 1

L(θ)
p(θ | y) = 1

z

∫
dθ π(θ)

p(θ | y)p(θ | y) .

Importance sampling interpretation:

• Importance sampling target distribution is prior π(θ).
• Importance sampling density is posterior p(θ | y).

For importance sampling, want sampling density to have fatter tails than target.

Not the case when importance sampling density is posterior and target is the prior.
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Re-targeted harmonic mean estimator

Introduce an arbitrary importance sampling target φ(θ) (which must be normalised).

Re-targeted harmonic mean relationship (Gelfand & Dey 1994)

ρ

= Ep(θ | y)

[
φ(θ)

L(θ)π(θ)

]
=

∫
dθ φ(θ)

L(θ)π(θ)
p(θ | y)

=

∫
dθ φ(θ)

L(θ)π(θ)
L(θ)π(θ)

z

=
1
z

Re-targeted harmonic mean estimator (Gelfand & Dey 1994)

ρ̂ =
1
N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ | y)
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Re-targeted harmonic mean estimator

Importance sampling interpretation:

ρ =

∫
dθ φ(θ)

L(θ)π(θ)
p(θ | y) = 1

z

∫
dθ φ(θ)

p(θ | y)p(θ | y) .

Ensure importance sampling target φ(θ) does not have fatter tails than posterior p(θ | y)
(importance sampling density).

→ How set importance sampling target distribution φ(θ)?
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How set importance sampling target distribution φ(θ)?

Variety of cases been considered:

• Multi-variate Gaussian (e.g. Chib 1995)
• Indicator functions (e.g. Robert & Wraith 2009, van Haasteren 2009)

Optimal target:

φoptimal(θ) =
L(θ)π(θ)

z

(resulting estimator has zero variance).

But clearly not feasible since requires knowledge of the evidence z (recall the target must
be normalised) → requires problem to have been solved already!

Jason McEwen 18
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Learnt harmonic mean estimator

Propose the learnt harmonic mean estimator
(McEwen, Wallis, Price, Docherty 2021; arXiv:2111.12720).

Matt PriceChris Wallis Matthew Docherty
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Learnt harmonic mean estimator

Learn an approximation of the optimal target distribution:

φ(θ)
ML≃ φoptimal(θ) =

L(θ)π(θ)
z .

• Approximation not required to be highly accurate.
• Must not have fatter tails than posterior.

Also develop strategy to estimate the variance of the estimator, its variance, and other
sanity checks.
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Learning the target distribution

Consider a variety of machine learning approaches:

• Uniform hyper-ellipsoid
• Kernel Density Estimation (KDE)
• Modified Gaussian mixture model (MGMM)
• (Normalising flows coming…)

Fit model by minimising variance of resulting estimator, while ensuring unbiased, with
possible regularisation:

min σ̂2 + λR subject to ρ̂ = µ̂1

Solve by bespoke mini-batch stochastic gradient descent.

Cross-validation to select machine learning model and hyperparameters.
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Rosenbrock example

Rosenbrock function is the classical example of a pronounced thin curving degeneracy,
with likelihood defined by

f(θ) =
n−1∑
i=1

[
(a− θi)

2 + b(θi+1 − θ2i )
2
]
, log(L(θ)) = −f(θ) .

Posterior recovered by MCMC sampling.Jason McEwen 22
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Rosenbrock example

Reciprocal evidence

Variance of reciprocal evidence

Accuracy of learnt harmonic mean estimator for Rosenbrock example.

Jason McEwen 23
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Normal-Gamma example

Pathological example (Friel & Wyse 2012) where original harmonic mean estimator fails.

Data model:

yi ∼ N(µ, τ−1)

Prior model:

Mean: µ ∼ N
(
µ0, (τ0τ)

−1)
Precision: τ ∼ Ga(a0, b0)

yi

N Normal

τ

a0 b0

G Gamma

µ

µ0 τ0

NNormal

i ∈ {1, ..., n}

Hierarchical Bayesian model of Normal-Gamma example.
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Normal-Gamma example

Analytic evidence:

z = (2π)−n/2 Γ(an)
Γ(a0)

ba00
bann

(
τ0
τn

)1/2

where

τn = τ0 + n , an = a0 + n/2 , bn = b0 +
1
2

n∑
i=1

(yi − ȳ)2 + τ0n(ȳ− µ0)
2

2(τ0 + n) .
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Normal-Gamma example

Comparison of marginal likelihood values computed to truth for varying prior.
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Normal-Gamma example

Marginal likelihood values for Normal-Gamma example with varying prior.

