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Abstract
We present a detailed discussion of the implementation strategies for a recently developed
w-stacking w-projection hybrid algorithm used to reconstruct wide-field interferometric
images. In particular, we discuss the methodology used to deploy the algorithm efficiently on
a supercomputer via use of a Message Passing Interface (MPI) k-means clustering technique
to achieve efficient construction and application of non co-planar effects. Additionally, we
show that the use of conjugate symmetry can increase the w-stacking efficiency, decreasing
the time required to construction and apply w-projection kernels for large data sets. We
then demonstrate this implementation by imaging an interferometric observation of Fornax
A from the Murchison Widefield Array (MWA). We perform exact non-coplanar wide-field
correction for 126.6 million visibilities using 50 nodes of a computing cluster. The w-projection
kernel construction takes only 15 minutes prior to reconstruction, demonstrating that the
implementation is both fast and efficient.
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1 INTRODUCTION

The advent of wide-field interferometers such as the
Murchison Widefield Array (MWA; Tingay et al.,
2013; ?), Long Wavelength Array (LWA; Ellingson
et al., 2009) and the Low Frequency Array (LOFAR;
van Haarlem et al., 2013) has created a number of
imaging challenges. These challenges include the
large number of measurements in each observation,
the instrumental effects that are measurement de-
pendent, and the large image sizes due to high res-
olution and wide-field of view. Additionally, these
telescopes have a variety of science goals, includ-
ing high priority science such as probing Galactic
and extra-galactic magnetic fields (especially in low
mass galaxy clusters; Johnston-Hollitt et al. 2015),
and detecting the redshifted 21cm spectral line of
the Epoch of Reionoization (Koopmans et al., 2015).
Furthermore, the wide-field of view provides the
advantage of observing many objects in a single
pointing, reducing the observation time needed to
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survey the radio sky. If the imaging challenges are
overcome, it will herald an era of unprecedented
sensitivity and resolution for the low frequency sky,
over extremely wide-field of views.

Non-coplanar baselines, (u, v, w), in the presence
of wide-fields of view produce measurement de-
pendent effects, i.e. a directional dependent effect
(DDE) that is different for each measurement. Each
w value provides a complex exponential, known as
a chirp, that needs to be modelled in the image
domain and applied during image reconstruction.
This has been through the use of two algorithms,
the w-stacking algorithm, where average w correc-
tions are applied in the image domain to groups
of measurements, and the w-projection algorithm,
where average w-corrections are applied when de-
gridding in the (u, v, w) domain. The w-stacking
algorithm(Humphreys & Cornwell, 2011) has the
trade off that a Fast Fourier Transform (FFT) needs
to be applied for each w group. The w-projection
algorithm (Cornwell, 2008) has the trade off that
kernel construction can be expensive and the sup-
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port size is large for large w values. Both algorithms
have been limited to correcting individual groups of
measurements for large data sets (Cornwell, 2008;
Offringa et al., 2014).

Two recent developments have allowed individ-
ual correction for each data set. The first is the
use of adaptive quadrature and radial symmetry to
calculate w-projection kernels orders of magnitude
faster than the full 2d calculation (Pratley et al.,
2019d, hereafter Paper I). The second is the devel-
opments in distributed image reconstruction from
state of the art convex optimization algorithms,
which provide a natural framework for the Mes-
sage Passing Interface (MPI) distribution of FFTs
and degridding for radio interferometric imaging
(Pratley et al., 2019a). Recently, an MPI hybrid
w-stacking w-projection algorithm demonstrating
these developments was applied on a super com-
puting cluster, where 17.5 million measurements
were individually corrected over a 25 by 25 degree
field of view from an MWA observation (Paper I).
Such individual correction has not been previously
possible.

After reviewing the w-stacking w-projection al-
gorithm, we provide the algorithmic details of how
to distribute the measurements through a k-means
clustering algorithm to improve computational per-
formance, the use of conjugate symmetry to reduce
the range of w values, and show the application of
these algorithms to a larger data set to demonstrate
the improvement. We end with a discussion of fu-
ture strategies for kernel calculation and adapting
the algorithm to model other DDEs.

The paper is laid out as follows. Section 2 intro-
duces the wide-field interferometric measurement
equation. Section 3 describes the distributed k-
means clustering algorithm used to create the w-
stacks and the reconstruction algorithm used to
generate a sky model of the observed data. Section
4 times and compares the w-stacking w-projection
algorithm before and after using conjugate sym-
metry, as a function of image size, w-range, and
number of visibilities. Section 5 demonstrates the
application of the algorithm for this implementa-
tion on an observation of Fornax A. Section 6 pro-
poses possible improvements in kernel calculation
for large data sets, and discusses how other direc-
tional dependent effects can be included into the
algorithm. The work is concluded in Section 7.

