Scientific AI for the Physical Sciences

Jason D. McEwen www.jasonmcewen.org

SciAI Group, Mullard Space Science Laboratory (MSSL) Centre for Data Intensive Science & Industry (DISI) University College London (UCL)

ICML @ London 2024

The AI hammer

The AI cog

Merging paradigms

Scientific AI for the physical sciences

Scientific AI for the physical sciences

Scientific AI for the physical sciences

Some (very!) brief case studies

- 1. Differentiable Physics
- 2. Geometric & Equivariant Deep Learning
- 3. Generative Models for Textures
- 4. Accelerated Bayesian Inference
- 5. Denoising Diffusion MCMC for Imaging

Differentiable Physics

Differentiable physics

- *▷* Differentiable physical models
	- ▶ Radio interferometric telescope (Mars *et al.* 2023, 2024) ⇝ Reconstruction quality *↑* (*∼*20dB) ⇝ Computation time *↓* (*∼*600*×*)
	- \blacktriangleright Weak gravitational lensing (Whitney *et al.* in prep.)
	- ▶ JAX-Cosmo, CosmoPower-JAX (Campagne *et al.* 2023, Spurio Mancini *et al.* 2021, Piras *et al.* 2023)

Hybrid physics-enhanced AI model

Differentiable physics allows hybrid physics-enhanced AI models.¹⁰

RON

Differentiable physics

- *▷* Differentiable mathematical methods
	- \blacktriangleright Spherical harmonic transforms (Price & McEwen 2024; s2fft code) ⇝ Computation time *↓* (*∼*400*×*)
	- \blacktriangleright Spherical wavelet transforms (Price *et al.* 2024; s2wav code) ⇝ Computation time *↓* (*∼*300*×*) Spherical harmonics

颂

Initialise Recursion $d_m'(\beta) = \sqrt{\frac{(2\ell)!}{(\ell+n)!(\ell-n)!}} \Biggl(-\sin\frac{\beta}{2} \Biggr)^{\ell-n} \Biggl(\cos\frac{\beta}{2} \Biggr)^{\ell+n}$ Execute Rec $d_{m-1,n}^\ell(\beta)=\lambda_m\,a_{m-1}d_{mn}^\ell(\beta)\!-\!\frac{a_{m-1}}{a_m}d_{m+1,n}^\ell(\beta)$

 $\text{where } \lambda_m = \frac{n-m\cos\beta}{\sin\beta} \;\text{ and }\; a_m = \frac{2}{\sqrt{(\ell-m)(\ell+m+1)}}$ Avoid Singularities

 $\overline{d^{\ell}_{mn}(0)}=\delta_{mn}$ and $\overline{d^{\ell}_{mn}(\pi)}=(-1)^{\ell+m}\delta_{m,-n}$

Differentiable and GPU-friendly recursions

Differentiable physics

- *▷* Differentiable mathematical methods
	- \blacktriangleright Spherical harmonic transforms (Price & McEwen 2024; s2fft code) ⇝ Computation time *↓* (*∼*400*×*)
	- \blacktriangleright Spherical wavelet transforms (Price *et al.* 2024; s2wav code)
		-

⇝ Computation time *↓* (*∼*300*×*) Spherical harmonics

Initialise Recursion $d_m'(\beta) = \sqrt{\frac{(2\ell)!}{(\ell+n)!(\ell-n)!}} \Biggl(-\sin\frac{\beta}{2} \Biggr)^{\ell-n} \Biggl(\cos\frac{\beta}{2} \Biggr)^{\ell+n}$ Execute Rec $d_{m-1,n}^\ell(\beta)=\lambda_m\,a_{m-1}d_{mn}^\ell(\beta)\!-\!\frac{a_{m-1}}{a_m}d_{m+1,n}^\ell(\beta)$ where $\lambda_m = \frac{n - m \cos \beta}{\sin \beta}$ and $a_m = \frac{2}{\sqrt{(\ell - m)(\ell + m + 1)}}$

Avoid Singularities $\overline{d^{\ell}_{mn}(0)}=\delta_{mn}$ and $\overline{d^{\ell}_{mn}(\pi)}=(-1)^{\ell+m}\delta_{m,-n}$

Cosmological observations made on the celestial sphere.

