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Abstract

We advocate for a new paradigm of cosmological likelihood-based inference, leveraging recent de-
velopments in machine learning and its underlying technology, to accelerate Bayesian inference in
high-dimensional settings. Specifically, we combine (i) emulation, where a machine learning model is
trained to mimic cosmological observables, e.g. CosmoPower-JAX; (ii) differentiable and probabilistic
programming, e.g. JAX and NumPyro, respectively; (iii) scalable Markov chain Monte Carlo (MCMC)
sampling techniques that exploit gradients, e.g. Hamiltonian Monte Carlo; and (iv) decoupled and scal-
able Bayesian model selection techniques that compute the Bayesian evidence purely from posterior
samples, e.g. the learned harmonic mean implemented in harmonic. This paradigm allows us to carry
out a complete Bayesian analysis, including both parameter estimation and model selection, in a frac-
tion of the time of traditional approaches. First, we demonstrate the application of this paradigm on
a simulated cosmic shear analysis for a Stage IV survey in 37- and 39-dimensional parameter spaces,
comparing ΛCDM and a dynamical dark energy model (w0waCDM). We recover posterior contours
and evidence estimates that are in excellent agreement with those computed by the traditional nested
sampling approach while reducing the computational cost from 8 months on 48 CPU cores to 2 days on
12 GPUs. Second, we consider a joint analysis between three simulated next-generation surveys, each
performing a 3x2pt analysis, resulting in 157- and 159-dimensional parameter spaces. Standard nested
sampling techniques are simply unlikely to be feasible in this high-dimensional setting, requiring a
projected 12 years of compute time on 48 CPU cores; on the other hand, the proposed approach only
requires 8 days of compute time on 24 GPUs. All packages used in our analyses are publicly available.

1. INTRODUCTION

The evolution of cosmological likelihood-based data
analysis is heading towards a high-dimensional future.
Fueled by the acquisition of ever more constraining ob-
servational data thanks to ongoing and upcoming sur-
veys like Euclid (Laureijs et al. 2011)1, the Dark En-
ergy Spectroscopic Instrument (DESI, Levi et al. 2019)2,
the Nancy Grace Roman Space Telescope (Spergel et al.
2015)3, the Simons Observatory (Ade et al. 2019)4 and
the Vera Rubin Observatory (Ivezić et al. 2019)5, this
trajectory simultaneously entails more stringent accur-
acy requirements and a subsequently higher number of
parameters to describe various systematic effects. At the
same time, the ΛCDM model of cosmology is put un-
der extreme pressure, with ever more complex theoretical
models being developed to explain tensions in the values
of cosmological parameters, thus growing the size of the
parameter space. While these developments promise sig-
nificant advancements in our understanding of the Uni-
verse, they present a formidable challenge for Bayesian
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inference, stretching the capabilities of traditional infer-
ence methods.
We advocate for a new paradigm of cosmological

likelihood-based inference to tackle the challenges of
next-generation surveys. This approach leverages recent
developments in machine learning (ML) and its underly-
ing technology to accelerate both parameter estimation
and model selection — the fundamentals of Bayesian in-
ference — in high-dimensional settings. We suggest com-
bining (i) emulation; (ii) differentiable and probabilistic
programming ; (iii) scalable Markov chain Monte Carlo
(MCMC) sampling techniques that exploit gradient in-
formation and (iv) decoupled and scalable Bayesian model
selection techniques computing the Bayesian evidence
purely from posterior samples. At the basis of these de-
velopments is the ability to exploit modern hardware ac-
celerators, such as graphics processing units (GPUs) and
tensor processing units (TPUs), to provide a high degree
of parallelization for significant computational accelera-
tion.
Emulation is based on statistical and ML models

trained to replicate cosmological quantities of interest
with high accuracy in a fraction of the time required
by traditional methods. By replacing slow forward mod-
els underlying the likelihood function with, e.g. neural
networks, which efficiently run on GPUs, accurate phys-
ical simulations can be computed with significantly fewer
computational resources, providing massive speed-ups.
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Additionally, one can pair emulators with a likeli-
hood fully written using differentiable and probabil-
istic programming languages. This unlocks the acceler-
ation provided by ML environments such as TensorFlow
(Abadi et al. 2015)6, PyTorch (Paszke et al. 2019)7 and
JAX (Bradbury et al. 2018)8 to enable GPU execution
and differentiability of the likelihood with respect to the
input parameters. Moreover, probabilistic programming
languages can be used, e.g. to easily formulate complex
hierarchical models.
Differentiability also unlocks gradient-based sampling

algorithms, such as Hamiltonian Monte Carlo (HMC,
Duane et al. 1987; Neal 1996) and its variants, which
represent a promising avenue to address the challenges of
high-dimensional inference. These techniques allow one
to efficiently explore the complex parameter spaces that
characterize cosmological data analyses. Yet, they cru-
cially rely on having access to the derivatives of the
likelihood function with respect to input parameters,
which are in general expensive and inaccurate, espe-
cially when computed by finite differences. This obstacle
is being overcome through the development of fully-
differentiable frameworks for cosmological data analysis
(see e.g. Nygaard et al. 2023; Ruiz-Zapatero et al. 2024;
Balkenhol et al. 2024), which also benefit from the accel-
eration provided by the same dedicated hardware of ML
models.
The complexity of cosmological data analysis is not

