Big-Data in Astronomy and Astrophysics

Extracting Meaning from Big-Data

Jason McEwen

www.jasonmcewen.org @iasonmcewen

Mullard Space Science Laboratory (MSSL) University College London (UCL)

Connecting the Dots Institute of High Energy Physics, Vienna, February 2016

Outline

• Big-data in astronomy and astrophysics

- Illustrative analyses
 - Planck
 - Euclid
 - LSST
 - SKA

Concluding remarks

What is big-data?

The nVs (originally 3Vs, then 6Vs, then 10Vs, ...): Volume: many bytes (e.g. typically peta, exabytes) Variety: structural heterogeneity (e.g. sub-populations, variety of sources) 3 Velocity: rate of generation and analysis

What is big-data?

The nVs (originally 3Vs, then 6Vs, then 10Vs, \dots):

- Volume: many bytes (e.g. typically peta, exabytes)
- Variety: structural heterogeneity (e.g. sub-populations, variety of sources)
- Velocity: rate of generation and analysis
- Veracity: unreliability in sources
- Variability: variation in data flow rate
- Value: low value density
- 7

What is big-data in astronomy and astrophysics?

- Big machines
 - experiments, physical hardware, computing
- Big theory and simulations for forward modelling
 - cosmological evolution of linear perturbations, N-body simulations, non-linear scales (astrophysics + cosmology), radiative transfer, semi-numerical methods
- Big parameter space
- Big algorithms
- Big collaborations
- Big engagement
 - e.g. outreach, industry

What is big-data in astronomy and astrophysics?

Wide and deep data and observations

A. Gandomi, M. Haider / International Journal of Information Management 35 (2015) 137-144

Fig. 3. Processes for extracting insights from big data.

Computational challenges:

- Data too big (to hold in memory)
- Access and analysis too slow (unfeasible)
- Too much power/energy required

- Heterogeneity, e.g. sub-populations, different data sources, tension between data
- Error accumulation, e.g. high-dimensional parameter spaces, bias
- Spurious correlations, e.g. correlation vs causation, data dredging
- Incident endogeneity, e.g. chance correlation between signal of interest and error

- Heterogeneity, e.g. sub-populations, different data sources, tension between data
- Error accumulation, e.g. high-dimensional parameter spaces, bias
- Spurious correlations, e.g. correlation vs causation, data dredging
- Incident endogeneity, e.g. chance correlation between signal of interest and error

- Heterogeneity, e.g. sub-populations, different data sources, tension between data
- **Error accumulation**, e.g. high-dimensional parameter spaces, bias
- Spurious correlations, e.g. correlation vs causation, data dredging
- Incident endogeneity, e.g. chance correlation between signal of interest and error

- Heterogeneity, e.g. sub-populations, different data sources, tension between data
- **Error accumulation**, e.g. high-dimensional parameter spaces, bias
- Spurious correlations, e.g. correlation vs causation, data dredging
- Incident endogeneity, e.g. chance correlation between signal of interest and error

Analysing big-data

Generic approaches to analysing big-data (Wang et al. 2015):

- Subsample
- Divide-and-conquer
- Stream processing

Additional approaches in astronomy and astrophysics:

- Exploit structure (geometry, symmetry, physics)
- Modelling:
 - Model-based consolidatory science
 - Model-agnostic exploratory science
- Approximation
- ...

Analysing big-data

Generic approaches to analysing big-data (Wang et al. 2015):

- Subsample
- Divide-and-conquer
- Stream processing

Additional approaches in astronomy and astrophysics:

- Exploit structure (geometry, symmetry, physics)
- Modelling:
 - Model-based consolidatory science
 - Model-agnostic exploratory science
- Approximation
- •

Analysing big-data

Examples of specific methods:

- Bayesian analysis
- MCMC sampling
- Hierarchical probabilistic (Bayesian) models
- Variable selection
- Experimental design
- Machine learning
- Optimisation
- Wavelets
- Sparsity
- Compressed sensing
- ...