2 WIDE-FIELD IMAGING
MEASUREMENT EQUATION

The non-coplanar wide-field interferometric mea-
surement equation is

y(u, v, w′) =
∫

x(l, m)a(l, m)e−2πiw′(
√

1−l2−m2−1)
√

1 − l2 − m2

×e−2πi(lu+mv) dldm ,

(1)

where (u, v, w′) are the baseline coordinates and
(l, m, n) are directional cosines restricted to the unit
sphere. In this work, we define w′ = w + w̄, where
w̄ is the average value of w-terms, and w is the
effective w-component (with zero mean), x is the
sky brightness and a includes direction dependent
effects such as the primary beam. The measurement
equation is a mathematical model of the measure-
ment process, i.e. signal acquisition, that allows one
to calculate model measurements y when provided
with a sky model x.

A number of methods can be used to solve
for x given samples y, such as CLEAN (Högbom,
1974), Maximum Entropy (Ables, 1974; Cornwell
& Evans, 1985), and Sparse Regularization algo-
rithms (McEwen & Wiaux, 2011; Onose et al., 2016;
Pratley et al., 2018; Dabbech et al., 2018; Prat-
ley et al., 2019d,a). Ultimately, all interferometric
measurement equations are derived from the van
Cittert-Zernike theorem (Zernike, 1938) and the
measurement equation can be extended to include
general direction dependent effects and polarization,
and to solve for x natively on the sphere (McEwen
& Scaife, 2008; Smirnov, 2011; Price & Smirnov,
2015).

To make use of the FFT, the measurement equa-
tion is traditionally calculated and approximated
using degridding (Fessler & Sutton, 2003; Thomp-
son et al., 2008). The measurement equation can
be represented by the following linear operations

y = WGCFZSx . (2)

S represents a gridding correction and correction
of baseline independent effects such as w̄, Z repre-
sents zero padding of the image, F is an FFT, G
represents a sparse circular convolution matrix that
interpolates measurements off the grid and the com-
bined GC includes baseline dependent effects such
as variations in the primary beam and w-component
in the interpolation, and W are weights applied to
the measurements. This linear operator is typically
called a measurement operator Φ = WGCFZS
with Φ ∈ CM×N . Furthermore, xi = x(li) and
yk = y(uk) are discrete vectors in RN×1 and CM×1

in this setting. The measurement operator has an
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adjoint operator Φ†. The dirty map can be calcu-
lated by Φ†y, and the residual map by Φ†y−Φ†Φx.

3 DISTRIBUTED WIDE-FIELD
IMAGING

In this section, we briefly describe the algorithmic
details for the distributed w-projection w-stacking
hybrid algorithm.

We use the interferometric image reconstruction
software package PURIFY1 (version 3.0.1, Pratley
et al. 2019b) developed in C++ (Carrillo et al.,
2014; Pratley et al., 2018, 2019a), where the au-
thors have implemented an MPI distributed mea-
surement operator. The authors have also devel-
oped MPI distributed wavelet transforms, along
with MPI variations of the alternating direction
method of multipliers (ADMM) algorithm in the
software package SOPT2 (version 3.0.1, Pratley
et al. 2019c).

This is not the first time sparse image recon-
struction has been used for wide-fields of view. In
particular, the w-term is known to spread infor-
mation across visibilities, increasing the effective
bandwidth in what is known as the spread spec-
trum effect (Wiaux et al., 2009; McEwen & Wiaux,
2011; Wolz et al., 2013; Dabbech et al., 2017), in-
creasing the possible resolution of the reconstructed
sky model. But these previous works have been re-
stricted to proof-of-concept studies. One of the ad-
vantages of sparse image reconstruction algorithms,
such as ADMM, is that they can allow direct recon-
struction of an accurate sky model, unlike CLEAN
based algorithms that produce a restored image
(Pratley et al., 2018).

3.1 w-projection w-stacking
measurement operator

In the MPI w-stacking w-projection algorithm the
measurement operator corrects for the average w-
value in each w-stack, then applies an extra correc-
tion to each visibility with the w-projection. Each
w-stack yk has the measurement operator of

Φk = WkGCkFZS̃k , (3)

the gridding correction, S̃k, has been modified to
correct for the w-stack dependent effects, such as
the average w̄k or the primary beam

[
S̃k

]
ii

= ak(li, mi)e−2πiw̄k(
√

1−l2
i

−m2
i
−1)

g(
√

l2
i + m2

i )
√

1 − l2
i − m2

i

. (4)

1https://github.com/astro-informatics/purify
2https://github.com/astro-informatics/sopt

We choose no primary beam effects within the stack
ak(li, mi). g(

√
l2
i + m2

i ) is the window for the anti-
aliasing filter. This gridding correction shifts the
relative w value in the stack. This can reduce the
effective w value in the stack, especially when the
stack is close to the mean w̄k, i.e. the value of
wi − w̄k is small for all i in stack k. This reduces
the size of the support needed in the w-projection
gridding kernel for each stack,

[GCk]ij = [GC]
(√

(ui/∆u − qu,j)2 + (vi/∆u − qv,j)2

, wi − w̄k, ∆u
)

.