limited to parameter estimation in high-dimensional set-
tings; it also encompasses the task of model compar-
ison. This is particularly important for cosmology, whose
main goal is the identification of the most accurate
cosmological model of our Universe given observational
data. Bayesian model comparison requires the compu-
tation of the model evidence (also known as the mar-
ginal likelihood) for different models. Consequently, in
order to meaningfully and efficiently compare compet-
ing cosmological models in light of new data, it be-
comes imperative to develop novel methodologies that
enable evidence estimation for model comparison in the
high-dimensional landscapes that will characterize next-
generation surveys. Such methodologies should not be
necessarily bound to a particular sampling method in
order to provide full flexibility. Being able to compute
the evidence from posterior chains independently from
the sampling algorithm is thus of paramount importance
for enabling next-generation cosmological model compar-
ison.
This paper focuses on both parameter estimation and

model comparison in the context of Stage IV likelihood-
based cosmological analyses, proposing a comprehensive
approach towards cosmological inference from upcoming
next-generation datasets. We particularly highlight how
parameter estimation and model comparison can be per-
formed from posterior samples obtained using the No
U-Turn Sampler (NUTS, Hoffman & Gelman 2014), a
highly efficient and adaptive variant of HMC. The ex-
pensive cosmological Boltzmann solvers are replaced by
the CosmoPower-JAX emulators (Spurio Mancini et al.
2022; Piras & Spurio Mancini 2023), and evidence es-

6 https://www.tensorflow.org/
7 https://pytorch.org/
8 https://github.com/google/jax

timation is performed using harmonic, a software im-
plementation of the learned harmonic mean estimator
(McEwen et al. 2021).
We demonstrate this paradigm on two scenarios. First,

we sample the posterior distribution for a simulated
Stage IV cosmic shear survey configuration using NUTS
and a fully differentiable pipeline. We then compute the
evidence from the posterior chains using harmonic and
compare the estimate with that obtained using a nes-
ted sampler. We perform this operation for two com-
peting cosmological models, with the goal of performing
Bayesian model comparison, obtaining results in excel-
lent agreement with nested sampling, but taking only a
fraction of the time. We also showcase joint inference on
three simulated next-generation surveys, each perform-
ing a 3x2pt analysis, obtaining values of the Bayes factor
in 8 days, as opposed to the 12 years estimated for the
same result to be obtained by traditional techniques.
This paper is structured as follows. We begin in Sect. 2

with some background on parameter estimation and
model comparison, highlighting the challenges associated
with the large parameter spaces characterizing upcoming
surveys. We then outline in Sect. 3 each of the four pillars
of the proposed new paradigm of cosmological likelihood-
based inference for complete Bayesian analysis, including
both parameter estimation and model selection, in high-
dimensional settings. In Sect. 4 and Sect. 5 we introduce
two simulated survey scenarios, to validate and demon-
strate our framework for Bayesian inference. We conclude
in Sect. 6.

2. BACKGROUND

Bayesian analyses are the backbone of modern cosmo-
logy, providing a principled framework to obtain cosmo-
logical parameter constraints and compare models. Here
we review the basics of Bayesian inference, discussing
both parameter estimation and model comparison.

2.1. Parameter estimation

The fundamental goal of Bayesian parameter estima-
tion is to recover an accurate estimate of the posterior
distribution p(θ|d,M), which encapsulates our under-
standing of the parameters θ given observed data d and
a model M. By employing Bayes’ theorem, this distribu-
tion is related to the prior distribution p(θ|M) ≡ π(θ),
the likelihood function p(d|θ,M) ≡ L(θ), and the model
evidence p(d|M) ≡ zM through the relation:

p(θ|d,M) =
p(d|θ,M)p(θ|M)

p(d|M)
=

L(θ)π(θ)
zM

. (1)

Estimating the posterior distribution through its dir-
ect evaluation on a grid of parameters is computation-
ally infeasible due to the curse of dimensionality, which
becomes a prohibitive factor even in spaces of moder-
ate dimension. Additionally, the likelihood function of-
ten involves solving intricate physical models or running
detailed simulations, and the posterior landscape may be
multimodal or have complex correlations between para-
meters. A grid-based evaluation might miss important re-
gions of the parameter space or require an impractically
fine grid to capture these features. Sampling algorithms
such as MCMC methods, on the other hand, provide a
stochastic exploration that can adapt to the shape of the
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distribution, and allocate computational resources more
efficiently by focusing on the regions of parameter space
with high posterior density.
Commonly used MCMC algorithms in cosmology in-

clude the fast-slow random-walk Metropolis–Hastings
(Lewis & Bridle 2002; Lewis 2013), affine-invariant en-
semble (Goodman & Weare 2010; Foreman-Mackey et al.
2013), and nested sampling algorithms (Skilling 2006;
Feroz & Hobson 2008; Feroz et al. 2009, 2019; Handley
et al. 2015a,b; Buchner 2021), which have found wide-
spread use thanks to their clear formulations and publicly
available implementations. Another sampling technique
is HMC (Duane et al. 1987; Neal 1996), which is a more
efficient algorithm exploiting Hamiltonian dynamics. By
leveraging the information coming from the gradients
of the likelihood with respect to the input parameters,
HMC concentrates sampling in regions of high posterior
mass (the so-called typical set), resulting in a more effi-
cient sampler, particularly in high-dimensional settings.
A significantly improved version of HMC is NUTS (Hoff-
man & Gelman 2014), which overcomes the required tun-
ing of hyperparameters for the numerical integration of
Hamilton equations by preventing the sampler from tak-
ing U-turns. NUTS results in a more efficient exploration
of parameter space and faster convergence, and has thus
found widespread use.