⇒ Astrostatistics and Astroinformatics

• Big-data in astronomy and astrophysics

- Illustrative analyses
 - Planck
 - Euclid
 - LSST
 - SKA

Concluding remarks

ESA Planck satellite

Credit: Planck

Big-Data Illustrative Analyses Concluding Remarks Planck Euclid LSST SKA

Observations made on the celestial sphere

© 2006 Abrams and Primack, Inc.

Observations of the cosmic microwave background (CMB)

Transforms

 Spin scale-discretised wavelet transform is given by the projection onto each wavelet (Wiaux, McEwen et al. 2008, McEwen et al. 2013, McEwen et al. 2015):

$$\underbrace{W^{s\Psi^{j}}(\rho) = \langle sf, \mathcal{R}_{\rho s}\Psi^{j} \rangle}_{\text{projection}} = \int_{\mathbb{S}^{2}} d\Omega(\omega)_{s} f(\omega) (\mathcal{R}_{\rho s}\Psi^{j})^{*}(\omega) .$$

Original function may be recovered exactly in practice from wavelet coefficients:

Scale-discretised wavelets on the sphere

Fast algorithms and codes

 Fast algorithms essential (McEwen, Leistedt et al. 2015, Leistedt, McEwen et al. 2013, McEwen et al. 2013, Leistedt McEwen et al. 2007, Wiaux, McEwen & Vielva 2007, Wiaux et al. 2005, Wandelt & Gorski 2001, Risbo 1996)

FastCSWT code

http://www.fastcswt.org

Fast directional continuous spherical wavelet transform algorithms McEwen et al. (2007)

- Fortran
- Supports directional and steerable wavelets

S2DW code

http://www.s2dw.org

Exact reconstruction with directional wavelets on the sphere Wiaux, McEwen, Vandergheynst, Blanc (2008)

- Fortran
- Parallelised
- Supports directional and steerable wavelets
- Supports inversion

Scale-discretised wavelets on the sphere

Fast algorithms and codes

S2LET code

S2LET: Fast wavelet analysis on the sphere

McEwen, Leistedt, Büttner, Peiris & Wiaux (2015), Leistedt, McEwen, et al. (2012)

- C. Matlab, IDL, Python
- Supports directional and steerable wavelets, ridgelets and curvelets
- Supports inversion
- Supports spin
- Faster algorithms

SO3 code

http://www.sothree.org

SO3: Fast Wigner transforms on the rotation group

McEwen, Büttner, Leistedt, Peiris & Wiaux (2015)

- C, Matlab, Python
- Fast and exact Fourier transforms on the rotation group SO(3)

Planck component separation

The sky as seen by Planck

Planck component separation suc

 SILC: Blind Planck component separation via Scale-discretised, directional wavelet Internal Linear Combination (Rogers, Peiris, Leistedt, McEwen & Pontzen 2016)

Keir Rogers

Spatial
WMAP Collab. (2003)

NILC

Harmonic Tegmark et al. (2003)

+ Morphological

NILC: Delabrouille et al. (2009) SILC: Rogers et al. (2016) Wang et al. (2015) • SILC (R1) maps available for download: http://www.silc-cmb.org

Bianchi VII_h cosmologies

- Test fundamental assumptions on which modern cosmology is based, e.g. isotropy.
- Relax assumptions about the global structure of spacetime by allowing anisotropy about each point in the universe, i.e. rotation and shear.
- Yields more general solutions to Einstein's field equations → Bianchi cosmologies.
- Induces a characteristic subdominant, deterministic signature in the CMB, which is embedded in the usual stochastic anisotropies (Collins & Hawking 1973, Barrow et al. 1985).

Figure: Bianchi CMB contribution.

Bianchi VII_h cosmologies Simulations

Figure: Simulated CMB contributions in Bianchi VII_h cosmologies for varying parameters.