(5)

(qu,j , qv,j) represents the nearest grid points, and
we use adaptive quadrature to calculate

[GC]
(√

u2
pix + v2

pix, w, ∆u
)

= 2π

∆u2

∫ α/2

0
g(r)

×e−2πiw(
√

1−r2/∆u2−1)J0

(
2πr

√
u2

pix + v2
pix

)
rdr ,

(6)

where g(r) is the radial anti-aliasing filter, ∆u is
the resolution of the Fourier grid of the field of view
zero padded by the oversampling ratio α = 2, and
(upix, vpix) are the pixel coordinates on the Fourier
grid. More details can be found in Paper I.

For each stack yk ∈ CMk we have the measure-
ment equation yk = Φkx. It is clear that each stack
has an independent measurement equation. How-
ever, the full measurement operator is related to
the stacks in the adjoint operators such that

xdirty =
[
Φ†

1, . . . , Φ†
kmax

]  y1
...

ykmax

 = Φ†y .

(7)
We use MPI all reduce to sum over the dirty maps
generated from each node. The full operator Φ is
normalized using the power method.

3.2 Clustering w-stacks

It is ideal to minimize the kernel sizes across all
stacks, minimizing the memory and computation
costs of the kernel. We develop an MPI k-means
clustering algorithm which greatly improves perfor-
mance by reducing the values of |wi − w̄k|2 across
the w-stacks. Each MPI node finds the w-stack
to which a visibility belongs, updating the clus-
ter centers across all MPI nodes with each iter-
ation. This is then followed by an all-to-all MPI
operation to distribute the visibilities to their w-
stacks. There already exist parallel and distributed
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k-means clustering algorithms for big data (Stof-
fel & Belkoniene, 1999; Aggarwal & Reddy, 2013).
The k-means w-clustering algorithm is presented in
Algorithm 1. This algorithm is necessary to reduce
computation and operating memory when applying
the w-projection kernels by reducing the support
size of each kernel.

3.3 Conjugate symmetry

Prior to w-stacking with the k-means algorithm,
conjugate symmetry may be used to restrict the
w-values onto the positive w-domain. The origin of
the w-effect stems from the 3d Fourier transform
of a spherical shell and a horizon window, with the
w component probing the Fourier coefficient of the
signal along the line of sight. The sky, the horizon
window, the spherical shell, and the primary beam
can all be interpreted as a real valued signal. This
provides a conjugate symmetry between −|w| and
+|w|, i.e.

y∗(u, v, −|w|) = y(−u, −v, |w|) . (8)

Properties of noise remain unchanged under con-
jugate symmetry, meaning that measurements can
be restricted to positive w, i.e. w ∈ R+. Other
modelled instrumental effects may need to be con-
jugated, which is only important when they are
complex valued signals. In particular, polarized sig-
nals, e.g. Stokes Q, U , and V , are independent
real valued signals. Thus, linear polarization has a
slightly different relation

y∗
P (u, v, −|w|) = yQ(−u, −v, |w|)−iyU (−u, −v, |w|) ,

(9)
suggesting the reflection should be done to the
Stokes Q and U visibliities before combination into
linear polarization, and then combined with −i
rather than +i. This combination is important for
accurate polarimetirc image reconstruction (Pratley
& Johnston-Hollitt, 2016).

3.4 Distributed ADMM

As in Paper I, we use the alternating direction
method of multipliers (ADMM) algorithm imple-
mented in PURIFY (Pratley et al., 2018, 2019a) to
solve the optimization problem

min
x∈RN

∥∥Ψ†x
∥∥

ℓ1
subject to ∥y − Φx∥ℓ2

≤ ϵ ,

(10)
where Ψ is a wavelet transform, the term

∥∥Ψ†x
∥∥

ℓ1
is a penalty on the number of non-zero wavelet coef-
ficients, while ∥y − Φx∥ℓ2

≤ ϵ is the condition that
the measurements fit within a Gaussian error bound

ϵ. MPI is used to distribute the wavelet transform
and enforce fidelity constraints, in conjunction with
w-stacking.

PURIFY (version 3.0.1, Pratley et al. 2019b)
has been updated to implement the w-stacking
w-projection measurement operator with MPI, k-
means clustering, and conjugate symmetry to effi-
ciently reduce the effective w-value within a com-
pute cluster. We find that the use of conjugate
symmetry allows the k-means algorithm to increase
the density of the w-stack locations. This in turn
reduces the effective w values that are required to
be corrected for by the w-projection kernels, and
greatly decreases the computational burden of the
w-projection algorithm in the kernel construction.