τ0 10−4 10−3 10−2 10−1 100

Analytic log(z) -144.5530 -143.4017 -142.2505 -141.0999 -139.9552
Estimated log(ẑ) -144.5545 -143.3990 -142.2490 -141.1001 -139.9558
Error -0.0015 0.0027 0.0015 -0.0011 -0.0006
(learnt harmonic mean)

Error 12.2100 — 9.7900 8.5000 7.1000
(original harmonic mean)
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Radiata pine example

Radiata pine data-set has become classical
benchmark for evaluating evidence estimators:

• maximum compression strength parallel to grain yi,
• density xi,
• density adjust for resin content zi,

for i ∈ {1, . . . ,n} where n = 42 specimens.

Is density or resin-adjusted density a better predictor of compression strength?
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Radiata pine example

Gaussian linear models:

M1 : yi = α+ β(xi − x̄)
density

+ ϵi , ϵi ∼ N(0, τ−1) .

M2 : yi = γ + δ(zi − z̄)
resin-adjusted density

+ ηi , ηi ∼ N(0, λ−1) .

Priors for model 1 (similar for model 2):

α ∼ N
(
µα, (r0τ)−1) ,

β ∼ N
(
µβ , (s0τ)−1) ,

τ ∼ Ga(a0,b0) ,

(µα = 3000, µβ = 185, r0 = 0.06, s0 = 6, a0 = 3, b0 = 2× 3002).
Jason McEwen 29

http://www.jasonmcewen.org


Radiata pine example

yi

xi ϵi

τ

G Gamma
a0 b0

α

N Normal
µα r0

β

N Normal
µβ s0

N Normal

i ∈ {1, ..., n}

Hierarchical Bayesian model for Radiata pine example (for model 1; model 2 is similar).
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Radiata pine example

Analytic evidence:

z = π−n/2ba00
Γ(a0 + n/2)

Γ(a0)
|Q0|1/2

|M|1/2
(
yTy+ µT

0Q0µ0 − νT
0Mν0 + 2b0

)−a0−n/2

where µ0 = (µα, µβ)
T, Q0 = diag(r0, s0), and M = XTX+ Q0.
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Radiata pine example

Marginal likelihood values for Radiata Pine example.

Model M1 Model M2 log BF21
log(z1) log(z2) = log(z2)− log(z1)

Analytic -310.12829 -301.70460 8.42368
Estimated -310.12807 -301.70413 8.42394

± 0.00072 ± 0.00074 ± 0.00145
Error 0.00022 0.00047 0.00026
(learnt harmonic mean)

Error – – -0.17372
(original harmonic mean)

Jason McEwen 32

http://www.jasonmcewen.org


Harmonic code

Github: https://github.com/astro-informatics/harmonic

Docs: https://astro-informatics.github.io/harmonic

(Seamless integration with emcee.)
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Learnt harmonic mean estimator for
simulation-based model selection



Simulation-based inference (SBI)

Consider situation where the likelihood p(y | θ,M) is unknown or intractable.

Simulation-based inference (likelihood-free inference) seeks to perform parameter
inference by estimating the posterior p(θ | yo,M) for observed data yo using simulations
only.

Advantages:

• Forward modelling of complex physics, contamination, observational process.
• No assumptions on the form of the likelihood.
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Flavours of neural density estimation

1. Neural posterior estimation (NPE)
(Papamakarios & Murray 2016; Lueckmann et al. 2017; Greenberg et al. 2019)

2. Neural likelihood estimation (NLE)
(Papamakarios et al. 2019)

3. Neural ratio estimation (NRE)
(Hermans et al. 2019; Durkan et al. 2020)
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Neural posterior estimation (NPE)

Construct training data {(θi, yi)} where parameter drawn from proposal prior θi ∼ p̃(θ |M)

and then generate simulation yi ∼ p(y | θi).

Learn posterior
qNPE
ϕ (θ | y,M) ≃ p(θ | y,M) ,

where ϕ are the parameters of the learned model.

(Papamakarios & Murray 2016; Lueckmann et al. 2017; Greenberg et al. 2019)
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Neural likelihood estimation (NLE)

Learn likelihood
qNLE
ϕ (y | θ,M) ≃ p(y | θ,M) ,

where ϕ are the parameters of the learned model.