 \circledast

嫩

Jason McEwen 13 November 2014 13:30 November 2014 13:30 November 2014 13:30 November 2014 13:30 November 2014

\$

- *▷* 10⁹ saving in compute and 10⁴ saving in memory (for 4k spherical image).
- *▷* SOTA performance on variety of benchmark problems (classification, depth estimation, semantic segmentation).

Semantic segmentation for 2D3DS data-set.

ES

Unknown
Beam
Bookcase
Bookcase
Ceiling
Chair
Clutter
Column
Floor
Sofa
Table
Wall
Window
Invalid ----------------

- *▷* 10⁹ saving in compute and 10⁴ saving in memory (for 4k spherical image).
- *▷* SOTA performance on variety of benchmark problems (classification, depth estimation, semantic segmentation).

RGB

Generative Models for Textures

Why not use standard AI generative models?

Standard machine learning techniques:

- *▷* require substantial training data (which we often do not have);
- *▷* suffers covariate shift (*i.e.* change in physical model);
- *▷* fails to capture symmetries of data (unless encode in model architecture).

Why not use standard AI generative models?

Standard machine learning techniques:

- *▷* require substantial training data (which we often do not have);
- *▷* suffers covariate shift (*i.e.* change in physical model);
- *▷* fails to capture symmetries of data (unless encode in model architecture).

⇒ Statistical characterization and generative modelling.

- *▷* Wavelet scattering networks inspired by CNNs but designed rather than learned filters (Mallat 2012).
- *▷* Extend to spherical scattering networks (McEwen et al. 2022).

Scattering transform on the sphere

Spherical scattering propagator for scale *j*:

$$
U[j]f=|f\star\psi_j|.
$$

Orthographic plot of spherical wavelets.

Scattering transform on the sphere

Spherical scattering propagator for scale *j*:

$$
U[j]f=|f\star\psi_j|.
$$

Spherical cascade of propagators:

 $U[p]f = |||f \star \psi_{j_1}| \star \psi_{j_2}| \ldots \star \psi_{j_d}|.$

Orthographic plot of spherical wavelets.

Scattering transform on the sphere

● [:] Q

$$
U[j]f=|f\star\psi_j|.
$$

Spherical cascade of propagators:

$$
U[p]f = |||f \star \psi_{j_1}| \star \psi_{j_2}| \ldots \star \psi_{j_d}|.
$$

Scattering coefficients:

 $S[p]f = ||[f \star \psi_{j_1}] \star \psi_{j_2}] \ldots \star \psi_{j_d}] \star \phi.$

Orthographic plot of spherical wavelets.

Stability to diffeomorphisms

●記〇

Let $\zeta \in \text{Diff}(\mathbb{S}^2)$. If $\zeta = \zeta_1 \circ \zeta_2$ for some isometry $\zeta_1 \in \text{Isom}(\mathbb{S}^2)$ and diffeomorphism $\zeta_2 \in \text{Diff}(\mathbb{S}^2)$, then there exists a constant *C* such that for all $f \in \mathrm{L}^2(\mathbb{S}^2)$,

$$
\|\mathcal{S}_{\mathbb{P}_D}f-\mathcal{S}_{\mathbb{P}_D}V_\zeta f\|_2\,\leq CL^2\big[L^2\,\|\zeta_2\|_\infty\, +L^{1/2}(D+1)^{1/2}\lambda^{J_0}\,\|\zeta_1\|_\infty\,\big]\|f\|_2.
$$

Difference in representation.

Scattering network representation is stable to small diffeomorphisms about isometry.

Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere (Mousset, Allys, Price, *et al.* McEwen 2024; s2scat code)

Scattering covariance statistics:

1. $S_1[\lambda] f = \mathbb{E} \left[|f \star \psi_{\lambda}| \right]$. 2. $S_2[\lambda] f = \mathbb{E} \left[|f \star \psi_{\lambda}|^2 \right].$ 3. $S_3[\lambda_1, \lambda_2] f = \text{Cov}[f \star \psi_{\lambda_2}, |f \star \psi_{\lambda_1}| \star \psi_{\lambda_2}].$ 4. $S_4[\lambda_1, \lambda_2, \lambda_3] f = \text{Cov} \left[|f \star \psi_{\lambda_1}| \star \psi_{\lambda_3}, |f \star \psi_{\lambda_2}| \star \psi_{\lambda_3} \right].$

Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere (Mousset, Allys, Price, *et al.* McEwen 2024; s2scat code)

Scattering covariance statistics:

1. $S_1[\lambda] f = \mathbb{E} \left[|f \star \psi_{\lambda}| \right]$. 2. $S_2[\lambda] f = \mathbb{E} \left[|f \star \psi_{\lambda}|^2 \right].$ 3. $S_3[\lambda_1, \lambda_2] f = \text{Cov}[f \star \psi_{\lambda_2}, |f \star \psi_{\lambda_1}| \star \psi_{\lambda_2}].$ 4. $S_4[\lambda_1, \lambda_2, \lambda_3] f = \text{Cov} \left[|f \star \psi_{\lambda_1}| \star \psi_{\lambda_3}, |f \star \psi_{\lambda_2}| \star \psi_{\lambda_3} \right].$

Generative modelling by matching set of scattering covariance statistics *S*(*f*) with a (single) target simulation:

$$
\min_{f} \|\mathcal{S}(f) - \mathcal{S}(f_{\text{target}})\|^2.
$$

Generative modelling of cosmic textures (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of cosmological weak lensing field.

Generative modelling of cosmic textures (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of cosmological weak lensing field.

See poster

Accelerated Bayesian Inference

Bayesian inference

● : 3 Q

● [:] Q Bayesian inference Bayes' theorem likelihood prior likelihood prior *L*(*θ*) *π*(*θ*) *p*(*y | θ, M*) *p*(*θ | M*) $p(\theta | y, M)$ *,* = = *z p*(*y | M*) posterior evidence evidence for parameters *θ*, model *M* and observed data *y*.

\$: Bayesian inference Ω Bayes' theorem likelihood prior likelihood prior *L*(*θ*) *π*(*θ*) *p*(*y | θ, M*) *p*(*θ | M*) $p(\theta | \mathbf{y}, \mathsf{M}) =$ *,* = *z p*(*y | M*) posterior evidence evidence for parameters *θ*, model *M* and observed data *y*.

For parameter estimation, typically draw samples from the posterior by *Markov chain Monte Carlo (MCMC)* sampling.

\$ [:] Bayesian inference Bayes' theorem likelihood prior likelihood prior $p(y | \theta, M)$ $p(\theta | M)$ *L*(*θ*) *π*(*θ*) $p(\theta | \mathbf{y}, \mathsf{M}) =$ = *, z p*(*y | M*) posterior evidence evidence for parameters *θ*, model *M* and observed data *y*. For parameter estimation, typically draw samples from the posterior by *Markov chain Monte Carlo (MCMC)* sampling.

For model selection, must compute Bayesian evidence (marginal likelihood):

$$
z = p(\mathbf{y} | M) = \int d\theta \, \mathcal{L}(\theta) \, \pi(\theta) \, .
$$

New paradigm for accelerated Bayesian inference

Leverage recent machine learning developments and underlying technology.

Four pillars of a new paradigm (Piras *et al.* 2024):

New paradigm for accelerated Bayesian inference

Leverage recent machine learning developments and underlying technology.

Four pillars of a new paradigm (Piras *et al.* 2024):

- 1. Emulation, *e.g.* CosmoPower-JAX (Spurio Mancini *et al.* 2021, Piras *et al.* 2023).
- 2. Differentiable and probabilistic programming, *e.g.* JAX, NumPyro.
- 3. Scalable MCMC that exploit gradients, *e.g.* NUTS.
- 4. Decoupled and scalable Bayesian model selection, *e.g.* learned harmonic mean that leverages normalizing flows

(McEwen *et al.* 2021, Spurio Mancini *et al.* 2022, Polanska *et al.* 2024, Piras *et al.* 2024; harmonic code) .