Bianchi VII_h cosmologies

Bayesian analysis

- Apply Bayesian analysis of McEwen et al. (2013) to Planck data (previously WMAP).
- Likelihood given by

$$\boxed{ P(\boldsymbol{d} \mid \Theta_{\mathrm{B}}, \Theta_{\mathrm{C}}) \propto \frac{1}{\sqrt{|\mathbf{X}(\Theta_{\mathrm{C}})|}} e^{\left[-\chi^{2}(\Theta_{\mathrm{C}}, \Theta_{\mathrm{B}})/2\right]}, }$$

where

$$\chi^{2}(\Theta_{C},\Theta_{B}) = \left[\mathbf{d} - \mathbf{b}(\Theta_{B}) \right]^{\dagger} \mathbf{X}^{-1}(\Theta_{C}) \left[\mathbf{d} - \mathbf{b}(\Theta_{B}) \right].$$

Compute the Bayesian evidence to determine preferred model:

$$E = P(\mathbf{d} \mid M) = \int d\Theta P(\mathbf{d} \mid \Theta, M) P(\Theta \mid M).$$

 Use MultiNest to compute the posteriors and evidences via nested sampling (Feroz & Hobson 2008, Feroz et al. 2009).

Best-fit Bianchi component (flat-decoupled-Bianchi model)

Figure: Best-fit template of flat-decoupled-Bianchi VII_h model.

BUT parameter estimates are not consistent with concordance cosmology.

- Follow up with Planck 2015 polarisation data, rules our flat-Bianchi-decoupled model.
- Find no evidence for Bianchi VII_h cosmologies and constrain vorticity to (Planck Collaboration XVIII 2015):

$$\omega/H)_0 < 7.6 \times 10^{-10}$$

Outline

• Big-data in astronomy and astrophysics

- Illustrative analyses
 - Planck
 - Euclid
 - LSST
 - SKA

Concluding remarks

Big-Data Illustrative Analyses Concluding Remarks Planck Eu

ESA Euclid satellite

Credit: Euclid

Euclid sky coverage

Switch on

Euclid sky coverage

2 weeks

Euclid sky coverage

6 months

1 year

Galaxies on the 3D ball

Credit: SDSS

Fourier-LAGuerre wavelets (flaglets) on the ball

 Fourier-Laguerre wavelet (flaglet) transform is given by the projection onto each wavelet (Leistedt & McEwen 2012):

$$\underbrace{W^{s\Psi^{jj'}}(r,\rho) = \langle sf, \mathcal{T}_{(r,\rho)} \, s\Psi^{jj'} \rangle}_{\text{projection}} = \int_{\mathbb{B}^3} d^3 \mathbf{r} \, sf(\mathbf{r}) (\mathcal{T}_{(r,\rho)} \, s\Psi^{jj'})^*(\mathbf{r}) .$$

Original function may be recovered exactly in practice from wavelet coefficients:

$${}_{s}f(\mathbf{r}) = \sum_{j,j'} \left[\int_{\mathrm{SO}(3)} \mathrm{d}\varrho(\rho) \int_{\mathbb{R}^{+}} \mathrm{d}\mathbf{r} \, W^{s} \Psi^{jj'}(\mathbf{r},\rho) (\mathcal{T}_{(\mathbf{r},\rho)} \, s \Psi^{jj'})(\mathbf{r}) \, . \right]$$
wavelet contribution

finite sum

Fourier-LAGuerre wavelets (flaglets) on the ball

Big-Data Illustrative Analyses Concluding Remarks Planck Euclid LSST SKA

3D weak gravitational lensing

3D weak gravitational lensing

- 3D weak lensing with spin wavelets on the ball (Leistedt, McEwen, Kitching, Peiris 2015).
- Wavelet transform of 3D cosmic shear:

Boris Leistedt

Wavelet covariance:

$$C^{ij,i'j'}(\mathbf{n},\mathbf{n}',r,r') = \langle W_{2\gamma}^{2\Psi^{ij}}(\mathbf{n},r) W_{2\gamma}^{2\Psi^{i'j'}*}(\mathbf{n}',r') \rangle$$

compute from data

Theory wavelet covariance:

$$C^{ij,i'j'}(\mathbf{n}\cdot\mathbf{n}',r,r') = \frac{2}{\pi} \sum_{\ell} \frac{(N_{\ell,2})^2}{4} \int_{\mathbb{R}^+} dk k^2 \int_{\mathbb{R}^+} dk' k'^2 C_{\ell}^{\phi\phi}(k,k') P_{\ell}(\mathbf{n}\cdot\mathbf{n}') {}_{2}\mathcal{H}_{\ell}^{ij}(k,r) {}_{2}\mathcal{H}_{\ell}^{i'j'*}(k',r')$$

compute from theory

 Simultaneous spatial and scale representation (can handle complicated sky coverage and filter unreliable harmonic modes).