4 EFFICIENCY OF W -STACKING
WITH CONJUGATE SYMMETRY

In this section we compare the efficiency of the
w-projection w-stacking algorithm before and after
applying the conjugate operation to the visibilities.
By restricting w to be greater than zero, we increase
the density of the w-stacks, decreasing the distance
|w − w̄k| of each visibility from the center of a given
w-stack, k. When this distance is negligible, the
correction required by the w-projection algorithm
is negligible. The off-set error in a particular w-
stack can be further corrected by the w-projection
algorithm for the following expression

e−2πi(w−w̄k)(
√

1−l2−m2−1) . (11)

By performing a Taylor series expansion of the
exponential ex =

∑∞
n=0

xn

n! , we find the real part
grows as |2π(w − w̄k)(

√
1 − l2 − m2 − 1)|2/2

and the imaginary part leads as
|2π(w − w̄k)(

√
1 − l2 − m2 − 1)|. For simplic-

ity, we know that (w − w̄k) is bounded by the
w spread of the visibilities in a stack ∆wk. We
can relate the spread in l and m with the radius
∆r for the field of view, and find the relation
∆r = 1/(2∆u). Using this analysis, we want
|2π∆wk(1 −

√
1 − (∆r)2)| to be roughly less than

the small offset error η in the zero padded field
of view for every visibility in the stack, k. When
the w-stacks are evenly spread (which is expected
to be less efficient than using k-means), we find
∆wk = (wmax − wmin)/nd, where nd is the number
of w-stacks. This provides a bound between the
number of w-stacks and offset error over a given
field of view

nd ≥
|2π(wmax − wmin)(

√
1 − (∆r)2 − 1)|

η
. (12)

When we apply conjugate symmetry we find
that the difference (wmax − wmin) is reduced to
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Algorithm 1 k-means w-stacking:
The k-means algorithm sorts the visibilities into clusters (w-stacks) by minimizing the average w deviation,
(w̄ − w)2, within each cluster.We use bold variables to denote an array, subscript to denote the array
element and superscript to denote the iteration. The algorithm returns two arrays: n is the array of
indices that labels the w-stack for each visibility; w̄ is the average w value within each w-stack. The
algorithm requires a starting w-stack distribution w̄(0), which we choose to be evenly distributed between
the minimum and maximum w-values. The algorithm should iterate until w̄(t) has converged, which we
choose to be a relative difference of 10−3. Note p is the index of visibility, q is the index for w-stacks, and
c is the place holder for the minimum deviation for the visibility at index p. The AllSumAll(x) operation
is an MPI reduction of a summation followed by broadcasting the result to all compute nodes.

1: given w̄(0), n(0), wtotal, ntotal, wsum, wcount
2: repeat for t = 1, . . .
3: wsum = 0
4: wcount = 0
5: repeat for p = 1, . . .
6: m = 2(wmax − wmin)2

7: repeat for q = 1, . . .
8: c = (w̄(t)

q − wp)2

9: if c < m then
10: m = c
11: n

(t+1)
p = q

12: end if
13: until q > ntotal
14: wsumn

(t+1)
p

= wsumn
(t+1)
p

+ wp

15: wcountn
(t+1)
p

= wcountn
(t+1)
p

+ 1
16: until p > wtotal
17: repeat for q = 1, . . .
18: w̄

(t+1)
q = 0

19: if AllSumAll(wcountq) > 0 then
20: w̄

(t+1)
q = AllSumAll(wsumq)/AllSumAll(wcountq)

21: end if
22: until q > ntotal
23: until convergence

max(|w|) − min(|w|). This reduces the number of
w-stacks nd required to reach a level of accuracy
over the image, suggesting the efficiency increase.
For example, after applying conjugate symmetry to
a uniform w coverage with wmax = −wmin, only half
the number of stacks are needed for the same level
of accuracy. In practice the k-means algorithm can
also reduce the number of stacks required, when
w-coverages are clustered rather than uniformly
spread, which is typically the case.

We also estimate that the 2-dimensional sup-
port size within a w-stack will be bounded by
the maximum of J2 and (2∆wk/∆u)2, and it is
clear that more efficient placements of w-stacks re-
duces memory and computation needed with the
w-projection kernel. For uniform coverage, we ex-
pect that the number of 2d kernel coefficients is
bounded by (2(wmax−wmin)/(nd∆u))2. This bound
on support is further reduced to (2(max(|w|) −
min(|w|))/(nd∆u))2 when conjugate symmetry is
applied.

Lastly, when η ≥ |2π(w − w̄k)(
√

1 − (∆r)2 − 1)|
for a chosen tolerance and given visibility, we sug-
gest that there is little advantage in using the w-
projection kernel. There may be small gains in
kernel construction time by assuming w = w̄k to
avoid calculating the w-projection kernel through
adaptive quadrature when the Hankel transform of
g(r) has a closed form. From the work of Pratley
et al. (2019d), a safe choice to bound the error is
η = 0.01 but we expect this to be very conserva-
tive for most science cases. In the limit where the
stacking density is high enough, this method then
reduces to the standard w-stacking algorithm.