Learned harmonic mean estimator for Bayesian evidence

● [:] Q

- *▷* Requires posterior samples only
	- \rightsquigarrow Evidence almost for free
- *▷* Agnostic to sampling technique
	- ⇝ Leverage efficient samplers
	- \rightarrow Simulation-based inference (SBI)
	- ⇝ Variational inference

▷ Scale to high-dimensions

 \rightsquigarrow Normalizing flows

- Accelerated Bayesian inference (Piras *et al.* 2024)
- 37 parameter cosmic shear analysis of LCDM vs w_0w_aCDM
	- *▷* CAMB + PolyChord ⇝ 8 months on 48 CPU cores
	- *▷* CosmoPower-JAX + NumPyro/NUTS + Harmonic ⇝ 2 days on 12 GPUs
- 157 parameter 3x2pt analysis of LCDM vs w_0w_a CDM
- *▷* CAMB + PolyChord ⇝ 12 years on 48 CPUs (projected)
- *▷* CosmoPower-JAX + NumPyro/NUTS + Harmonic \rightsquigarrow 8 days on 24 GPUs

Learned harmonic mean estimator for Bayesian evidence

∰ $\left[\cdot\right]$ Ω

- *▷* Requires posterior samples only
	- \rightsquigarrow Evidence almost for free
- *▷* Agnostic to sampling technique
	- ⇝ Leverage efficient samplers
	- \rightarrow Simulation-based inference (SBI)
	- ⇝ Variational inference
- *▷* Scale to high-dimensions
	- \rightsquigarrow Normalizing flows

37 parameter cosmic shear analysis of LCDM vs w_0w_a CDM

- *▷* CAMB + PolyChord ⇝ 8 months on 48 CPU cores
- *▷* CosmoPower-JAX + NumPyro/NUTS + Harmonic ⇝ 2 days on 12 GPUs
- 157 parameter 3x2pt analysis of LCDM vs w_0w_a CDM
- *▷* CAMB + PolyChord ⇝ 12 years on 48 CPUs (projected)
- *▷* CosmoPower-JAX + NumPyro/NUTS + Harmonic ⇝ 8 days on 24 GPUs

Denoising Diffusion MCMC for Imaging

High-dimensional inverse imaging problems

Classical high-dimensional imaging problems often consider Gaussian likelihood and sparsity-promoting prior (e.g. in wavelet representation Ψ):

$$
p(\mathbf{y}|\mathbf{x}) \propto \exp\left(-\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/(2\sigma^2)\right)
$$
 $p(\mathbf{x}) \propto \exp\left(-\|\mathbf{\Psi}^\dagger\mathbf{x}\|_1\right)$

Likelihood

Prior

Often compute MAP estimator (variational regularisation) by convex optimization:

$$
\arg \max_{x} \log p(x | y) = \arg \min_{x} \left[\frac{\left\| y - \Phi x \right\|_{2}^{2}}{\text{Data fidelity}} + \frac{\lambda \|\Psi^{\dagger} x\|_{2}}{\text{Boxular}}
$$

High-dimensional inverse imaging problems

\$:: Ω

Prior

1

Classical high-dimensional imaging problems often consider Gaussian likelihood and sparsity-promoting prior (e.g. in wavelet representation Ψ):

$$
p(\mathbf{y}|\mathbf{x}) \propto \exp\left(-\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/(2\sigma^2)\right)
$$
 $p(\mathbf{x}) \propto \exp\left(-\|\mathbf{\Psi}^\dagger\mathbf{x}\|_1\right)$

Likelihood

Often compute MAP estimator (variational regularisation) by convex optimization:

$$
\arg \max_{x} \log p(x | y) = \arg \min_{x} \left[\frac{\left\| y - \Phi x \right\|_{2}^{2}}{\text{Data fidelity}} \right] + \frac{\lambda \|\Psi^{\dagger} x\|_{1}}{\text{Regulariser}}
$$