2.2. Model comparison

For Bayesian model comparison it is necessary to com-
pute the Bayesian evidence

zM =

∫
p(d|θ,M)p(θ|M)dθ , (2)

which is a challenging computational problem even in
moderate dimensional settings. From the Bayesian evid-
ence it is possible to compute the Bayes factor (BF12), a
crucial quantity used to assess which model (M1 or M2)
is favored given current data d and defined as:

BF12 ≡ p(d|M1)

p(d|M2)
=

zM1

zM2

. (3)

In the common case where the models have equal prior
probabilities, i.e. p(M1) = p(M2), the Bayes factor re-
duces to the posterior model odds:

BF12 =
p(M1|d)p(M2)

p(M2|d)p(M1)
=

p(M1|d)
p(M2|d)

. (4)

Estimating the evidence robustly and efficiently can
therefore unlock the full potential of Bayesian analyses,
in that it allows one to assess which model is preferred
by observational data.
Nested sampling, introduced by Skilling (2006),

provides a strategy to estimate the evidence for Bayesian
model comparison. By a clever reparameterization of the
likelihood in terms of the enclosed prior volume, nested
sampling allows the evidence to be computed by a one-
dimensional integral. While nested sampling targets the
evidence, as a by-product posterior inferences can also be
calculated by appropriate importance weighting (Skilling
2006). While highly successful, nested sampling places
tight constraints on how sampling is performed (sampling
the prior subject to likelihood isocontour constraints).

Nested sampling couples the sampling strategy to the
evidence calculation, limiting flexibility and scalabilty
to high-dimensional parameter spaces (a notable excep-
tion for high-dimensional inference is proximal nested
sampling, although this is only applicable for log-convex
likelihoods; Cai et al. 2022).
Recently, methods to compute the evidence that are

agnostic to the sampling technique and only require
posterior samples have gained popularity (Dickey 1971;
Trotta 2007; Heavens et al. 2017; Jia & Seljak 2020;
McEwen et al. 2021; Srinivasan et al. 2024; Rinaldi et al.
2024). Among them, the learned harmonic mean estim-
ator (McEwen et al. 2021) has been shown to provide
robust estimates of the Bayesian evidence in a variety
of scenarios, both in likelihood- and simulation-based in-
ference (McEwen et al. 2021; Polanska et al. 2023, 2024;
Spurio Mancini et al. 2023). In particular, Polanska et al.
(2024) integrated normalizing flows into the learned har-
monic mean framework to learn the internal importance
sampling target distribution, enhancing the robustness
and scalability of the estimator. In contrast to the learned
harmonic mean, most alternative approaches (Srinivasan
et al. 2024; Rinaldi et al. 2024) compute the evidence
for a surrogate of the posterior, limiting their accuracy.
Gaussianized bridge sampling (GBS), introduced by Jia
& Seljak (2020), is similar in spirit to the learned har-
monic mean in that requires only posterior samples and
considers an internal learned proposal distribution. In
fact, bridge sampling in general can be viewed as a gen-
eralization of the standard importance sampling and ori-
ginal harmonic mean approaches to computing the evid-
ence (Gronau et al. 2017). Nevertheless, restricting to the
special case of the harmonic mean has numerous advant-
ages. In addition to posterior samples, bridge sampling
requires a second set of samples from the proposal distri-
bution. Furthermore, the likelihood must be evaluated at
these additional samples, which can add significant com-
putational cost, and the proposal density must also be
evaluated at all sample points, both those from the pos-
terior and the proposal. Finally, use of the optimal bridge
function (Meng & Wong 1996) necessitates an iterative
approach, again adding to the computational cost. The
GBS approach suffers from all of these issues, whereas
the learned harmonic mean does not. The primary disad-
vantage of restricting bridge sampling to the case of the
harmonic mean is that the internal importance sampling
target distribution must have thinner tails than the pos-
terior, which is in any case already solved by the learned
harmonic mean approach (McEwen et al. 2021). An-
other method to compute the Bayes factor is the Savage–
Dickey density ratio (Dickey 1971; Trotta 2007), which is
however limited to the case of nested models and requires
the normalized marginal posterior to be computed.

3. METHODOLOGY

We outline the four pillars of a new paradigm of cos-
mological likelihood-based inference that will be key to
successfully tackling the challenges set by Stage IV cos-
mological surveys, including emulation (typically based
on neural networks), differentiable and probabilistic pro-
gramming, scalable gradient-based MCMC sampling,
and scalable evidence estimation that is agnostic to
sampling. All of these pillars provide the ability to exploit
modern hardware accelerators, such as GPUs, to provide
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high degrees of parallelization for significant computa-
tional acceleration.

3.1. Emulation: CosmoPower-JAX

The typical bottleneck in a standard Bayesian analysis
is the likelihood function, since it incorporates the en-
tire physical knowledge on the observable being probed.
Thousands or even millions of likelihood evaluations are
needed to explore the posterior distribution in a complete
manner, especially in high-dimensional settings. Even in
low-dimensional settings, though, the forward model can
be computationally expensive since it describes increas-
ingly complex physical models, and extensions to the
ΛCDM model might introduce additional correlations
among an increasing number of parameters. Each call
to the likelihood function thus has to be fast.
Emulation based on ML techniques, and neural net-

works in particular, have already shown promising results
to accelerate the forward model, while providing excel-
lent agreement with traditional techniques in a fraction
of the computational time. Neural networks are trained
once on a dataset of key quantities that represent a bot-
tleneck in the forward model, and then can be easily
integrated into the likelihood function, providing signi-
ficant acceleration while retaining the accuracy of the
predictions. One additional advantage of neural networks
is that they effectively exploit the highly parallel com-
puting provided by modern hardware accelerators, such
as GPUs. This allows for faster training, batch predic-
tion and scalable architectures with ever more expressive
power.
ML-based emulation has found widespread use in cos-