4.1 Comparison

In this section we show the increase in efficiency
of the construction and application of the mea-
surement operator using the w-projection and w-
stacking algorithm before and after applying conju-
gate symmetry to the visibilities.
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To compare the efficiency, we undertake a series
of timing experiments using a range of images sizes,
w-stacks, and number of visibilities.

To perform the reconstruction we used the Grace
computing cluster at University College London.
Each node of Grace contains two 8 core Intel Xeon
E5-2630v3 processors (16 cores total) and 64 Giga-
bytes of RAM.3

Each data point was generated using 25 compute
nodes and 25 w-stacks (i.e. one w-stack per node).
The coverage was generated randomly using a Gaus-
sian sampling density in u, v, and w. We choose
the standard deviation of w to be 100 wavelengths,
making the full range to be approximately ±300
wavelengths. The field of view was kept fixed to 25
by 25 degrees while we vary the range of w, num-
ber of pixels (N), and number of visibilities (M).
We repeated each timing measurement thrice and
then record the average time for each experimental
configuration.

We used an oversampling ratio of α = 2, with a 2d
kernel support size J2 = 16 at w = 0, with the sup-
port size scaling as (2(wi−w̄k)/∆u)2. The standard
deviation of the w sample density is determined by
the value σw, which we chose values of 50, 100, 150
wavelengths, with maximum w values of ±3σw. Fig-
ure 1 shows the time required to construct the mea-
surement operator Φ and apply Φ†Φ as a function
of image size, for N = 2562, 5122, 10242, 20482, and
40962 pixels, and M = 106, 107, and 108 visibili-
ties. All w-projection kernels are stored across the
cluster to be ready for application.

For constructing Φ we find that kernel construc-
tion time is independent of image size, which is
clear when the kernel construction dominates over
the cost of planning the FFT. This is demonstrates
the advantage of using adaptive quadrature dur-
ing kernel construction for high resolution images,
where the computation scales with the field of view
and w only, leaving it completely independent of
number of pixels in the image.

For σw = 50 we find that there is little im-
provement by applying the conjugate, which is
easily explained by suggesting that 25 w-stacks
is enough to efficiently cover the range of w values
over [−150, 150] and [0, 150] wavelengths.

For the larger w ranges of σw = 100 and σw = 150
we find that applying conjugation to the visibilities
increases the efficiency of the w-stacking density.
This reduces the w-projection kernel size, improving
the construction speed of the w-projection kernels
considerably. Kernel construction is approximately
5 times faster after applying conjugation. The re-

3More details can be found at https://wiki.rc.ucl.ac.
uk/wiki/RC_Systems#Grace_technical_specs

duced w-kernel size also reduces the time required
to perform degridding and gridding operations dur-
ing image reconstruction. However, as mentioned
in the previous section, these performance gains are
only seen if there are many visibilities with w < 0.

For σw = 150 with M = 108, we found that not
applying conjugation resulted in large kernel con-
struction times of greater than 140 minutes, and
we did not have the compute resources to measure
this as a function of N . However, applying conju-
gation significantly reduced construction times to
30 minutes.

In Figure 2, we fixed the image size to be small
N = 2562 and measure construction and applica-
tion times for M = 106, 107, and108. We find that
there is linear scaling in construction time as a
function of M . The application times also increase
with M , but it is not clear that it is linear.

We also find that in the time to apply the mea-
surement operator, the FFT scales with image
width

√
N , and the contribution from the appli-

cation of the gridding and degridding kernels that
grows with M . This is expected from the two contri-
butions O(M) and O(α2N log α2N) for the inter-
polation and FFT respectively. However, we expect
that the application time is limited by the node
with the most measurements. Also the varying ker-
nel support sizes make it difficult to expect a clear
relation for application time against the number of
measurements.

4.2 Current Implementation Limitations

While we have shown performance improvements
with this work, there are still limitations with the
current implementation. We note that some of these
limitations can be overcome. First, we pre-compute
and store all of the kernels for use during image
reconstruction. While this is fine for short snap-
shot observations, it requires a large amount of
working memory, and we expect that on-the-fly
calculation methods proposed later in this work
may prove useful (see Section 6). Second, this im-
plementation is bottlenecked in working memory
and CPU resources by the node with the w-stack
that contains the largest number of gridding kernel
coefficients. An alternative method for distributing
the gridding kernel coefficients and balancing com-
putational load across the MPI nodes is described
in Pratley & McEwen (2019).