High-dimensional inverse imaging problems

1

sparsity-promoting prior (e.g. in wavelet representation Ψ):

$$
p(\mathbf{y} \mid \mathbf{x}) \propto \exp\left(-\|\mathbf{y} - \mathbf{\Phi} \mathbf{x}\|_2^2 / (2\sigma^2)\right) \qquad p(\mathbf{x}) \propto \exp\left(-\|\mathbf{\Psi}^\dagger \mathbf{x}\|_1\right)
$$

Often compute MAP estimator (variational regularisation) by convex optimization:

"

$$
\arg \max_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) = \arg \min_{\mathbf{x}} \left[\frac{\|\mathbf{y} - \mathbf{\Phi} \mathbf{x}\|_2^2}{\text{Data fidelity}} \right] + \frac{\lambda \|\mathbf{\Psi}^\dagger \mathbf{x}\|_1}{\text{Regulariser}}
$$

⇒ Alternatively, sample posterior to quantify uncertainties (parameter estimation and model selection).

Proximal nested sampling

● 2 日

Proximal nested sampling (Cai, McEwen & Pereyra 2021):

- *▷* Constrained nested sampling formulation;
- *▷* Langevin diffusion MCMC sampling;
- *▷* Proximal calculus Moreau-Yosida approximation of constraint.

Proximal nested sampling

●記〇

.

Proximal nested sampling (Cai, McEwen & Pereyra 2021):

- *▷* Constrained nested sampling formulation;
- *▷* Langevin diffusion MCMC sampling;
- *▷* Proximal calculus Moreau-Yosida approximation of constraint.

Proximal nested sampling Markov chain:

$$
\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \frac{\delta}{2} \nabla \log \pi(\mathbf{x}^{(k)}) - \frac{\delta}{2\lambda} [\mathbf{x}^{(k)} - \text{prox}_{\chi_{\mathcal{B}_{\tau}}}(\mathbf{x}^{(k)})] + \sqrt{\delta} \mathbf{w}^{(k+1)}
$$

Tweedie's formula

Handcrafted priors (*e.g.* promoting sparsity in a wavelet basis) are not expressive enough *⇒* learn data-driven prior given by denoising model (McEwen *et al.* 2023).

Tweedie's formula

●記〇

Handcrafted priors (*e.g.* promoting sparsity in a wavelet basis) are not expressive enough *⇒* learn data-driven prior given by denoising model (McEwen *et al.* 2023).

Tweedie's formula

Consider noisy observations *^z ∼ N* (*x, σ*² *I*) of *x* sampled from some underlying prior.

Tweedie's formula gives the posterior expectation of *x* given *z* as

 $\mathbb{E}(X | Z) = Z + \sigma^2 \nabla \log p(Z),$

where *p*(*z*) is the marginal distribution of *z*.

Tweedie's formula

◎ :: 〇

Handcrafted priors (*e.g.* promoting sparsity in a wavelet basis) are not expressive enough *⇒* learn data-driven prior given by denoising model (McEwen *et al.* 2023).

Tweedie's formula

Consider noisy observations *^z ∼ N* (*x, σ*² *I*) of *x* sampled from some underlying prior.

Tweedie's formula gives the posterior expectation of *x* given *z* as

$$
\mathbb{E}(x | z) = z + \sigma^2 \nabla \log p(z),
$$

where *p*(*z*) is the marginal distribution of *z*.

- *▷* Can be interpreted as a denoising strategy.
- *▷* Score of regualised prior related to learned denoiser by

 ∇ log $\pi_{\epsilon}(x) = \epsilon^{-1}(D_{\epsilon}(x) - x)$.

Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:

▷ hand-crafted prior based on sparsity-promoting wavelet representation;

▷ data-driven priors based on a deep neural networks.

Which model best?

- *▷* SNR *⇒* data-driven priors best but require ground-truth;
- *▷* Bayesian evidence *⇒* data-driven priors best (no ground-truth knowledge).

Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:

▷ hand-crafted prior based on sparsity-promoting wavelet representation;

▷ data-driven priors based on a deep neural networks.

Summary

Summary

