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Towards a fundamental understanding of our Universe

Astrophysics & Cosmology High Energy Physics
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The AI hammer
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The AI cog

AI Cog
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Merging paradigms

AI

Statistics
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Probability Theory

Applied Math
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Physics

e.g. Physical

Properties, Models
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Scientific AI for the physical sciences

Physics Enhanced Learning
Embed physical understanding of the world into machine learning models.

(See review by Karniadakis et al. 2021.)
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Scientific AI for the physical sciences

Probabilistic Learning
Embed a probabilistic representation of data, models and/or outputs.

(See Murray 2022.)
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Scientific AI for the physical sciences

Intelligible AI
Machine learning methods that are able to be understood by humans.

(See Weld & Bansal 2018, Ras et al. 2020.)
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Some (very!) brief case studies

1. Differentiable Physics

2. Geometric & Equivariant Deep Learning

3. Generative Models for Textures

4. Accelerated Bayesian Inference

5. Denoising Diffusion MCMC for Imaging
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Differentiable Physics



Differentiable physics

▷ Differentiable physical models
▶ Radio interferometric telescope

(Mars et al. 2023, 2024)
⇝ Reconstruction quality ↑ (∼20dB)
⇝ Computation time ↓ (∼600×)

▶ Weak gravitational lensing
(Whitney et al. in prep.)

▶ JAX-Cosmo, CosmoPower-JAX
(Campagne et al. 2023, Spurio Mancini et al. 2021,
Piras et al. 2023)

Classical AI model

Hybrid physics-enhanced AI model

Differentiable physics allows hybrid
physics-enhanced AI models.Jason McEwen 10
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Differentiable physics

▷ Differentiable mathematical methods
▶ Spherical harmonic transforms

(Price & McEwen 2024; s2fft code)
⇝ Computation time ↓ (∼400×)

▶ Spherical wavelet transforms
(Price et al. 2024; s2wav code)
⇝ Computation time ↓ (∼300×) Spherical harmonics

Differentiable and GPU-friendly recursions
Jason McEwen 11
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See poster

Jess Whitney
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Geometric & Equivariant Deep Learning



Geometric & equivariant deep learning

Cosmological observations made on the celestial sphere.
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Geometric & equivariant deep learning

Categorization of spherical CNN frameworks
Continuous Discrete Discrete-Continuous (DISCO)

Equivariant Not Equivariant Equivariant
Not Scalable Scalable Scalable

(Cohen et al. 2018, Esteves et al. 2018,
Kondor et al. 2018, Cobb et al. 2021,
McEwen et al. 2022, …)

(Jiang et al. 2019, Zhang et al. 2019,
Perraudin et al. 2019, Cohen et al.
2019, …)

(Ocampo, Price & McEwen 2023; s2ai
code)
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Geometric & equivariant deep learning

▷ 109 saving in compute and
104 saving in memory
(for 4k spherical image).

▷ SOTA performance on variety of
benchmark problems
(classification, depth estimation,
semantic segmentation).

RGB

Truth

DISCO

Semantic segmentation for 2D3DS data-set.
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▷ 109 saving in compute and
104 saving in memory
(for 4k spherical image).

▷ SOTA performance on variety of
benchmark problems
(classification, depth estimation,
semantic segmentation).

RGB

Truth

DISCO

Semantic segmentation for 2D3DS data-set.

Matt PriceKevin Mulder

See poster
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Generative Models for Textures



Why not use standard AI generative models?

Standard machine learning techniques:

▷ require substantial training data (which we often do not have);
▷ suffers covariate shift (i.e. change in physical model);
▷ fails to capture symmetries of data (unless encode in model architecture).

⇒ Statistical characterization and generative modelling.

▷ Wavelet scattering networks inspired by CNNs but designed rather than learned
filters (Mallat 2012).

▷ Extend to spherical scattering networks (McEwen et al. 2022).

Jason McEwen 15
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Scattering transform on the sphere
Spherical scattering propagator for scale j:

U[j]f = |f ⋆ ψj|.

Spherical cascade of propagators:

U[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd |.

Scattering coefficients:

S[p]f = |||f ⋆ ψj1 | ⋆ ψj2 | . . . ⋆ ψjd | ⋆ ϕ.