(Papamakarios et al. 2019)
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Neural ratio estimation (NRE)

Learn density ratio proportional to the likelihood

rϕ(y,θ) =
p(y,θ)
p(y)p(θ) =

p(y|θ)
p(y) =

p(θ|y)
p(θ) ,

where ϕ are the parameters of the learned model.

(Hermans et al. 2019; Durkan et al. 2020)
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Amortised vs sequential

Amortized approach: Amortise training of the density estimator, allowing offline inference
to be run on multiple different observations.

Sequential approach: Focus on specific observation and train in runs where the proposal
prior matches the intermediate learned posterior.
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Bayesian model comparison for simulation-based inference

Bayesian model comparison for simulation-based inference
(Spurio Mancini, Docherty, Price, McEwen 2022; arXiv:2207.04037).

Matthew DochertyAlessio Spurio Mancini Matt Price
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Naive model evidence computation

Recall NPE and NLE:

qNPE
ϕ (θ | y,M) ≃ p(θ | y,M); qNLE

ψ (y | θ,M) ≃ p(y | θ,M) .

Naive estimate of the model evidence:

ẑ = 1
N
∑
i

qNLE
ψ (yo | θi,M)p(θi |M)

qNPE
ϕ (θi | yo,M)

.

Ratio of two approximate quantities, hence approximation errors compound.
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SBI evidence computation methodologies

Evaluate approx.
likelihood at samples

Train
NPE 

Direct sampling

Compute evidence
using HARMONIC

Train  
NLE

Neural posterior estimation
(NPE)

Train  
NLE

MCMC sampling

Compute evidence
using HARMONIC

Neural likelihood estimation
(NLE)

Evaluate approx.
likelihood at samples

Train  
NRE

Train  
NLE

MCMC sampling

Compute evidence
using HARMONIC
Neural ratio estimation

(NRE)
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SBI evidence computation for NPE

Evaluate approx.
likelihood at samples

Train
NPE 

Direct sampling

Compute evidence
using HARMONIC

Train  
NLE

Neural posterior
estimation (NPE)

Learnt harmonic mean estimator for NPE:

ρ̂ =
1
N

N∑
i=1

φ(θi)

qNLE
ϕ (y|θi)p(θi)

, θi
direct∼ qNPE

ψ (θ|y) .

• Samples can be generated directly using surrogate posterior
(avoiding MCMC sampling) → highly efficient, computed in parallel.

• Only possible since learnt harmonic mean estimator agnostic to
sampling strategy.

• Avoids compounding approximation errors.
• In a likelihood-based setting, can also be applied to accelerate
evidence computation.
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SBI evidence computation for NLE

Train  
NLE

MCMC sampling

Compute evidence
using HARMONIC

Neural likelihood
estimation (NLE)

Learnt harmonic mean estimator for NLE:

ρ̂ =
1
N

N∑
i=1

φ(θi)

qNLE
ϕ (y|θi)p(θi)

, θi
MCMC∼ qNLE

ϕ (y|θ)p(θ) .

• Samples generated by MCMC sampling.
• Avoids compounding approximation errors.
• Only need to train one model.
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SBI evidence computation for NRE

Evaluate approx.
likelihood at samples

Train  
NRE

Train  
NLE

MCMC sampling

Compute evidence
using HARMONIC

Neural ratio estimation
(NRE)

Learnt harmonic mean estimator for NRE:

ρ̂ =
1
N

N∑
i=1

φ(θi)

qNLE
ϕ (y|θi)p(θi)

, θi
MCMC∼ rNREψ (y,θ)p(θ) .

• Samples generated by MCMC sampling.
• Avoids compounding approximation errors.
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Linear Gaussian example

MultiNest Polychord Harmonic NPE
Amortised

NPE
Sequential

NLE
Amortised

NLE
Sequential

NRE
Amortised

NRE
Sequential

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

Ev
id

en
ce

Likelihood-Based
Likelihood-Free
Ground Truth

Model evidence computed in likelihood-based and simulation-based settings.
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Radiata pine example

Model evidence computed in likelihood-based and simulation-based settings.
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Gravitational wave example

Simulate a black-hole, black-hole merger as observed by an interferometer (e.g. LIGO).