Outline

• Big-data in astronomy and astrophysics

- Illustrative analyses
 - Planck
 - Euclid
 - LSST
 - SKA

6 Concluding remarks

Large Synoptic Survey Telescope (LSST)

Credit: SpaceTelescope.org

Photometric supernova classification

Machine learning

- Photometric supernova classification by machine learning (Lochner, McEwen, Peiris & Lahav, in prep.)
- · Go beyond single techniques to study classes.
- Understand physical requirements (e.g. representative training, redshift).

Michelle Lochner

Figure: Feature selection classes (in order of increasing model independence)

Photometric supernova classification

Importance of representative training data

Photometric supernova classification

Importance of redshift

Outline

• Big-data in astronomy and astrophysics

- Illustrative analyses
 - Planck
 - Euclid
 - LSST
 - SKA

Concluding remarks

Square Kilometre Array (SKA)

SKA sites

Astronomical Data Deluge

Megadata

In excess of 1 Exabyte of raw data in a single day - more than the entire daily internet traffic

Square Kilometre Array

+ A €1.5 billion global science project

+ Astronomers and engineers from more than 70 institutes in 20 countries

+ 3000 dishes, each 15m wide

Using enough optical fibre to wrap twice around the Earth

+ A combined collecting area of about one square kilometre

Enough raw data to fill over every day

 Automated data classification = faster with fewer errors

+ Guided search = easier access for scientists and non-scientists alike

+ Frees researchers to be more productive and creative

Information Intensive Framework A prototype software architecture to manage the megadata generated by SKA

Top image: SPDO/Swinburne Astronomy Productions

Astronomical Data Deluge

Megadata

In excess of 1 Exabyte of raw data in a single day - more than the entire daily internet traffic

Square Kilometre Array

£1.5h

+ A €1.5 billion global science project

Astronomers and engineers from more than 70 institutes in 20 countries

+ 3000 dishes, each 15m wide

Using enough optical fibre to wrap twice around the Earth

+ A combined collecting area of about one square kilometre

Enough raw data to fill over every day

+ Guided search = easier access for scientists and non-scientists alike

+ Frees researchers to be more productive and creative

classification = faster

with fewer errors

Automated data

Information Intensive Framework A prototype software architecture to manage the megadata generated by SKA

Top image: SPDO/Swinburne Astronomy Productions

Radio interferometric telescopes acquire "Fourier" measurements

Compressive sensing

- Developed by Candes et al. 2006 and Donoho 2006 (and others).
- Although many underlying ideas around for a long time.
- Exploits the sparsity of natural signals.
- Next evolution of wavelet analysis.
- Acquisition versus imaging.

(a) Emmanuel Candes

(b) David Donoho

• Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F:
 - masking M which encodes the incomplete measurements taken by the interferometer

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - ► Fourier transform F;
 - masking M which encodes the incomplete measurements taken by the interferometer.

Radio interferometric inverse problem

Consider the ill-posed inverse problem of radio interferometric imaging:

$$y = \Phi x + n$$

where y are the measured visibilities, Φ is the linear measurement operator, x is the underlying image and n is instrumental noise.

- Measurement operator $\Phi = \mathbf{MFCA}$ may incorporate:
 - primary beam A of the telescope;
 - w-modulation modulation C;
 - Fourier transform F:
 - masking M which encodes the incomplete measurements taken by the interferometer.

Interferometric imaging: recover an image from noisy and incomplete Fourier measurements.

Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

- Leverage ideas from compressive sensing (Donoho, Candes) by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ .
- Basis Pursuit (BP) denoising problem

$$oldsymbol{lpha}^\star = rg\min_{oldsymbol{lpha}} \lVert lpha \rVert_1 \; ext{such that} \; \lVert y - \Phi \Psi oldsymbol{lpha}
Vert_2 \leq \epsilon \; ,$$

where the image is synthesised by $x^* = \Psi \alpha^*$.