5 APPLICATION TO MWA
OBSERVATION OF FORNAX A

We use PURIFY (version 3.0.1, Pratley et al. 2019b)
to perform wide-field image reconstruction of an
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Figure 1. The left column shows plots of measurement operator (Φ) construction times and the right column shows plots
of Φ†Φ application times, as a function of image size N . The top, middle, and bottom rows show the times when using
M = 106, 107, 108 visibilities. The standard deviation of the w sample density is determined by the value σw, which we
chose values of 50, 100, 150 wavelengths. We show results for before and after applying conjugation to the visibilities before
construction, where we find improvements in performance for large w ranges due to an increase in w-stacking, as described in
Section 4. The kernel construction time is independent of image size due to the use of adaptive quadrature, this is clear for
large M in the middle and bottom rows. For σw = 150 wavelengths with M = 108, we found that not applying conjugation
resulted in large kernel construction times of greater than 140 minutes (not shown). We found construction time reduces to
30 minutes after applying conjugation as shown in the figure.
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Figure 2. The left figure shows plots of measurement operator (Φ) construction times and the right figure shows plots
of Φ†Φ application times, as a function of the number of visibilities M for N = 2562. The standard deviation of the w
sample density is determined by the value σw, which we chose values of 50, 100, 150 wavelengths. We find that the kernel
construction time increases linearly with M . We find that the applying the conjugate consistently reduces the time required
to calculate the w-projection kernels and can reduce the time for application.

observation of Fornax A taken with the MWA. The
observation has a pointing centre of 03h 22m 41.7s
-37d 12m 30s, and the integration time is 112 sec-
onds. Fornax A was observed using XX and YY
polarizations, with the visibilities transformed into
Stokes I. The bandwidth was 30.72 MHz with a
central frequency of 184.955 MHz and using 768
channels, which is a standard observational mode
for the MWA (Prabu et al., 2015; Ord et al., 2015).
The data reduction, including flagging and calibra-
tion, is as per McKinley et al. (2015).

To perform the reconstruction we use 50 nodes of
the Grace computing cluster at University College
London. Each node of Grace contains two 8 core
Intel Xeon E5-2630v3 processors (16 cores total)
and 64 Gigabytes of RAM.4

The reconstructed image is of 2048 by 2048 pix-
els, with a pixel width of 45 arc-seconds and a field
of view of 25 by 25 degrees. The w values range be-
tween 0 and approximately 600 wavelengths for the
total of 126.6 million visibilites, after conjugating
the visibilities for negative w values, i.e. a range of
1200 wavelengths originally.

Sorting the visibilities into 50 w-stacks (one per
MPI node) took a total time of under 5 seconds
using the MPI distributed k-means algorithm de-
scribed in Algorithm 1. If the average relative differ-
ence of each w-stack centre w̄i between k-means it-
erations is less than 10−3 we consider the algorithm
has converged. We do not expect the w-projection
algorithm performance to improve beyond this level
of accuracy in clustering as a function of the number
of iterations. In this case, the algorithm converged

4More details can be found at https://wiki.rc.ucl.ac.
uk/wiki/RC_Systems#Grace_technical_specs

in 6 iterations.
It took a total of 15 minutes to construct a w-

projection kernel for all visibilities, using quadra-
ture accuracy of 10−6 in relative and absolute error,
as described in Paper I. The w-projection kernel
construction time in Paper I was 40 minutes for 50
w-stacks (over 25 compute nodes), with the same
field of view and same image size, over the same
range of w values, but for only 17.5 million visibili-
ties. We find that the use of conjugate symmetry
before the k-means clustering algorithm allows for
more efficient computation of the w-projection ker-
nels due to more efficient w-stacking because of the
reduced range of w-values, allowing for 2.6 times
faster kernel construction for approximately 7 times
as many measurements (126.6 million visibilities),
i.e. an overall saving of approximately 18 times.

Reconstruction time took 12 hours, with a to-
tal of 2475 iterations, with the FFT and wavelet
operations contributing to much of this time due
to the large image size. Note that we elected to
run the reconstruction for a much longer time than
needed to produce an acceptable image. We erred
on the side of a higher number of iterations than
strictly necessary in order to get a very high quality
reconstruction.

The reconstructed image can be seen in Figure
3, which also shows the residual and dirty maps.
The bright, extended source Fornax A is visible
at the field centre, with the rest of the field con-
sisting mostly of point sources. The residual map
shows that the reconstruction models many of the
sources in the field of view, however, the point
spread function from bright sources outside the
region imaged are still present in the residuals. De-



Implementation of the w-stacking w-projection hybrid algorithm 9

spite outside sources disrupting the reconstruction,
the root mean squared (RMS) value of the residual
map is 15 mJy/beam, and the dynamic range of
the reconstruction (as calculated in Pratley et al.,
2018) is 844,000. The dynamic range is calculated
by

DR =
√

N∥Φ∥2

∥Φ† (y − Φx) ∥ℓ2

max{xk} , (13)

i.e. the ratio of the peak of the recovered image
to the root-mean-square (RMS) of the residuals
for a normalized measurement operator. We note
that the squared operator norm ∥Φ∥2 is the largest
eigenvalue of Φ†Φ.