Perform model comparison for two models:
1. Spin-Precessing Effective-One-Body Numerical Relativity
2. Inspiral Ringdown Merger

Likelihood available for validation.
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Gravitational wave example

Model evidence computed in likelihood-based and simulation-based settings.
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Proximal nested sampling for
high-dimensional model selection



Nested sampling: reparameterising the likelihood

Nested sampling is a clever approach to efficiently evalute the evidence (Skilling 2006).

Consider ΩL∗ = {x|L(x) ≥ L∗}, which groups the parameter
space Ω into a series of nested subspaces.

Define the prior volume ξ within ΩL∗ by ξ(L∗) =
∫
ΩL∗

π(x)dx.

The marginal likelihood integral can then be rewritten as

Z =

∫ 1

0
L(ξ)dξ,

which is a one-dimensional integral over the prior volume ξ.

L1
L2

L3

L4

. .

.

.

Fe
ro
ze

ta
l.
(2
01
3)

Nested subspaces

.

L1

L2

L3

L4

X1

.

.

.

.

X2X3X4 Fe
ro
ze

ta
l.
(2
01
3)

Reparameterised
likelihoodJason McEwen 50
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Nested sampling: constrained sampling

Require strategy to compute likelihood level-sets (iso-contours) Li and corresponding
prior volumes 0 < ξi ≤ 1.

Nested sampling (Skilling 2006)

1. Draw Nlive live samples from prior, with prior volume ξ0 = 1.
2. Remove sample with smallest likelihood, say Li.
3. Replace removed sample with new sample from the prior but constrained to a higher

likelihood than Li.
4. Estimate (stochastically) prior volume ξi enclosed by likelihood level-set Li.
5. Repeat 2–5.
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Nested sampling: estimating enclosed prior volume stochastically

Enclosed prior volume decreases exponentially at each step: ξi+1 = ti+1ξi.

Shrinkage ratio can be estimated stochastically since E(log t) = −1/Nlive.

The enclosed prior volume can then be estimated by

ξi+1 = exp(−i/Nlive) .
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Nested sampling: evidence estimation and posterior inference

Given the sequence of decreasing prior volumes {ξi}Ni=0 and corresponding likelihoods
Li = L(ξi), the model evidence can be computed numerically using standard quadrature:

Z =
N∑
i=1

Liwi ,

for quadrature weight wi (e.g. the trapezium rule with wi = (ξi−1 + ξi+1)/2).

Posterior inferences can also be computed by assigning importances weights

pi =
Liwi
Z

.
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Nested sampling: challenge

Recall: to compute the marginal likelihood by nested sampling require strategy to
generate likelihoods Li and associated prior volumes ξi.

Achieved by sampling from the prior, subject the likelihood iso-contour constraint, i.e.
sampling from the prior π(x), such that L(x) > L∗.

This is the main difficulty in applying nested sampling to high-dimensional problems.
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Exploit common structure

Many high-dimensional inverse problems are log-convex, e.g. inverse imaging problems
with Gaussian data fidelity and sparsity-promoting prior.

Exploit structure (log convexity) of the problem.

⇒ Proximal nested sampling (Cai, McEwen & Pereyra 2022; arXiv:2106.03646)

Xiaohao Cai Marcelo Pereyra Matt Price
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Constrained sampling formulation

Consider case where prior and likelihood of form

π(x) = exp(−f(x))

prior

, L(x) = exp(−g(x))

likelihood

,

where f and g are convex lower semicontinuous functions on Ω.

Let ιL∗(x) and χL∗(x) be the indicator and characteristic functions:

ιL∗(x) =
{
1, L(x) > L∗,
0, otherwise,

and χL∗(x) =
{
0, L(x) > L∗,
+∞, otherwise.

(1)

Then let πL∗(x) = π(x)ιL∗(x) represent the prior distribution with the hard likelihood
constraint.
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Constrained sampling formulation

Taking the logarithm, we can write

− log πL∗(x) = f(x) + χBτ
(x) ,

where χBτ (x) is the characteristic function associated with the convex set

Bτ := {x|g(x) < τ},

for τ = − log L∗.

Jason McEwen 57

http://www.jasonmcewen.org


MCMC sampling with Langevin dynamics

Consider posteriors of the following form:

p(x | y) = π(x) ∝ exp
(
−p(x)

)
.

If p(x) differentiable can adopt Langevin dynamics.

Based on Langevin diffusion process L(t), with π as stationary distribution:

dL(t) = 1
2∇ log π

(
L(t)

)
dt+ dW(t), L(0) = l0

where W is Brownian motion.