mology (see e.g. Auld et al. 2007; Auld et al. 2008;
Manrique-Yus & Sellentin 2019; Angulo et al. 2021;
Aricò et al. 2022; Nygaard et al. 2022; Zennaro et al.
2023; Bonici et al. 2022, 2024). In this work, we em-
ploy the CosmoPower-JAX package (Piras & Spurio Man-
cini 2023)9, a JAX version of the CosmoPower framework
(Spurio Mancini et al. 2022)10. These dense neural net-
works were trained to map cosmological parameters to
linear and nonlinear matter power spectra, serving as
an efficient replacement for the Boltzmann solvers CAMB
(Lewis & Challinor 2011) or CLASS (Blas et al. 2011)
to integrate into the likelihood. By replacing Boltzmann
solvers with accurate neural networks, we accelerate the
likelihood evaluations and thus solve the first significant
bottleneck of next-generation surveys.

3.2. Differentiable and probabilistic programming:
JAX and NumPyro

Within the current ML paradigm, models are trained
using optimizers that leverage gradients computed by the
backpropagation of gradient information through auto-
matic differentiation (Baydin et al. 2018). Consequently,
each operation upon which a model may be built must
necessarily be differentiable; that is, rules by which tan-
gent and cotangent vectors propagate under the operat-
ors’ Jacobian must be defined (Wengert 1964; Rumelhart
et al. 1986; Baydin et al. 2018).
Modern ML ecosystems, such as JAX and PyTorch, are

constructed with this in mind, requiring that each prim-

9 https://github.com/dpiras/cosmopower-jax
10 https://github.com/alessiospuriomancini/cosmopower

itive operation within their libraries is coupled with asso-
ciated gradient rules. In this way, using the chain rule one
can construct more complex operations, which are auto-
matically differentiable (Bartholomew-Biggs et al. 2000;
Margossian 2019). By automatic differentiation gradi-
ents can then be computed efficiently and accurately
for complex operations, replacing numerical approxim-
ations of the derivatives, which are typically slow and
unstable. Primarily due to its relative maturity, PyTorch
provides a larger bank of primitive operations. However,
JAX provides a more flexible ecosystem that is functional
in nature (Wadler 1992), avoiding boilerplate code that
can arise in other ML-oriented frameworks, and being
an efficient replacement for NumPy (Harris et al. 2020);
it is thus well suited to the implementation of general
physical models. In JAX complex operations may more
easily be expressed, making it a natural ecosystem for
the integration of differentiable programming in e.g. cos-
mological models (Campagne et al. 2023), cosmological
simulations (Li et al. 2024) or underlying mathematical
methods, such as spherical harmonic transforms (Price
& McEwen 2024).
Recently, probabilistic programming languages (PPLs)

have been constructed leveraging these differentiable pro-
gramming ecosystems. Through PPLs, statistical opera-
tions such as sampling and conditioning can be expressed
as one-line statements, whilst also inheriting the differ-
entiability of the underlying ecosystems upon which they
are constructed. For instance, PPLs allows one to easily
formulate Bayesian hierarchical models, which are widely
used in cosmology (see e.g. Mandel et al. 2011; Shariff
et al. 2016; Alsing et al. 2016, 2017; Hinton et al. 2019;
Porqueres et al. 2021; Mandel et al. 2022; Porqueres et al.
2023; Loureiro et al. 2023; Sellentin et al. 2023; Kostić
et al. 2023; Nguyen et al. 2024).
In this work we use NumPyro (Phan et al. 2019)11, the

NumPy backend for Pyro (Bingham et al. 2019). NumPyro
is well-documented and easily interfaces with JAX, thus
providing a mature framework to build a gradient-based
inference pipeline in Python. We implement the likeli-
hood for the problems considered (see Sect. 4 and Sect. 5)
in the NumPyro PPL, which requires a separate likelihood
implementation. Critically, the likelihood must be dif-
ferentiable: CosmoPower-JAX provides emulation of the
matter power spectrum that is differentiable, and we
couple it with jax-cosmo (Campagne et al. 2023)12 for
differentiable cosmological models to simulate observable
spectra.

3.3. Scalable MCMC sampling: NUTS

HMC is a gradient-based sampling algorithm that
is scalable to high-dimensional parameter spaces and
does not suffer from the random-walk shortcomings of
Metropolis–Hastings algorithms. NUTS further improves
on the effective sample size relative to the gradient evalu-
ation of HMC by preventing the sampling trajectory from
returning to previously-visited regions of the parameter
space. Though it requires a higher number of model eval-
uations, NUTS typically leads to more reliable conver-
gence, and is thus ideal for sampling in the context of
Stage IV surveys.

11 https://num.pyro.ai/en/stable/
12 https://github.com/DifferentiableUniverseInitiative/jax cosmo
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Traditionally, the gradients required for HMC
sampling are computed by finite differences, which is
computationally costly and inaccurate. Since we have
a differentiable pipeline, gradients can be computed
by automatic differentiation, providing acceleration and
improved accuracy. In the future, alternative samplers
(Gabrié et al. 2022; Wong et al. 2023; Karamanis et al.
2022a,b), or new samplers that further improve the
sampling efficiency and thus lead to even more robust in-
ference, can be straightforwardly incorporated into this
paradigm.