Figure 4 shows a zoom in of Figure 3, with the
colour scale adjusted to show the reconstruction of
Fornax A in greater detail. From the scaled resid-
uals it is clear that this reconstruction accurately
models the extended structure of Fornax A.

6 IMPROVEMENTS FOR THE
FUTURE

We discuss two classes of possible improvements:
kernel interpolations and correction for non-
standard direction dependent effects.

6.1 Kernel interpolation

While we have shown that the use of k-means clus-
tering and complex conjugation can aid in kernel
construction, w-projection kernels can still be ex-
pensive in construction time due to the large num-
ber of coefficients in GC. This construction over-
head can be further reduced using interpolation
methods, such as bilinear interpolation between 1d
w-planes, or parametric fitting. This may allow for
on the fly calculation of kernels during imaging.
We discuss how a radially symmetric kernel could
affect such methods in the future.

6.1.1 w-planes: bilinear interpolation
The radially symmetric kernel allows fast and ac-
curate calculation, while reducing the dimensions
of the kernel. This allows for fast and accurate
pre-sampling of the w-projection kernel directly
in the uvw-domain, in some cases to a sufficient
pre-sampling density that the error from linear in-
terpolation is negligible compared to the aliasing
error. While the mathematical basis for bilinear
interpolation is discussed in detail in Paper I, here
we present the implementation considerations.

First we make it clear that a non-radially
symmetric kernel would mean pre-sampling in
(upix, vpix, w), which is a computational challenge.
For Nu × Nv, samples in (u, v), we would have Nw

w-projection planes. This requires in total NuNvNw

samples. The total memory required in pre-samples
is 16 × 10−6 × NuNvNw[Megabytes].

With radial symmetry, we show in Paper I that
the w-projection kernel can be computed as a func-
tion of (

√
u2

pix + v2
pix, w). For Nuv radial samples in√

u2
pix + v2

pix, and Nw samples in w, we have only
NuvNw samples. This can be thought of as pre-
computing 1d w-planes, rather than 2d w-planes.
Additionally, each sample only requires a 1d in-
tegral by quadrature, reducing the pre-sampling
time.

The 1d nature of the problem suggests better
scaling of pre-sampling computation time and mem-
ory, allowing extremely accurate w-projection ker-
nels. The total memory required in pre-samples is
16 × 10−6 × NuvNw[Megabytes].

It is also worth noting that pre-sampling is only
required for positive (u, v, w), since the complex
conjugate can be used to estimate (u, v, −w) and
radial symmetry can be used for negative u and
v. This leads to additional memory savings in pre-
sampling.

Pre-sampling can be optimized for accuracy and
storage by using an adaptive sampling density. The
pre-samples could be stored permanently in cases
where kernel construction is performed repetitively.

Bilinear interpolation is computationally cheap,
and could make accurate on-the-fly construction
of w-projection kernels possible, which could be
needed for large data such as for the Square Kilo-
metre Array (SKA) (Hollitt et al., 2017). In the
case where storing the gridding kernels consumes
more memory than the pre-sampled kernel, on-the-
fly construction can be built into the GC operator,
where bilinear interpolation is used on application.
However, memory layout of the pre-samples would
be important, since the sample look-up time could
reduce the speed of the calculation considerably.

6.1.2 Function fitting
Another powerful solution to improve kernel con-
struction costs can be found from the well-known
prolate spheroidal wave function (PSWF) gridding
kernels, which do not have a closed form expression.

PSWFs can be defined multiple ways, such as hav-
ing optimal localization of energy in both image and
harmonic space, making them difficult to compute.
They can be calculated directly through Sinc inter-
polation after solving a discrete eigenvalue problem,
but this can be computationally expensive, or they
can be calculated using a series expansion. However,
this has not stopped radio astronomers using the
PSWFs for decades, ever since the work of Schwab
(1978, 1980) described a custom made PSWF that
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Figure 3. The dirty map (Top Left), residuals (Top Right), and sky model reconstruction (Bottom) of the 112 second
MWA Fornax A observation centered at 184.955 MHz, using 126.6 million visibilities and an image size of 20482 (each pixel
is 45 arcseconds and the field of view is approximately 25 by 25 degrees). This image was reconstructed using the MPI
distributed w-stacking-w-projection hybrid algorithm, exploiting conjugate symmetry and the k-means clustering algorithm
for distribution of w-stacks presented herein, and using the radial symmetric w-projection kernels, in conjunction with
the ADMM algorithm. The dynamic range of the reconstruction is 844,000. The RMS of the residuals is approximately
15 mJy/beam over the entire field of view. The residuals are larger at the edges of the image due to side lobes of sources
outside the field of view.
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Figure 4. Same as Figure 3 zoomed view centered on Fornax A, showing the recovered structure of the double lobed
radio galaxy. The residuals have been scaled to show the details. The residuals over the zoomed region have an RMS of 1.2
mJy/beam.
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has been used in CASA (McMullin et al., 2007),
AIPS (Greisen, 2003), MIRIAD (Sault et al., 1995),
and PURIFY (Carrillo et al., 2014). In Schwab
(1978, 1980), a rational approximation is used to
provide a stable and accurate fit to the PSWF,
which has stood the test of time.

