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Abstract

We demonstrate the successful use of scattering representations without further
compression for simulation-based inference (SBI) with images (i.e. field-level),
illustrated with a cosmological case study. Scattering representations provide a
highly effective representational space for subsequent learning tasks, although
the higher dimensional compressed space introduces challenges. We overcome
these through spatial averaging, coupled with more expressive density estimators.
Compared to alternative methods, such an approach does not require additional
simulations for either training or computing derivatives, is interpretable, and re-
silient to covariate shift. As expected, we show that a scattering only approach
extracts more information than traditional second order summary statistics.

1 Introduction

Simulation-based inference (SBI) has recently emerged as a powerful approach for scientific inference
that frees the task of parameter inference from defining a tractable and accurate likelihood [20]. The
premise of neural density approaches to SBI is to make use of forward simulations to learn a density
estimator representing the likelihood [45], posterior [43, 24] or likelihood-to-evidence ratio [21, 19].
The benefits of SBI mean that as long as we are capable of performing accurate stochastic forward
simulations, it becomes possible to infer an unbiased posterior regardless of the complexity of the
data being simulated. Nevertheless, compression is a critical component of SBI for many problems
and requires further study, which is the focus of the current article. Throughout, we consider an
illustrative case study from the field of cosmology involving non-Gaussian random fields.

In many scientific fields, traditional parameter inference approaches assume a Gaussian likelihood
of second order statistics and simple parametric modelling of systematics to simplify the task of
statistical inference [7, 1, 28]. Such an approach, however, is in many cases not sufficient to fully
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exploit the richness of upcoming data [33, 53] and it becomes important to make use of summary
statistics that contain beyond second order information.

For image data, one such approach is through the use of higher order statistics [e.g. 48, 13, 25,
38, 39, 40, 41, 29]. These statistics, however, are difficult to compute and it is often even more
difficult to accurately characterise their covariance structure for use with an analytical likelihood.
Another direction involves the use of image-level (commonly called field-level) inference [e.g.
46, 9, 50, 6, 47, 42, 29]. Such approaches, however, must overcome the challenges of high dimensional
Markov chain Monte Carlo (MCMC) sampling and approximate likelihoods. SBI has recently
been demonstrated as an effective alternative for field-level inference, eliminating these challenges
[27, 22, 32]. However, due to the high dimensionality of field-level data, there is a need for substantial
data compression.

There are currently two main approaches to performing data compression for field-level SBI in
cosmology. One route makes use of statistical compression methods, such as MOPED [26] or
score compression [3]. These methods are designed such that the compression can be lossless with
respect to the Fisher information. Statistical compression methods have implementation challenges,
however, as they require simulations to be run at perturbed parameters so that derivatives can be
computed by finite differences. Some simulation suites support this (allocating computational budget
for this purpose) but most do not. Alternatively, automatic differentiation could be leveraged to
compute derivatives [14], although that requires codes implemented within a framework that provides
automatic differentiation, which are not always readily available. Furthermore, statistical compression
methods are not generally lossless and only asymptotically lossless around a maximum likelihood
estimation point. An alternative avenue is to make use of neural compression, of which convolutional
neural networks (CNNs) have proven to be a popular architecture for field-level data [49, 27]. The
drawback of neural compression is that it requires a substantial additional simulation budget for
training. Furthermore, it is not interpretable and inference can suffer from covariate shift if the
training data does not match the distribution of real data. Hybrid statistical and neural compression
techniques have also been considered, such as Information Maximising Neural Networks (IMNN)
[15]. While this realizes the advantages of both frameworks, it also realizes all of the drawbacks of
both, requiring access to numerical derivatives, a significant simulation budget for generating training
data, and can suffer covariate shift.

Wavelet scattering representations provide an alternative summary statistic [35, 12]. Whilst scattering
representations are inspired by CNNs, they are designed and not learnt. This has the distinct advantage
of not being a neural method. Consequently, they are interpretable [17, 2, 16] and do not require
any training data. Scattering representations have gained traction in cosmology recently and appear
to be highly effective at capturing informative non-Gaussian information [17, 2, 16, 51, 18]. In the
asymptotic case of infinite depth they capture all information content of the field analysed, while also
capturing the majority of information in a relatively small number of levels [35, 37, 16]. Furthermore,
scattering transforms have recently been considered in cosmology as a form of compression for SBI
[22, 8]. However, they are often combined with neural compression [22].