3.4. Decoupled and scalable Bayesian model
comparison: learned harmonic mean

The learned harmonic mean (McEwen et al. 2021)
provides a robust and scalable estimator of the Bayesian
evidence that is decoupled from the sampling strategy.
It only requires samples from the posterior, and their
corresponding unnormalized probability density. Hence,
it can be used with posterior samples obtained through
whatever method is best suited for the problem at hand.
This property allows the use of the efficient and scal-
able NUTS sampler, while still being able to estimate
the evidence for Bayesian model comparison.
The learned harmonic mean provides an estimator of

the reciprocal evidence ρ = z−1, defined by

ρ̂ =
1

N

N∑
i=1

φ(θi)

L(θi)π(θi)
, θi ∼ p(θ|d), (5)

where φ(θ) is an arbitrary normalized probability dens-
ity. The estimator can be viewed through the lens of
importance sampling, with the posterior acting as the
sampling density and φ(θ) as the target density (e.g.
McEwen et al. 2021). If the importance sampling tar-
get density has fatter tails than the sampling density,
the variance will grow large (even catastrophically) and
the estimator will fail. The key to preventing this issue
is to find an appropriate target φ(θ) that is normalized
and contained within the posterior. The optimal target
density is the normalized posterior itself (McEwen et al.
2021), although this requires knowledge of its normal-
izing constant, which is precisely the quantity we are
attempting to estimate. In the learned harmonic mean
the target is learned to approximate the posterior from
posterior samples, subject to the constraint that it has
narrower tails. Several benchmark examples have been
considered where the learned harmonic mean has been
demonstrated to provide precise and accurate evidence
estimates (McEwen et al. 2021).
More recently, normalizing flows have been integrated

within the learned harmonic mean framework for the in-
ternal machine learning technique to learn the import-
ance target distribution (Polanska et al. 2023, 2024).
Normalizing flows (Papamakarios et al. 2021) can be eleg-
antly coupled with the learned harmonic mean to provide
an approach that is more robust, flexible and scalable
than the machine learning models considered previously.
Normalizing flows work by taking a simple base dis-

tribution, often a standard Gaussian, through a series of
invertible transformations with learned parameters. Typ-
ically, in order to train the model the Kullback-Leibler
divergence between the unknown target and the flow is

minimized, resulting in training by maximum likelihood.
Using normalizing flows it is possible to approximate po-
tentially complex probability distributions, draw samples
from them and evaluate their normalized density.
Once the flow is trained, its probability density can

then be concentrated by reducing the “temperature” T of
its base distribution. Specifically, this is achieved by scal-
ing the base distribution’s variance by a factor T ∈ (0, 1).
This has the effect of concentrating the base distribu-
tion’s density, and in turn the trained flow’s density due
to the continuity and differentiability of the flow (Po-
lanska et al. 2024). The concentrated flow is then a nor-
malized approximation of the posterior, maintaining a
good topological agreement while having thinner tails —
a perfect candidate for the target φ(θ). Estimates of the
evidence error and other sanity checks can also be com-
puted (McEwen et al. 2021; Polanska et al. 2024). The
learned harmonic mean has already been thoroughly val-
idated against nested sampling for numerous cosmolo-
gical problems (McEwen et al. 2021; Polanska et al. 2023,
2024), and is implemented in the harmonic open-source
Python package13. The code is written in JAX (Bradbury
et al. 2018) to provide automatic differentiation and an
efficient and scalable implementation that can be run on
accelerators such as GPUs.
Critically, this approach decouples sampling from evid-

ence calculation, allowing the use of scalable MCMC
sampling techniques (e.g. NUTS). By integrating nor-
malizing flows inside the overarching statistical frame-
work of the learned harmonic mean we recover a robust
estimator of the evidence that is also computationally
scalable, proving the missing final component of a com-
plete Bayesian analysis.

4. COSMIC SHEAR ANALYSIS
WITH 37 AND 39 PARAMETERS

We first demonstrate the application of the proposed
paradigm for a simulated next-generation survey per-
forming a power spectrum cosmic shear analysis. Our
goal is to estimate the Bayes factor between the ΛCDM
and w0waCDMmodels in high-dimensional scenarios, ex-
posing the challenges of next-generation surveys if ap-
proached with traditional methods, while validating and
showcasing the scalability of our approach.

4.1. Likelihood

The likelihood details are the same as in Piras &
Spurio Mancini (2023), which we summarize here, follow-
ing the notation of Spurio Mancini et al. (2022). We as-
sume a tomographic survey with Nbins = 10 bins, where
each galaxy is placed in a bin according to its estimated
photometric redshift z. We compute the angular power
spectra between pairs of redshift bins i, j = 1, . . . , Nbins

and for different probes. The cosmic shear angular power
spectrum Cϵϵ

ij (ℓ) is defined as:

Cϵϵ
ij (ℓ) = Cγγ

ij (ℓ) + CγI
ij (ℓ) + CIγ

ij (ℓ) + CII
ij (ℓ) , (6)

which includes the contributions from pure shear (γ) and
intrinsic alignment (I). Assuming the extended Limber

13 https://github.com/astro-informatics/harmonic/

https://github.com/astro-informatics/harmonic/
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Table 1: Evidence and Bayes factors for the two analyses considered in this work. The evidence values obtained with
nested sampling are the mean and standard deviation across three independent runs with different seeds, while the
computation time is the typical one for a single run, and includes sampling and evidence estimation. The likelihood
functions sampled with nested sampling and the No U-Turn Sampler (NUTS) are implemented using different packages
and include different normalizations; despite these differences, we recover consistent values of the Bayes factor (BF)
between ΛCDM and w0waCDM.

(a) Cosmic shear with 37 (ΛCDM) and 39 (w0waCDM) parameters, described in Sect. 4.