A similar approach can be used to provide an ac-
curate fit to w-projection kernels. Put simply, it is
possible to fit a radially symmetric kernel as a func-
tion of three parameters

(√
u2

pix + v2
pix, w, ∆u

)
, i.e.

polynomial fitting. This has various advantages over
the pre-sampling method, such as reduced storage,
no pre-sampling time, and reduced look up time
(which could be critical for on-the-fly application).
However, stability and reliability of the fit is not
guaranteed and would require further investigation.

6.2 Additional direction dependent
effects

The 1d radially symmetric kernel framework can
be used in conjunction with general 2d kernels that
model DDEs. It is clear that the 1d w-projection
kernel derivation can be extended to other analytic
radially symmetric baseline dependent effects, i.e.
a function of r or

√
u2 + v2 only. But this does not

stop the inclusion of more general baseline depen-
dent effects, such as the spectral and polarimetric
primary beams and time dependent ionospheric
models. Generating these models will require com-
putation that may or may not be worse than the
non-coplanar baseline effects, which are telescope
dependent. Non-coplanar baseline effects are a spe-
cial case, where the effects need to be modeled on
each baseline and can be modeled in stacks of visi-
bilities. However, in many cases DDE models are
station dependent, suggesting the computation is
not as extreme as the non-coplanar case. Addition-
ally, these effects may apply to groups of visibilities
in time, frequency, and polarization, reducing the
number of effects that need to be modeled.

In the worst case scenario, each baseline will have
different DDEs, which can be included by further
convolutions (since convolution is commutative)

[GC](
√

u2
pix + v2

pix, w) →

Dij(u, v, w) ⋆ [GC](
√

u2
pix + v2

pix, w) ,
(14)

where Dij(u, v, w) is a model of the DDEs in the
uvw-domain between two stations ij. Typically
if D(u, v, w) is band limited, the additional con-
volution can be performed with a discrete con-
volution, since [GC](

√
u2

pix + v2
pix, w, ∆u) is also

smooth. The discrete convolution has computa-

tional complexity O(J2
GCJ2

D), where J is the width
of each kernel. If D is separable in (u, v), then this
can be reduced greatly to O(J2

GCJD).
The computation of D(u, v, w) may require mod-

eling in the image domain with an FFT for each
baseline or it may be known analytically in (u, v, w).
In the case where Dij(u, v, w) = Dj(u, v, w) ⋆
D⋆

i (u, v, w) is separable into station dependent ef-
fects, it greatly reduces the modeling computation
from NAnt(NAnt − 1)/2 → NAnt kernel construc-
tions.

The w-stacking distribution structure can be ap-
plied to model other effects, such as time dependent
primary beam and ionospheric models. Distribut-
ing the visibilities into (time) t, (frequency) ν, and
(polarization) p DDE-stacks could alleviate some
of the challenges of D ⋆ GC construction; this ap-
plies whenever a DDE can naturally be applied to
a group of baselines. For a given DDE-stack, we
can apply the stack’s DDE model directly in the
image domain. This can be efficiently done using
recent developments in the work of van der Tol
et al. (2018).

7 CONCLUSION

We have discussed details of the w-stacking w-
projection algorithm implementation, including de-
tails of the k-means clustering, introduction of con-
jugate symmetry to improve the computational
efficiency of the current algorithm, and possible
extensions to the current algorithms and code base
to further improve efficiency and accuracy of the
reconstructions.

We measured the time to pre-compute and ap-
ply an implementation of the MPI w-stacking w-
projection algorithm. We found that the use of con-
jugate symmetry greatly improves the w-stacking
efficiency, which reduces the cost in w-projection
kernel construction and application. It is also clear
that using adaptive quadrature allows kernel con-
struction that is independent of image size, making
it efficient for large high resolution images.

We use the MPI distributed ADMM implemen-
tation in PURIFY to reconstruct an MWA observa-
tion of Fornax A, recovering accurate sky models of
the complex source Fornax A and of point sources
over the entire 25 by 25 degree field of view. We
find that we can construct w-projection kernels for
7 times the number of measurements, 2.6 times
faster than the time taken in Paper I (an overall
saving of approximately 18 times), using the same
image size, field of view, and range of w values.

We conclude the work with proposals to modify
the implementation of the 1d radial w projection
kernels for large data sets, such as the use of ker-
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nel interpolation and the inclusion of non radially
symmetric directional dependent effects. Accurate
correction of wide-field and instrumental effects is
critical in the era of next generation radio inter-
ferometers and are vital to achieving science goals
ranging from the detection of the Epoch of Reioni-
sation to accurately reconstructing cosmic magnetic
fields.
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