Interferometric imaging with compressed sensing

Solve the interferometric imaging problem

$$y = \Phi x + n$$
 with $\Phi = \mathbf{M} \mathbf{F} \mathbf{C} \mathbf{A}$,

- Leverage ideas from compressive sensing (Donoho, Candes) by applying a prior on sparsity of the signal in a sparsifying dictionary Ψ .
- Basis Pursuit (BP) denoising problem

$$\boxed{ \boldsymbol{\alpha}^{\star} = \mathop{\arg\min}_{\boldsymbol{\alpha}} \lVert \boldsymbol{\alpha} \rVert_{1} \; \text{such that} \; \lVert \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\alpha} \rVert_{2} \leq \epsilon \; , }$$

where the image is synthesised by $x^* = \Psi \alpha^*$.

SARA for radio interferometric imaging

Algorithm

- Sparsity averaging reweighted analysis (SARA) for RI imaging (Carrillo, McEwen & Wiaux 2012)
- Consider a dictionary composed of a concatenation of orthonormal bases, i.e.

$$\Psi = \frac{1}{\sqrt{q}}[\Psi_1, \Psi_2, \dots, \Psi_q],$$

thus $\Psi \in \mathbb{R}^{N \times D}$ with D = qN.

- We consider the following bases: Dirac (i.e. pixel basis); Haar wavelets (promotes gradient sparsity); Daubechies wavelet bases two to eight.
 - ⇒ concatenation of 9 bases
- Promote average sparsity by solving the reweighted ℓ_1 analysis problem:

$$\left[\begin{array}{cccc} \min_{\bar{\pmb{x}} \in \mathbb{R}^N} \| \pmb{W} \Psi^T \bar{\pmb{x}} \|_1 & \text{subject to} & \| \pmb{y} - \Phi \bar{\pmb{x}} \|_2 \leq \epsilon & \text{and} & \bar{\pmb{x}} \geq 0 \ , \end{array} \right]$$

where $W \in \mathbb{R}^{D \times D}$ is a diagonal matrix with positive weights.

• Solve a sequence of reweighted ℓ_1 problems using the solution of the previous problem as the inverse weights \rightarrow approximate the ℓ_0 problem.

SARA for radio interferometric imaging

Supporting continuous visibilities

(c) "CLEAN" (SNR= 8.2dB)

Figure: Reconstructed images from continuous visibilities.

Supporting continuous visibilities

Results on simulations

(c) "CLEAN" (SNR= 8.2dB)

(d) "MS-CLEAN" (SNR= 11.1dB)

Figure: Reconstructed images from continuous visibilities.

Supporting continuous visibilities

Results on simulations

Figure: Reconstructed images from continuous visibilities.

Distributed storage and computation (Onose et al. 2016) by divide-and-conquer and sub-sampling techniques

SOPT code

http://basp-group.github.io/sopt/

Sparse OPTimisation Carrillo, McEwen, Wiaux

SOPT is an open-source code that provides functionality to perform sparse optimisation using state-of-the-art convex optimisation algorithms.

PURIFY code

http://basp-group.github.io/purify/

Next-generation radio interferometric imaging Carrillo, McEwen, Wiaux

PURIFY is an open-source code that provides functionality to perform radio interferometric imaging, leveraging recent developments in the field of compressive sensing and convex optimisation.

Concluding remarks

- Increasingly inter-disciplinary, drawing on statistics, applied mathematics, computer science, information engineering, . . .
- Increasingly intra-disciplinary (e.g. Planck, Euclid, LSST, SKA, ...)
- Many methodological synergies

Concluding remarks

How can we exploit synergies?

- Open (unencumbered) data and open code
- Develop best practices (e.g. code development, general codes, reproducible/replicable research, blinded analysis)
- Explore HPC synergies (e.g. Dirac, Archer, Hartree, Google, Amazon, ...)
- Go beyond individual techniques to understand properties of classes of approach
- 5 Develop common language
- Promote inter- and intra-disciplinary collaboration and communication, e.g. Alan Turing Institute (ATI), workshops (e.g. BASP conference), Hackathons, . . .
- 7 ...