Method log(zΛCDM) log(zw0waCDM) log BF Total computation time

CAMB + nested sampling −107.03± 0.27 −107.81± 0.74 0.78± 0.79 ∼8 months (48 CPUs)

CosmoPower-JAX + NUTS + harmonic 40956.55± 0.06 40955.03± 0.04 1.53± 0.07
2 days (sampling, 12 GPUs) +

12 minutes (evidence, 1 GPU + 48 CPUs)

CosmoPower-JAX + NUTS +
näıve flow
estimator 400958± 5 40957± 4 1± 6 Similar to harmonic

(b) 3x(3x2pt) with 157 (ΛCDM) and 159 (w0waCDM) parameters, described in Sect. 5.

Method log(zΛCDM) log(zw0waCDM) log BF Total computation time

CAMB + nested sampling Unfeasible Unfeasible Unfeasible 12 years (projected, 48 CPUs)

CosmoPower-JAX + NUTS + harmonic 406689.6+0.5
−0.3 406687.7+0.5

−0.3 1.9+0.7
−0.5

8 days (sampling, 24 GPUs) +
17 minutes (evidence, 1 GPU + 48 CPUs)

CosmoPower-JAX + NUTS +
näıve flow
estimator 406703± 39 406701± 62 2± 73 Similar to harmonic

approximation (LoVerde & Afshordi 2008), we can write:

CAB
ij (ℓ) =

∫ χH

0

WA
i (χ)WB

j (χ)

χ2
Pδδ

(
k =

ℓ+ 1/2

χ
, z

)
dχ ,

(7)
where Pδδ(k, z) is the matter power spectrum, χH =
c/H0 (with c the speed of light and H0 the Hubble con-
stant today) is the Hubble radius, and W (χ) indicates
a window function for each probe {A,B} = {γ, I} as a
function of the comoving distance χ.
For the pure cosmic shear γ the window function can

be written as:

W γ
i (χ) =

3ΩmH
2
0

2c2
χ

a

∫ χH

χ

ni,source(χ
′)
χ′ − χ

χ′ dχ′ , (8)

where a is the scale factor, Ωm is the matter density
parameter today and ni,source(z) represents the tomo-
graphic redshift bin distribution of the sources being ob-
served. For the intrinsic alignment field, we consider the
non-linear alignment model (NLA, Hirata & Seljak 2004;
Joachimi et al. 2011) modified as in Piras & Spurio Man-
cini (2023):

W I
i (χ) = −AIA,i

C1ρcrΩm

D(χ)
ni,source(χ) , (9)

where D(χ) is the linear growth factor, ρcr is the crit-
ical density of the Universe, C1 is a constant, and with
one intrinsic alignment amplitude for each redshift bin
AIA,i, to allow for more flexibility in the modeling. For
each redshift bin we also include a multiplicative bias
mi (Huterer et al. 2006; Amara & Réfrégier 2008; Kit-
ching et al. 2015; Taylor & Kitching 2018; Mandelbaum
et al. 2018), which rescales the cosmic shear power spec-
trum by a factor (1+mi)(1+mj), and a shift parameter
Dzi,source (Eifler et al. 2021), which shifts the mean of
the bin redshift distribution so that we actually consider
n′
i,source(z) = ni,source(z −Dzi,source).

Finally, we model the redshift distributions with ker-
nel density estimation (KDE), and consider a Gaussian
likelihood with a simulated covariance matrix as in Tu-
tusaus et al. (2020), with surface density of galaxies
nsource = 30 galaxies/arcmin2, observed ellipticity dis-
persion σϵ = 0.3, and sky fraction fsky = 0.35. We com-
pute each C(ℓ) spectrum for 30 log-spaced bin values
between ℓmin = 30 and ℓmax = 3000. To compute the
theoretical predictions for the cosmological observables
we use the Core Cosmology Library (CCL, Chisari et al.
2019).

4.2. Models

We compare two cosmological models, namely the
fiducial ΛCDM model (considered also in Piras &
Spurio Mancini 2023) and the w0waCDM model, where
in the latter we assume that the dark energy equation of
state evolves with cosmic time according to:

w(a) = w0 + (1− a)wa , (10)

which is the most common parametrization (also known
as the CPL parametrization) for dynamic dark en-
ergy (Chevallier & Polarski 2001; Linder 2003). The
w0waCDM model introduces two extra parameters (w0

and wa), and ΛCDM is recovered for w0 = −1 and
wa = 0. The simulated data vector is generated assum-
ing a ΛCDM model, so we expect that the Bayes factor
should favor this hypothesis. The prior distributions on
the cosmological and nuisance parameters are the same
as those in Piras & Spurio Mancini (2023), with the ad-
dition of uniform distributions for w0 and wa between
(−1.5,−0.5) and (−0.5, 0.5), respectively. The total num-
ber of parameters being sampled is thus 37 and 39 for
ΛCDM and w0waCDM, respectively.