Orthographic plot of spherical wavelets.
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Isometric invariance

Isometric Invariance
Let ζ ∈ Isom(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL5/2(D+ 1)1/2 λJ0 ∥ζ∥∞∥f∥2.

Scattering network representation is invariant to isometries up to a scale .

Difference in representation.
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Stability to diffeomorphisms

Stability to Diffeomorphisms
Let ζ ∈ Diff(S2). If ζ = ζ1 ◦ ζ2 for some isometry ζ1 ∈ Isom(S2) and diffeomorphism
ζ2 ∈ Diff(S2), then there exists a constant C such that for all f ∈ L2(S2),

∥SPD f− SPDVζ f∥2 ≤ CL2
[
L2 ∥ζ2∥∞ + L1/2(D+ 1)1/2λJ0 ∥ζ1∥∞

]
∥f∥2.

Scattering network representation is stable to small diffeomorphisms about isometry .

Difference in representation.
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Spherical scattering covariance for generative modelling

Generative models of astrophysical fields with scattering transforms on the sphere
(Mousset, Allys, Price, et al. McEwen 2024; s2scat code)

Scattering covariance statistics:

1. S1[λ] f = E
[
|f ⋆ ψλ|

]
.

2. S2[λ] f = E
[
|f ⋆ ψλ|2

]
.

3. S3[λ1, λ2] f = Cov
[
f ⋆ ψλ2 , |f ⋆ ψλ1 | ⋆ ψλ2

]
.

4. S4[λ1, λ2, λ3] f = Cov
[
|f ⋆ ψλ1 | ⋆ ψλ3 , |f ⋆ ψλ2 | ⋆ ψλ3

]
.

Generative modelling by matching set of scattering covariance statistics S(f) with a
(single) target simulation:

min
f

∥S(f)− S(ftarget)∥2.

Jason McEwen 19
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Generative modelling of cosmic textures (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of cosmological weak lensing field.

Jason McEwen 20
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Generative modelling of cosmic textures (LSS)

Which field is emulated and which simulated?

Logarithm (for visualization) of cosmological weak lensing field.

Matt Price

See poster
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Accelerated Bayesian Inference



Bayesian inference

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.

For model selection, must compute Bayesian evidence (marginal likelihood):

z = p(y |M) =

∫
dθ L(θ) π(θ) .

Jason McEwen 21

http://www.jasonmcewen.org


Bayesian inference

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.

For model selection, must compute Bayesian evidence (marginal likelihood):

z = p(y |M) =

∫
dθ L(θ) π(θ) .

Jason McEwen 21

http://www.jasonmcewen.org


Bayesian inference

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.

For model selection, must compute Bayesian evidence (marginal likelihood):

z = p(y |M) =

∫
dθ L(θ) π(θ) .

Jason McEwen 21

http://www.jasonmcewen.org


Bayesian inference

Bayes’ theorem

p(θ | y,M)

posterior

=
p(y | θ,M)

likelihood

p(θ |M)

prior

p(y |M)

evidence

=
L(θ)

likelihood

π(θ)

prior

z
evidence

,

for parameters θ, model M and observed data y.

For parameter estimation, typically draw samples from the posterior by Markov chain
Monte Carlo (MCMC) sampling.

For model selection, must compute Bayesian evidence (marginal likelihood):

z = p(y |M) =

∫
dθ L(θ) π(θ) .

Jason McEwen 21

http://www.jasonmcewen.org


New paradigm for accelerated Bayesian inference

Leverage recent machine learning developments and underlying technology.

Four pillars of a new paradigm (Piras et al. 2024):

1. Emulation, e.g. CosmoPower-JAX
(Spurio Mancini et al. 2021, Piras et al. 2023).

2. Differentiable and probabilistic programming, e.g. JAX, NumPyro.
3. Scalable MCMC that exploit gradients, e.g. NUTS.
4. Decoupled and scalable Bayesian model selection, e.g. learned harmonic mean that

leverages normalizing flows
(McEwen et al. 2021, Spurio Mancini et al. 2022, Polanska et al. 2024, Piras et al. 2024; harmonic code) .