Need gradients so not directly applicable.
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Moreau-Yosida approximation

Moreau-Yosida approximation (envelope) of
f:

fλ(x) = infu∈RN
f(u) + ∥u− x∥2

2λ

Important properties of fλ(x):

1. As λ → 0, fλ(x) → f(x)
2. ∇fλ(x) = (x− proxλf (x))/λ

Moreau-Yosida envelope of |x| for varying λ

[Credit: Stack exchange (ubpdqn)].
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Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021; arXiv:2106.03646)

• Constrained sampling formulation
• Langevin MCMC sampling
• Moreau-Yosida approximation of constraint (and any non-differentiable prior)

Proximal nested sampling Markov chain:

x(k+1) = x(k) − δ

2∇f(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+
√
δw(k+1) .
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Proximal nested sampling intuition

Recall proximal nested sampling Markov chain:

x(k+1) = x(k) − δ

2∇f(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]

+
√
δw(k+1).

1. x(k) is already in Bτ : term
[
x(k) − proxλχBτ

(x(k))
]

disappears and recover usual Langevin MCMC.

2. x(k) is not in Bτ : a step is also taken in the direction
−
[
x(k) − proxλχBτ

(x(k))
]
, which moves the next iteration

in the direction of the projection of x(k) onto the
convex set Bτ . Acts to push the Markov chain back
into the constraint set Bτ if it wanders outside of it.
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Likelihood

constraint set
χBτ

x(k)

x(k−1)

x(k−2)
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in the direction of the projection of x(k) onto the
convex set Bτ . Acts to push the Markov chain back
into the constraint set Bτ if it wanders outside of it.

Likelihood

constraint set
χBτ

x(k)

x(k−1)

x(k+1)

x(k−2)

proxχBτ
(x(k))

proxχBτ
(x

(k) )−x(
k)
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Proximal nested sampling

A subsequent Metropolis-Hastings step guarantees hard likelihood constraint is satisfied.

In practice need to compute proxχBτ
(x(k)), including measurement operator.

For sparsity-promoting non-differentiable priors f(x), can also make Moreau-Yosida
approximation fλ(x) and leverage prox to compute gradient ∇fλ.

Many further details regarding explicit forms of proximal nested sampling for common
priors and likelihoods and how to compute proximity operators efficiently
(Cai, McEwen & Pereyra 2022; arXiv:2106.03646).
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Validation on Gaussian problem
lo
g
(V

×
Z
)

Dimension

lo
g
(V

×
Z
)

Dimension

Comparison of proximal nested sampling (red), naive MC integration (blue) and ground truth (black).
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Measurement model misspecification experiment

Consider ground truth model Φ = MtruthF to simulate observational data y.

However, when solving the inverse problem consider misspecified models Mγ , where
γ > 0 encodes the level of misspecification (mimics incorrectly specified wavelength).

Compute the model evidence using proximal nested sampling, using evidence to
distinguish correct model.
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Measurement model misspecification experiment

Dirty map Φ = M0.12F Φ = M0.09F

Φ = M0.06F Φ = M0.03F Φ = MtruthF
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Measurement model misspecification experiment

Model logZ RMSE (Requires ground truth)

Φ = MtruthF −4.47× 103±0.08 3.40
Φ = M0.03F −4.88× 103±0.08 7.85
Φ = M0.06F −5.63× 103±0.08 12.01
Φ = M0.09F −9.21× 103±0.07 15.71
Φ = M0.12F −1.44× 104±0.08 18.08

Evidence computed by proximal nested sampling correctly classifies models.

Jason McEwen 66

http://www.jasonmcewen.org


Proxnest code

Github: https://github.com/astro-informatics/proxnest

Docs: https://astro-informatics.github.io/proxnest
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Summary



Summary

Many science questions are questions of model comparison
⇒ Bayesian model comparison.

Many outstanding challenges:
• Extending to general sampling strategies.
• Extending to simulation-based inference (likelihood-free inference).
• Scaling to high-dimensions.
• Learned data-driven priors.

1. Learnt harmonic mean estimator for Bayesian model comparison
(McEwen, Wallis, Price & Docherty 2021; arXiv:2111.12720)

2. Bayesian model comparison for simulation-based inference
(Spurio Mancini, Docherty, Price & McEwen 2022; arXiv:2207.04037).

3. Proximal nested sampling for high-dimensional Bayesian model comparison
(Cai, McEwen & Pereyra 2022; arXiv:2106.03646)
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