4.3. Computational approaches

We compare three approaches to perform parameter
estimation and model comparison: the “traditional” ap-
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Figure 1. Corner plot for the 37-dimensional ΛCDM model, showing the posterior contours obtained with
CosmoPower-JAX in red and the concentrated flow with temperature T = 0.8 in blue. The As parameter indicates
ln

(
1010As

)
.

proach, the proposed “future” paradigm, and an ap-
proach based on a näıve flow estimation of the evidence
for comparison (discussed in Spurio Mancini et al. 2023;
Polanska et al. 2024).
First, we use the nested sampler PolyChord (Hand-

ley et al. 2015a,b) to sample the posterior distribution
and run the inference pipeline within Cobaya (Torrado
& Lewis 2021), using CAMB to predict the matter power
spectrum. We run PolyChord with default settings on
48 CPU cores twice, each time assuming either ΛCDM
or w0waCDM. Since we found the values of the evidence
to fluctuate significantly between different runs, we re-

peated the process three times for each model, quoting
the mean and standard deviation of the log evidence, and
the average time to obtain the Bayes factor.
Second, we compare this “traditional“ approach with

our “future” paradigm, which replaces CAMB with the
CosmoPower-JAX emulator, rewrites the likelihood in
the auto-differentiable language JAX, making use of
jax-cosmo, samples the posterior distribution with
NUTS implemented in NumPyro, accelerated by auto-
matic differentiation, and computes a robust estimate of
the evidence from posterior samples using the learned
harmonic mean implemented in harmonic. We run the
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Figure 2. Same as Fig. 1 for the 39-dimensional w0waCDM model.

NUTS chains in parallel on 12 A100 80GB GPUs, col-
lecting 60 chains of 2000 samples each (after 400 samples
of warm-up) for both ΛCDM and w0waCDM. As in Piras
& Spurio Mancini (2023), parallelization is obtained by
running multiple chains on each GPU. For harmonic,
we train a rational-quadratic spline flow (Durkan et al.
2019), consisting of 4 layers and 64 spline bins, on a single
GPU. We separate the NUTS samples into a training set
the flow is trained on and an inference set that is used
for estimation. We use 30% of chains for training and the
remaining 70% for inference to compute the evidence on
48 CPUs with temperature T = 0.8.
Third, the evidence can also be estimated directly

from the normalizing flow in an approach introduced by

Spurio Mancini et al. (2023), and further discussed in
Polanska et al. (2024), called the “näıve flow estimator”.
Since the flow is a normalized approximation of the pos-
terior, the expectation of the ratio of the unnormalized
posterior density and the flow density should be the evid-
ence itself. This can be estimated via a Monte Carlo
expectation as the mean of the ratios evaluated across
samples from the posterior. In contrast to the learned
harmonic mean, this approach is highly sensitive to the
flow being a close approximation of the posterior and
consequently can suffer from a large bias and variance.
We also consider this method of estimating the evidence
to demonstrate the need for an alternative principled
estimator of the evidence, as provided by the learned
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harmonic mean. We compare the results obtained repla-
cing harmonic with the näıve flow estimator on the same
NUTS samples and hardware.

4.4. Results

The results are reported in Table 1(a). The values
of the evidence when using CAMB + nested sampling
and CosmoPower-JAX + NUTS + harmonic use differ-
ent implementations of the likelihood (the latter imple-
mented in a probabilistic programming framework), in-
cluding different normalizations, so their values cannot
be compared directly. Nevertheless, the log BFs are in
good agreement between the different approaches, with
0.78 ± 0.79 for nested sampling and 1.53 ± 0.07 for
harmonic. Note that the evidence values correctly fa-
vour the ground truth model considered for the simulated
data. While the evidence computed by the näıve flow es-
timator is also in agreement with a value of 1± 6, notice
that its error is considerably larger than the other es-
timators, as anticipated. While the evidence values com-
puted by the “traditional” and “future” paradigms are
in close agreement, computational times are dramatic-
ally different, with the “future” paradigm being two or-
ders of magnitude faster, taking 2 days (with only 12
additional minutes required to compute the evidence) in-
stead of roughly 8 months. Note that with respect to the
analysis made by Piras & Spurio Mancini (2023), the
computation times that we report here are higher since
they include two models (ΛCDM and w0waCDM), as
well as more chains to obtain a robust estimate of the
evidence from harmonic. We also tested that running
PolyChord in combination with the CosmoPower emu-
lator yields consistent results, while taking about 16 days
on 48 CPU cores (namely 2 runs of 8 days each to es-
timate the Bayes factor). We additionally report that a
single evaluation of the log-likelihood gradient in forward
(reverse) mode with our approach takes about 335 (80)
seconds on a single CPU, and 15 (20) seconds on a single
GPU, demonstrating the acceleration provided by mod-
ern hardware.
The contours for the posterior samples (red) alongside

the concentrated flow at T = 0.8 (blue) used for inference
for this analysis are shown in Fig. 1 and Fig. 2 for the
ΛCDM and w0waCDM models respectively. A require-
ment for the learned harmonic mean estimator is that
the concentrated flow is contained within the posterior.
While it can be informative to inspect corner plots to en-
sure that, it is useful to consider several additional sanity
checks, especially in high-dimensional contexts. In par-
ticular, we confirm that the values of the error estimate,
kurtosis and the ratio between the square root variance
of variance and variance estimates, introduced in detail
by McEwen et al. (2021), are in agreement with the the-
oretical expectations.

5. 3X2PT ANALYSIS WITH 157 AND 159 PARAMETERS

We further showcase the scalability and robustness
of our proposed paradigm by considering three differ-
ent next-generation simulated surveys, each performing
a 3x2pt analysis, where information on cosmic shear,
galaxy clustering and their cross-correlation is combined
to obtain more stringent constraints on the cosmological
parameters (Joachimi & Bridle 2010). We refer to this

application as a 3x(3x2pt) analysis. We present the like-
lihood and results below; the cosmological models and
computational approaches are the same as Sect. 4, al-
though as we discuss in Sect. 5.2 we are not able to run
the “traditional” approach in this high-dimensional set-
ting.