In this work we demonstrate the successful use of scattering representations without further com-
pression as summary statistics of non-Gaussian cosmological random fields for accurate SBI. This
approach does not suffer from the drawbacks of other statistical and neural compression techniques,
i.e. it does not require additional simulations for computing derivatives, it does not require any
simulations for training, is interpretable and not sensitive to covariate shift during data compression.

2 Wavelet Scattering Representation

Wavelet scattering representations [35, 12] leverage stable wavelet representations [34] to create
powerful hierarchical representational spaces that satisfy isometric invariance up to a particular
scale, are stable to diffeomorphisms and probe all content of the underlying field. Consequently,
they provide an excellent representational space for subsequent learning [11, 37]. In this work we
consider scattering representations as the compressed representational space on which to perform
neural likelihood estimation [45].

The scattering propagator of field f with wavelet ψλ, for parameters λ = (j, χ) with scale j and
orientation χ, is given by

U [λ]f = |f ⋆ ψλ|, (1)
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where ⋆ denotes the convolution operator and the modulus function is adopted to introduce non-
linearity since it is non-expansive and thus preserves the stability of wavelet representations. Scat-
tering representations for the path p = (λ1, λ2, . . . , λd), with depth d, can then be constructed by
applying a cascade of propagators:

U [p]f = U [λ1, λ2, . . . , λd]f = U [λd] . . . U [λ2]U [λ1]f = |||f ⋆ ψλ1
| ⋆ ψλ2

| . . . ⋆ ψλd
|. (2)

By adopting carefully designed filters, i.e. wavelets, combined with a non-expansive activation
function, scattering propagators inherit the stability properties from the underlying wavelets, yielding
representations that are stable to diffeomorphisms. Scattering propagators themselves, however, do
not yield representations that exhibit isometric invariances. The introduction of a form of averaging
is necessary to ensure isometric invariance. Scale-dependent averaging is performed by convolution
with a scaling function ϕ to yield the scattering representation [35, 12]

S[p]f = |||f ⋆ ψλ1
| ⋆ ψλ2

| . . . ⋆ ψλd
| ⋆ ϕ. (3)

For compression, scattering representations are more challenging to work with than aforementioned
neural and statistical compression due to their relatively higher dimensional representational space.
We perform spatial averaging [cf. 17] to further compresses the representational space.

3 Methodology

Simulations: We adopt the high resolution Quijote ΛCDM N-body simulations [52], extracting 20
fields per simulation by slicing each simulation cube depth-wise and making use of all 2,000 dark
matter only simulations run over a latin-hypercube. The non-linear and correlated cosmological
parameters, including the cold dark matter density Ωm, baryonic matter density Ωb, scalar spectral
index ns, Hubble parameter h, and the root-mean-square matter fluctuation σ8, are varied over the
ranges shown in Appendix A (Table 2). For this simulation suite numerical derivatives are not
available, hence it is not possible to perform statistical compression (MOPED or score) or hybrid
compression (IMNN). As we are not applying any neural based compression schema, we can use all
simulations for training the neural likelihood density estimator without the need to reserve any to
train a compressor.

Compression: To calculate the compressed scattering representation we adopt the kymatio package1

[5] using a Morlet mother wavelet, introduced for astrophysics in [36], that is rotated and dilated
to recover the set of wavelets considered. Since dark matter fields are expected to be isotropic on
large scales (due to the cosmological principle), we set the number of spatial orientations probed
to two and take the average. We take randomly selected fields from the simulation cube sliced in
depth with resolution of 5122 pixels and only probe scales, J , up to 2J+1 = 512. This reduces the
dimensionality of the summary statistic to a data vector of length n = 1+J+ 1

2J×(J−1) = 37. For
comparison, we consider an alternative simple compression, which also does not require derivatives
or training, based on binning the power spectrum of the field. This bandpower approach, however,
only captures second order information. We first calculate the power spectrum using the pylians
package2, with 362 bins, and further bin into bandpowers using log spaced bins with the binning
scheme described in [10], resulting in a compressed dimension of 14. We also consider a summary
statistic where scattering coefficients are concatenated with bandpowers.

SBI: We perform neural likelihood estimation (NLE) [45] using the PyDELFI package3 [4] with
the compressed summary statistics described above. Whilst the performance of neural posterior
estimation [24] may be considered in a future study, for cosmology, NLE invaluably gives direct
access to a learned likelihood that can be tested such as with a goodness of fit test. We follow the
approach presented in [33, 53] where an ensemble of Masked Autoregressive Flows (MAFs; [44])
are considered, each with differing numbers of Masked Autoencoder for Distribution Estimation
(MADE) components [23], and then model averaged, weighted by the relative validation likelihood.
We found that standard PyDELFI settings for the MAFs are not sufficiently expressive when learning
our relatively high dimensional data vector. Instead, we consider MAFs with four hidden layers of 50
neurons each. Finally, we sample the posterior defined in terms of the learned likelihood using the
nautilus package4 [30].