Jason McEwen 22
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Learned harmonic mean estimator for Bayesian evidence

▷ Requires posterior samples only
⇝ Evidence almost for free

▷ Agnostic to sampling technique
⇝ Leverage efficient samplers
⇝ Simulation-based inference (SBI)
⇝ Variational inference

▷ Scale to high-dimensions
⇝ Normalizing flows

Accelerated Bayesian inference (Piras et al. 2024)
37 parameter cosmic shear analysis of LCDM vs w0waCDM
▷ CAMB + PolyChord⇝ 8 months on 48 CPU cores
▷ CosmoPower-JAX + NumPyro/NUTS + Harmonic
⇝ 2 days on 12 GPUs

157 parameter 3x2pt analysis of LCDM vs w0waCDM
▷ CAMB + PolyChord⇝ 12 years on 48 CPUs (projected)
▷ CosmoPower-JAX + NumPyro/NUTS + Harmonic
⇝ 8 days on 24 GPUs

Jason McEwen 23
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See poster
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Denoising Diffusion MCMC for Imaging



High-dimensional inverse imaging problems

Classical high-dimensional imaging problems often consider Gaussian likelihood and
sparsity-promoting prior (e.g. in wavelet representation Ψ):

p(y | x) ∝ exp
(
−
∥∥y−Φx

∥∥2
2/(2σ

2)
)

Likelihood

p(x) ∝ exp
(
−∥Ψ†x∥1

)
Prior

Often compute MAP estimator (variational regularisation) by convex optimization:

argmax
x

log p(x | y) = argmin
x

[ ∥∥y−Φx
∥∥2
2

Data fidelity

+ λ∥Ψ†x∥1
Regulariser

]

⇒ Alternatively, sample posterior to quantify uncertainties (parameter estimation and
model selection).
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Proximal nested sampling

Proximal nested sampling (Cai, McEwen & Pereyra 2021):

▷ Constrained nested sampling formulation;
▷ Langevin diffusion MCMC sampling;
▷ Proximal calculus Moreau-Yosida approximation of constraint.

Proximal nested sampling Markov chain:

x(k+1) = x(k) + δ

2∇ log π(x(k))− δ

2λ
[
x(k) − proxχBτ

(x(k))
]
+

√
δw(k+1) .

Jason McEwen 25
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Tweedie’s formula

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough
⇒ learn data-driven prior given by denoising model (McEwen et al. 2023).

Tweedie’s formula
Consider noisy observations z ∼ N (x, σ2I) of x sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z+ σ2∇ log p(z),

where p(z) is the marginal distribution of z.

▷ Can be interpreted as a denoising strategy.

▷ Score of regualised prior related to learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).

Jason McEwen 26

https://arxiv.org/abs/2307.00056
http://www.jasonmcewen.org


Tweedie’s formula

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough
⇒ learn data-driven prior given by denoising model (McEwen et al. 2023).

Tweedie’s formula
Consider noisy observations z ∼ N (x, σ2I) of x sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z+ σ2∇ log p(z),

where p(z) is the marginal distribution of z.

▷ Can be interpreted as a denoising strategy.

▷ Score of regualised prior related to learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).

Jason McEwen 26

https://arxiv.org/abs/2307.00056
http://www.jasonmcewen.org


Tweedie’s formula

Handcrafted priors (e.g. promoting sparsity in a wavelet basis) are not expressive enough
⇒ learn data-driven prior given by denoising model (McEwen et al. 2023).

Tweedie’s formula
Consider noisy observations z ∼ N (x, σ2I) of x sampled from some underlying prior.

Tweedie’s formula gives the posterior expectation of x given z as

E(x | z) = z+ σ2∇ log p(z),

where p(z) is the marginal distribution of z.

▷ Can be interpreted as a denoising strategy.

▷ Score of regualised prior related to learned denoiser by

∇ log πϵ(x) = ϵ−1(Dϵ(x)− x).
Jason McEwen 26

https://arxiv.org/abs/2307.00056
http://www.jasonmcewen.org


Hand-crafted vs data-driven priors

Consider simple Galaxy denoising inverse problem with:
▷ hand-crafted prior based on sparsity-promoting wavelet representation;
▷ data-driven priors based on a deep neural networks.

Which model best?
▷ SNR ⇒ data-driven priors best but require ground-truth;
▷ Bayesian evidence ⇒ data-driven priors best (no ground-truth knowledge).
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See poster
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