5.1. Likelihood

The galaxy clustering field (n) power spectrum Cnn
ij (ℓ)

can be expressed using Eq. (7) assuming that galaxies
are a linearly-biased tracer of dark matter, with a free
parameter bi for each redshift bin. The corresponding
window function can then be written as:

W n
i (χ) = bi ni,lens(χ) , (11)

where ni,lens is a different sample of redshift distribu-
tions, also including a shift for each bin Dzi,lens. Finally,
the cross power spectrum between the shear field and
the galaxy clustering field, also called the galaxy-galaxy
lensing power spectrum, is written as:

Cnϵ
ij (ℓ) = Cnγ

ij (ℓ) + CnI
ij (ℓ) . (12)

The total number of parameters for this cross-survey ana-
lysis is 157 for ΛCDM and 159 for w0waCDM, since each
survey comes with its own 50 nuisance parameters, and
all surveys share 7 (or 9) cosmological parameters. The
specific details of every survey are reported in Piras &
Spurio Mancini (2023).

5.2. Results

All numerical results for this higher dimensional ana-
lysis are reported in Table 1(b). The high number of para-
meters and the need to consider multiple probes pose a
significant challenge for “traditional” methods, despite
being quite realistic for next-generation surveys. We es-
timated that the computation of the Bayes factor in such
a scenario would require about 12 years on 48 CPU cores,
making it effectively impossible to perform model selec-
tion in a reasonable time. While an emulator could speed
up nested sampling, it is unlikely that it could scale the
analysis to such high-dimensional scenarios, given the rel-
atively large variance of the “traditional” method already
shown in Sect. 4. In our experiments, we found that even
the 3x2pt analysis of a single survey with 57 paramet-
ers combining an emulator with PolyChord (with default
hyperparameters) would struggle to converge in a reas-
onable time for the likelihood considered here.
On the other hand, the proposed “future” paradigm

provides an estimate of the Bayes factor based on 40
(45) converged chains — with 1500 samples each, after
1000 samples of warm-up — for the ΛCDM (w0waCDM)
model, totalling 8 days on 24 GPUs, with only 17 ad-
ditional minutes required to compute the evidence. In
this case, the flow model we consider is constructed from
2 layers and 128 spline bins. The log Bayes factor com-
puted by harmonic is 1.9+0.7

−0.5, which correctly favours the
ground truth model considered for the simulated data.
The evidence computed by the näıve flow estimator is
2 ± 73: its error is very large, as anticipated, rendering
this approach unusable in practice. Again, the compu-
tation times reported here are higher than what presen-
ted in Piras & Spurio Mancini (2023) since we are now
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Figure 3. Corner plot of the subset of cosmological para-
meters for the 157-dimensional ΛCDM model, showing
the posterior contours in red and the concentrated flow
with temperature T = 0.8 in blue.

performing model comparison, and a higher number of
chains was required to satisfy the diagnostics provided
by harmonic.
The contours plots for the posterior samples (red)

alongside the concentrated flow at T = 0.8 (blue) used
for inference for this analysis are shown in Fig. 3 and
Fig. 4 for the ΛCDM and w0waCDM models respect-
ively. Fig. 5 and Fig. 6 show the one-dimensional mar-
ginal plots of the posterior samples (red) alongside the
concentrated flow at T = 0.8 (blue), for all the model
parameters for ΛCDM and w0waCDM respectively. As
in Sect. 4.4, we ensure that we satisfy the sanity checks
introduced by McEwen et al. (2021).

6. CONCLUSIONS

We propose a combination of state-of-the-art tech-
niques from machine learning (ML), differentiable and
probabilistic programming, high-dimensional sampling
and robust statistical estimation to tackle the Bayesian
likelihood-based cosmological analyses of the future.
Instead of relying on nested sampling with stand-
ard Boltzmann solvers, we leverage ML-based emu-
lation (CosmoPower-JAX), differentiable programming
(JAX), probabilistic programming (NumPyro), more effi-
cient samplers (NUTS), and robust evidence estimation
(harmonic) to perform end-to-end cosmological analyses
including parameter estimation and model comparison in
two challenging cosmological scenarios scaling up to 159
parameters.
We first computed the Bayes factor for a simulated

Stage IV cosmic shear analysis comparing the ΛCDM
model with 37 parameters and a dynamical dark energy
model w0waCDM with 39 parameters. We demonstrated
excellent agreement with nested sampling despite differ-
ent implementations of the likelihood, while requiring
two orders of magnitude less computational time. We ad-
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Figure 4. Same as Fig. 3 for the 159-dimensional
w0waCDM model.

ditionally demonstrated the scalability of our approach
by considering the joint analysis of three Stage IV sur-
veys, each performing a 3x2pt analysis, totalling either
157 (ΛCDM) or 159 (w0waCDM) parameters. We com-
puted the Bayes factor obtaining results requiring only 8
days on 24 GPUs, while projecting that a “traditional”
analysis on 48 CPU cores would require 12 years, as-
suming nested sampling is capable of scaling to such a
high-dimensional setting.
We advocate for a combination of ML emulation,

differentiable and probabilistic programming, scalable
sampling and robust evidence estimation to tackle forth-
coming cosmological likelihood-based analyses. This “fu-
ture” paradigm unlocks parameter estimation and model
comparison for Stage IV cosmological surveys with an
unprecedented number of parameters. Given that all
packages used in our analysis are already publicly avail-
able, we envision this approach could become the stand-
ard in future likelihood-based analyses, allowing the com-
munity to fully analyze the data derived from upcoming
observations in a practical timescale.
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Figure 5. Marginal distributions of all parameters for the 157-dimensional ΛCDMmodel, with the posterior distribution
obtained with CosmoPower-JAX in red, and the concentrated flow with temperature T = 0.8 in blue.
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Figure 6. Same as Fig. 5 for the 159-dimensional w0waCDM model.
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