1https://github.com/kymatio/kymatio
2https://github.com/franciscovillaescusa/Pylians3
3https://github.com/justinalsing/pydelfi
4https://github.com/johannesulf/nautilus
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Parameter Truth Scattering Bandpowers Combined

σ8 0.869 0.876± 0.018 0.894± 0.046 0.883± 0.015
Ωm 0.336 0.298+0.052

−0.083 0.238+0.045
−0.077 0.283+0.044

−0.064

Table 1: Posterior constraints on σ8 and Ωm with one standard deviation errors for different com-
pressed representations.
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Figure 1: Posterior constraints for different com-
pressed representations. Scattering representations,
without further neural compression, are highly effec-
tive when using more expressive density estimators.
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Figure 2: Coverage tests using TARP [31] for
the combined scattering and bandpower sum-
mary statistic (similar results are found when
considering each summary statistic separately).
The blue regions decreasing in saturation indi-
cate the 1, 2 and 3 σ errors obtained from boot-
strapping over 100 realisations. The dashed
black line denotes perfect coverage. Empirical
coverage is generally good.

4 Results

Performing SBI on a mock data vector (parameters in Table 1), we find that SBI with scattering
performs well without further compression as indicated by the results of Figure 1 and Table 1 (on a
single CPU core with 8GB RAM). We only show Ωm and σ8 results as the other three cosmological
parameters are not well constrained by dark matter only N-body simulations, as expected. Inspection
of the ensemble of trained MAFs demonstrates the density estimators are converged. For comparison,
bandpowers are less effective as they only capture second order statistical information. Since the
scattering and bandpower representations capture different statistical information, constraints can be
improved by combining both summary statistics. To quantify the improvement, we find that scattering
alone can yield ∼60% tighter constraints in σ8 than bandpowers alone, boosting the improvement to
∼70% in the combined summary statistics case.

To ensure that the posterior distribution we infer is representative and unbiased, we conduct coverage
tests based on the Tests of Accuracy with Random Points (TARP) algorithm [31]. TARP measures
the expected coverage probability for a given credibility level empirically from samples. Results are
shown in Figure 2, where the empirical coverage is shown to approximate the ideal perfect coverage
scenario resonably well. Here we consider the combined summary statistic, although we perform the
same test on all considered summary statistics and find good coverage, although with slight under
confidence, which is conservative.

5 Conclusions

We demonstrate that field-level SBI can be performed effectively using wavelet scattering represen-
tations alone to provide a compressed representation without any further neural compression. The
challenge of a higher dimensional compressed representation is overcome by incorporating spatial
averaging and a judicious choice of parameters, coupled with more expressive density estimators.
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This approach has considerable advantages compared to the alternative statistical or neural com-
pression approaches typically considered in that it does not require additional simulations to train a
neural compressor, it does not require simulation suites with perturbed parameters needed to compute
numerical derivatives for statistical compression approaches, it is more interpretable than the use of
black-box neural networks, and it is not sensitive to covariate shift. Furthermore, we demonstrate that
SBI with scattering representations extracts beyond two-point statistical information, as expected,
since recovered parameter constraints are distinct and tighter than those recovered by bandpowers
(thus, scattering representations and bandpowers can be combined to improve constraining power
further still). In parallel with this work, successful use of scattering-only compression for SBI has
simultaneously been demonstrated for 21cm epoch of reionization signals [54], further evidencing
the effectiveness of scattering for SBI. In a sense, for field-level SBI, scattering is all you need for
compression. That said, we do not dogmatically advocate that scattering alone should always be used.
While the scattering approach presented has numerous advantages, our findings motivate further
studies directly comparing the effectiveness of different compression approaches for field-level SBI.
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A Cosmological parameter ranges

Table 2 shows the priors ranges used both for the Quijote N-body simulation latin-hypercube and for
inference. For inference, uniform priors were adopted for all parameters that matched the prior width
of the simulations such that our learnt likelihood had full training data support.

Parameter Prior range

Ωm [0.1, 0.5]
Ωb [0.03, 0.07]
h [0.5, 0.9]
ns [0.8, 1.2]
σ8 [0.6, 1.0]

Table 2: Cosmological parameter ranges.
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